1
0
mirror of https://github.com/trezor/trezor-firmware.git synced 2025-01-09 15:00:58 +00:00
trezor-firmware/bignum.c
2015-03-17 19:17:56 +01:00

701 lines
19 KiB
C

/**
* Copyright (c) 2013-2014 Tomas Dzetkulic
* Copyright (c) 2013-2014 Pavol Rusnak
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES
* OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*/
#include <stdio.h>
#include <string.h>
#include <assert.h>
#include "bignum.h"
#include "secp256k1.h"
inline uint32_t read_be(const uint8_t *data)
{
return (((uint32_t)data[0]) << 24) |
(((uint32_t)data[1]) << 16) |
(((uint32_t)data[2]) << 8) |
(((uint32_t)data[3]));
}
inline void write_be(uint8_t *data, uint32_t x)
{
data[0] = x >> 24;
data[1] = x >> 16;
data[2] = x >> 8;
data[3] = x;
}
// convert a raw bigendian 256 bit number to a normalized bignum
void bn_read_be(const uint8_t *in_number, bignum256 *out_number)
{
int i;
uint32_t temp = 0;
for (i = 0; i < 8; i++) {
// invariant: temp = (in_number % 2^(32i)) >> 30i
// get next limb = (in_number % 2^(32(i+1))) >> 32i
uint32_t limb = read_be(in_number + (7 - i) * 4);
// temp = (in_number % 2^(32(i+1))) << 30i
temp |= limb << (2*i);
// store 30 bits into val[i]
out_number->val[i]= temp & 0x3FFFFFFF;
// prepare temp for next round
temp = limb >> (30 - 2*i);
}
out_number->val[8] = temp;
}
// convert a normalized bignum to a raw bigendian 256 bit number.
// in_number must be normalized and < 2^256.
void bn_write_be(const bignum256 *in_number, uint8_t *out_number)
{
int i;
uint32_t temp = in_number->val[8] << 16;
for (i = 0; i < 8; i++) {
// invariant: temp = (in_number >> 30*(8-i)) << (16 + 2i)
uint32_t limb = in_number->val[7 - i];
temp |= limb >> (14 - 2*i);
write_be(out_number + i * 4, temp);
temp = limb << (18 + 2*i);
}
}
void bn_zero(bignum256 *a)
{
int i;
for (i = 0; i < 9; i++) {
a->val[i] = 0;
}
}
int bn_is_zero(const bignum256 *a)
{
int i;
for (i = 0; i < 9; i++) {
if (a->val[i] != 0) return 0;
}
return 1;
}
int bn_is_less(const bignum256 *a, const bignum256 *b)
{
int i;
for (i = 8; i >= 0; i--) {
if (a->val[i] < b->val[i]) return 1;
if (a->val[i] > b->val[i]) return 0;
}
return 0;
}
int bn_is_equal(const bignum256 *a, const bignum256 *b) {
int i;
for (i = 0; i < 9; i++) {
if (a->val[i] != b->val[i]) return 0;
}
return 1;
}
int bn_bitlen(const bignum256 *a) {
int i = 8, j;
while (i >= 0 && a->val[i] == 0) i--;
if (i == -1) return 0;
j = 29;
while ((a->val[i] & (1 << j)) == 0) j--;
return i * 30 + j + 1;
}
void bn_lshift(bignum256 *a)
{
int i;
for (i = 8; i > 0; i--) {
a->val[i] = ((a->val[i] << 1) & 0x3FFFFFFF) | ((a->val[i - 1] & 0x20000000) >> 29);
}
a->val[0] = (a->val[0] << 1) & 0x3FFFFFFF;
}
void bn_rshift(bignum256 *a)
{
int i;
for (i = 0; i < 8; i++) {
a->val[i] = (a->val[i] >> 1) | ((a->val[i + 1] & 1) << 29);
}
a->val[8] >>= 1;
}
// assumes x < 2*prime, result < prime
void bn_mod(bignum256 *x, const bignum256 *prime)
{
int i = 8;
uint32_t temp;
// compare numbers
while (i >= 0 && prime->val[i] == x->val[i]) i--;
// if equal
if (i == -1) {
// set x to zero
bn_zero(x);
} else {
// if x is greater
if (x->val[i] > prime->val[i]) {
// substract p from x
temp = 0x40000000u;
for (i = 0; i < 9; i++) {
temp += x->val[i] - prime->val[i];
x->val[i] = temp & 0x3FFFFFFF;
temp >>= 30;
temp += 0x3FFFFFFFu;
}
}
}
}
// Compute x := k * x (mod prime)
// both inputs must be smaller than 2 * prime.
// result is reduced to 0 <= x < 2 * prime
// This only works for primes between 2^256-2^196 and 2^256.
// this particular implementation accepts inputs up to 2^263 or 128*prime.
void bn_multiply(const bignum256 *k, bignum256 *x, const bignum256 *prime)
{
int i, j;
uint64_t temp = 0;
uint32_t res[18], coef;
// compute lower half of long multiplication
for (i = 0; i < 9; i++)
{
for (j = 0; j <= i; j++) {
temp += k->val[j] * (uint64_t)x->val[i - j];
}
res[i] = temp & 0x3FFFFFFFu;
temp >>= 30;
}
// compute upper half
for (; i < 17; i++)
{
for (j = i - 8; j < 9 ; j++) {
temp += k->val[j] * (uint64_t)x->val[i - j];
}
res[i] = temp & 0x3FFFFFFFu;
temp >>= 30;
}
res[17] = temp;
// res = k * x is a normalized number (every limb < 2^30)
// 0 <= res < 2^526.
// compute modulo p division is only estimated so this may give result greater than prime but not bigger than 2 * prime
for (i = 16; i >= 8; i--) {
// let k = i-8.
// invariants:
// res[0..(i+1)] = k * x (mod prime)
// 0 <= res < 2^(30k + 256) * (2^30 + 1)
// estimate (res / prime)
coef = (res[i] >> 16) + (res[i + 1] << 14);
// coef = res / 2^(30k + 256) rounded down
// 0 <= coef <= 2^30
// subtract (coef * 2^(30k) * prime) from res
// note that we unrolled the first iteration
temp = 0x1000000000000000ull + res[i - 8] - prime->val[0] * (uint64_t)coef;
res[i - 8] = temp & 0x3FFFFFFF;
for (j = 1; j < 9; j++) {
temp >>= 30;
temp += 0xFFFFFFFC0000000ull + res[i - 8 + j] - prime->val[j] * (uint64_t)coef;
res[i - 8 + j] = temp & 0x3FFFFFFF;
}
// we don't clear res[i+1] but we never read it again.
// we rely on the fact that prime > 2^256 - 2^196
// res = oldres - coef*2^(30k) * prime;
// and
// coef * 2^(30k + 256) <= oldres < (coef+1) * 2^(30k + 256)
// Hence, 0 <= res < 2^30k (2^256 + coef * (2^256 - prime))
// Since coef * (2^256 - prime) < 2^226, we get
// 0 <= res < 2^(30k + 226) (2^30 + 1)
// Thus the invariant holds again.
}
// store the result
for (i = 0; i < 9; i++) {
x->val[i] = res[i];
}
}
// input x can be any normalized number that fits (0 <= x < 2^270).
// prime must be between (2^256 - 2^196) and 2^256
// result is smaller than 2*prime
void bn_fast_mod(bignum256 *x, const bignum256 *prime)
{
int j;
uint32_t coef;
uint64_t temp;
coef = x->val[8] >> 16;
if (!coef) return;
// substract (coef * prime) from x
// note that we unrolled the first iteration
temp = 0x1000000000000000ull + x->val[0] - prime->val[0] * (uint64_t)coef;
x->val[0] = temp & 0x3FFFFFFF;
for (j = 1; j < 9; j++) {
temp >>= 30;
temp += 0xFFFFFFFC0000000ull + x->val[j] - prime->val[j] * (uint64_t)coef;
x->val[j] = temp & 0x3FFFFFFF;
}
}
// square root of x = x^((p+1)/4)
// http://en.wikipedia.org/wiki/Quadratic_residue#Prime_or_prime_power_modulus
void bn_sqrt(bignum256 *x, const bignum256 *prime)
{
// this method compute x^1/2 = x^(prime+1)/4
uint32_t i, j, limb;
bignum256 res, p;
bn_zero(&res); res.val[0] = 1;
// compute p = (prime+1)/4
memcpy(&p, prime, sizeof(bignum256));
p.val[0] += 1;
bn_rshift(&p);
bn_rshift(&p);
for (i = 0; i < 9; i++) {
// invariants:
// x = old(x)^(2^(i*30))
// res = old(x)^(p % 2^(i*30))
// get the i-th limb of prime - 2
limb = p.val[i];
for (j = 0; j < 30; j++) {
// invariants:
// x = old(x)^(2^(i*30+j))
// res = old(x)^(p % 2^(i*30+j))
// limb = (p % 2^(i*30+30)) / 2^(i*30+j)
if (i == 8 && limb == 0) break;
if (limb & 1) {
bn_multiply(x, &res, prime);
}
limb >>= 1;
bn_multiply(x, x, prime);
}
}
bn_mod(&res, prime);
memcpy(x, &res, sizeof(bignum256));
}
#if ! USE_INVERSE_FAST
// in field G_prime, small but slow
void bn_inverse(bignum256 *x, const bignum256 *prime)
{
// this method compute x^-1 = x^(prime-2)
uint32_t i, j, limb;
bignum256 res;
bn_zero(&res); res.val[0] = 1;
for (i = 0; i < 9; i++) {
// invariants:
// x = old(x)^(2^(i*30))
// res = old(x)^((prime-2) % 2^(i*30))
// get the i-th limb of prime - 2
limb = prime->val[i];
// this is not enough in general but fine for secp256k1 because prime->val[0] > 1
if (i == 0) limb -= 2;
for (j = 0; j < 30; j++) {
// invariants:
// x = old(x)^(2^(i*30+j))
// res = old(x)^((prime-2) % 2^(i*30+j))
// limb = ((prime-2) % 2^(i*30+30)) / 2^(i*30+j)
// early abort when only zero bits follow
if (i == 8 && limb == 0) break;
if (limb & 1) {
bn_multiply(x, &res, prime);
}
limb >>= 1;
bn_multiply(x, x, prime);
}
}
bn_mod(&res, prime);
memcpy(x, &res, sizeof(bignum256));
}
#else
// in field G_prime, big and complicated but fast
// the input must not be 0 mod prime.
// the result is smaller than prime
void bn_inverse(bignum256 *x, const bignum256 *prime)
{
int i, j, k, cmp;
struct combo {
uint32_t a[9];
int len1;
} us, vr, *odd, *even;
uint32_t pp[8];
uint32_t temp32;
uint64_t temp;
// The algorithm is based on Schroeppel et. al. "Almost Modular Inverse"
// algorithm. We keep four values u,v,r,s in the combo registers
// us and vr. us stores u in the first len1 limbs (little endian)
// and s in the last 9-len1 limbs (big endian). vr stores v and r.
// This is because both u*s and v*r are guaranteed to fit in 8 limbs, so
// their components are guaranteed to fit in 9. During the algorithm,
// the length of u and v shrinks while r and s grow.
// u,v,r,s correspond to F,G,B,C in Schroeppel's algorithm.
// reduce x modulo prime. This is necessary as it has to fit in 8 limbs.
bn_fast_mod(x, prime);
bn_mod(x, prime);
// convert x and prime to 8x32 bit limb form
temp32 = prime->val[0];
for (i = 0; i < 8; i++) {
temp32 |= prime->val[i + 1] << (30-2*i);
us.a[i] = pp[i] = temp32;
temp32 = prime->val[i + 1] >> (2+2*i);
}
temp32 = x->val[0];
for (i = 0; i < 8; i++) {
temp32 |= x->val[i + 1] << (30-2*i);
vr.a[i] = temp32;
temp32 = x->val[i + 1] >> (2+2*i);
}
us.len1 = 8;
vr.len1 = 8;
// set s = 1 and r = 0
us.a[8] = 1;
vr.a[8] = 0;
// set k = 0.
k = 0;
// only one of the numbers u,v can be even at any time. We
// let even point to that number and odd to the other.
// Initially the prime u is guaranteed to be odd.
odd = &us;
even = &vr;
// u = prime, v = x
// r = 0 , s = 1
// k = 0
for (;;) {
// invariants:
// let u = limbs us.a[0..u.len1-1] in little endian,
// let s = limbs us.a[u.len..8] in big endian,
// let v = limbs vr.a[0..u.len1-1] in little endian,
// let r = limbs vr.a[u.len..8] in big endian,
// r,s >= 0 ; u,v >= 1
// x*-r = u*2^k mod prime
// x*s = v*2^k mod prime
// u*s + v*r = prime
// floor(log2(u)) + floor(log2(v)) + k <= 510
// max(u,v) <= 2^k (*) see comment at end of loop
// gcd(u,v) = 1
// {odd,even} = {&us, &vr}
// odd->a[0] and odd->a[8] are odd
// even->a[0] or even->a[8] is even
//
// first u/v are large and r/s small
// later u/v are small and r/s large
assert(odd->a[0] & 1);
assert(odd->a[8] & 1);
// adjust length of even.
while (even->a[even->len1 - 1] == 0) {
even->len1--;
// if input was 0, return.
// This simple check prevents crashing with stack underflow
// or worse undesired behaviour for illegal input.
if (even->len1 < 0)
return;
}
// reduce even->a while it is even
while (even->a[0] == 0) {
// shift right first part of even by a limb
// and shift left second part of even by a limb.
for (i = 0; i < 8; i++) {
even->a[i] = even->a[i+1];
}
even->a[i] = 0;
even->len1--;
k += 32;
}
// count up to 32 zero bits of even->a.
j = 0;
while ((even->a[0] & (1 << j)) == 0) {
j++;
}
if (j > 0) {
// shift first part of even right by j bits.
for (i = 0; i + 1 < even->len1; i++) {
even->a[i] = (even->a[i] >> j) | (even->a[i + 1] << (32 - j));
}
even->a[i] = (even->a[i] >> j);
if (even->a[i] == 0) {
even->len1--;
} else {
i++;
}
// shift second part of even left by j bits.
for (; i < 8; i++) {
even->a[i] = (even->a[i] << j) | (even->a[i + 1] >> (32 - j));
}
even->a[i] = (even->a[i] << j);
// add j bits to k.
k += j;
}
// invariant is reestablished.
// now both a[0] are odd.
assert(odd->a[0] & 1);
assert(odd->a[8] & 1);
assert(even->a[0] & 1);
assert((even->a[8] & 1) == 0);
// cmp > 0 if us.a[0..len1-1] > vr.a[0..len1-1],
// cmp = 0 if equal, < 0 if less.
cmp = us.len1 - vr.len1;
if (cmp == 0) {
i = us.len1 - 1;
while (i >= 0 && us.a[i] == vr.a[i]) i--;
// both are equal to 1 and we are done.
if (i == -1)
break;
cmp = us.a[i] > vr.a[i] ? 1 : -1;
}
if (cmp > 0) {
even = &us;
odd = &vr;
} else {
even = &vr;
odd = &us;
}
// now even > odd.
// even->a[0..len1-1] = (even->a[0..len1-1] - odd->a[0..len1-1]);
temp = 1;
for (i = 0; i < odd->len1; i++) {
temp += 0xFFFFFFFFull + even->a[i] - odd->a[i];
even->a[i] = temp & 0xFFFFFFFF;
temp >>= 32;
}
for (; i < even->len1; i++) {
temp += 0xFFFFFFFFull + even->a[i];
even->a[i] = temp & 0xFFFFFFFF;
temp >>= 32;
}
// odd->a[len1..8] = (odd->b[len1..8] + even->b[len1..8]);
temp = 0;
for (i = 8; i >= even->len1; i--) {
temp += (uint64_t) odd->a[i] + even->a[i];
odd->a[i] = temp & 0xFFFFFFFF;
temp >>= 32;
}
for (; i >= odd->len1; i--) {
temp += (uint64_t) odd->a[i];
odd->a[i] = temp & 0xFFFFFFFF;
temp >>= 32;
}
// note that
// if u > v:
// u'2^k = (u - v) 2^k = x(-r) - xs = x(-(r+s)) = x(-r') mod prime
// u's' + v'r' = (u-v)s + v(r+s) = us + vr
// if u < v:
// v'2^k = (v - u) 2^k = xs - x(-r) = x(s+r) = xs' mod prime
// u's' + v'r' = u(s+r) + (v-u)r = us + vr
// even->a[0] is difference between two odd numbers, hence even.
// odd->a[8] is sum of even and odd number, hence odd.
assert(odd->a[0] & 1);
assert(odd->a[8] & 1);
assert((even->a[0] & 1) == 0);
// The invariants are (almost) reestablished.
// The invariant max(u,v) <= 2^k can be invalidated at this point,
// because odd->a[len1..8] was changed. We only have
//
// odd->a[len1..8] <= 2^{k+1}
//
// Since even->a[0] is even, k will be incremented at the beginning
// of the next loop while odd->a[len1..8] remains unchanged.
// So after that, odd->a[len1..8] <= 2^k will hold again.
}
// In the last iteration we had u = v and gcd(u,v) = 1.
// Hence, u=1, v=1, s+r = prime, k <= 510, 2^k > max(s,r) >= prime/2
// This implies 0 <= s < prime and 255 <= k <= 510.
//
// The invariants also give us x*s = 2^k mod prime,
// hence s = 2^k * x^-1 mod prime.
// We need to compute s/2^k mod prime.
// First we compute inverse = -prime^-1 mod 2^32, which we need later.
// We use the Explicit Quadratic Modular inverse algorithm.
// http://arxiv.org/pdf/1209.6626.pdf
// a^-1 = (2-a) * PROD_i (1 + (a - 1)^(2^i)) mod 2^32
// the product will converge quickly, because (a-1)^(2^i) will be
// zero mod 2^32 after at most five iterations.
// We want to compute -prime^-1 so we start with (pp[0]-2).
assert(pp[0] & 1);
uint32_t amone = pp[0]-1;
uint32_t inverse = pp[0] - 2;
while (amone) {
amone *= amone;
inverse *= (amone + 1);
}
while (k >= 32) {
// compute s / 2^32 modulo prime.
// Idea: compute factor, such that
// s + factor*prime mod 2^32 == 0
// i.e. factor = s * -1/prime mod 2^32.
// Then compute s + factor*prime and shift right by 32 bits.
uint32_t factor = (inverse * us.a[8]) & 0xffffffff;
temp = us.a[8] + (uint64_t) pp[0] * factor;
assert((temp & 0xffffffff) == 0);
temp >>= 32;
for (i = 0; i < 7; i++) {
temp += us.a[8-(i+1)] + (uint64_t) pp[i+1] * factor;
us.a[8-i] = temp & 0xffffffff;
temp >>= 32;
}
us.a[8-i] = temp & 0xffffffff;
k -= 32;
}
if (k > 0) {
// compute s / 2^k modulo prime.
// Same idea: compute factor, such that
// s + factor*prime mod 2^k == 0
// i.e. factor = s * -1/prime mod 2^k.
// Then compute s + factor*prime and shift right by k bits.
uint32_t mask = (1 << k) - 1;
uint32_t factor = (inverse * us.a[8]) & mask;
temp = (us.a[8] + (uint64_t) pp[0] * factor) >> k;
assert(((us.a[8] + pp[0] * factor) & mask) == 0);
for (i = 0; i < 7; i++) {
temp += (us.a[8-(i+1)] + (uint64_t) pp[i+1] * factor) << (32 - k);
us.a[8-i] = temp & 0xffffffff;
temp >>= 32;
}
us.a[8-i] = temp & 0xffffffff;
}
// convert s to bignum style
temp32 = 0;
for (i = 0; i < 8; i++) {
x->val[i] = ((us.a[8-i] << (2 * i)) & 0x3FFFFFFFu) | temp32;
temp32 = us.a[8-i] >> (30 - 2 * i);
}
x->val[i] = temp32;
}
#endif
void bn_normalize(bignum256 *a) {
int i;
uint32_t tmp = 0;
for (i = 0; i < 9; i++) {
tmp += a->val[i];
a->val[i] = tmp & 0x3FFFFFFF;
tmp >>= 30;
}
}
void bn_addmod(bignum256 *a, const bignum256 *b, const bignum256 *prime)
{
int i;
for (i = 0; i < 9; i++) {
a->val[i] += b->val[i];
}
bn_normalize(a);
bn_fast_mod(a, prime);
bn_mod(a, prime);
}
void bn_addmodi(bignum256 *a, uint32_t b, const bignum256 *prime) {
a->val[0] += b;
bn_normalize(a);
bn_fast_mod(a, prime);
bn_mod(a, prime);
}
// res = a - b mod prime. More exactly res = a + (2*prime - b).
// precondition: 0 <= b < 2*prime, 0 <= a < prime
// res < 3*prime
void bn_subtractmod(const bignum256 *a, const bignum256 *b, bignum256 *res, const bignum256 *prime)
{
int i;
uint32_t temp = 0;
for (i = 0; i < 9; i++) {
temp += a->val[i] + 2u * prime->val[i] - b->val[i];
res->val[i] = temp & 0x3FFFFFFF;
temp >>= 30;
}
}
// res = a - b ; a > b
void bn_subtract(const bignum256 *a, const bignum256 *b, bignum256 *res)
{
int i;
uint32_t tmp = 1;
for (i = 0; i < 9; i++) {
tmp += 0x3FFFFFFF + a->val[i] - b->val[i];
res->val[i] = tmp & 0x3FFFFFFF;
tmp >>= 30;
}
}
// a / 58 = a (+r)
void bn_divmod58(bignum256 *a, uint32_t *r)
{
int i;
uint32_t rem, tmp;
rem = a->val[8] % 58;
a->val[8] /= 58;
for (i = 7; i >= 0; i--) {
// invariants:
// rem = old(a) >> 30(i+1) % 58
// a[i+1..8] = old(a[i+1..8])/58
// a[0..i] = old(a[0..i])
// 2^30 == 18512790*58 + 4
tmp = rem * 4 + a->val[i];
// set a[i] = (rem * 2^30 + a[i])/58
// = rem * 18512790 + (rem * 4 + a[i])/58
a->val[i] = rem * 18512790 + (tmp / 58);
// set rem = (rem * 2^30 + a[i]) mod 58
// = (rem * 4 + a[i]) mod 58
rem = tmp % 58;
}
*r = rem;
}
#if USE_BN_PRINT
void bn_print(const bignum256 *a)
{
printf("%04x", a->val[8] & 0x0000FFFF);
printf("%08x", (a->val[7] << 2) | ((a->val[6] & 0x30000000) >> 28));
printf("%07x", a->val[6] & 0x0FFFFFFF);
printf("%08x", (a->val[5] << 2) | ((a->val[4] & 0x30000000) >> 28));
printf("%07x", a->val[4] & 0x0FFFFFFF);
printf("%08x", (a->val[3] << 2) | ((a->val[2] & 0x30000000) >> 28));
printf("%07x", a->val[2] & 0x0FFFFFFF);
printf("%08x", (a->val[1] << 2) | ((a->val[0] & 0x30000000) >> 28));
printf("%07x", a->val[0] & 0x0FFFFFFF);
}
void bn_print_raw(const bignum256 *a)
{
int i;
for (i = 0; i <= 8; i++) {
printf("0x%08x, ", a->val[i]);
}
}
#endif