1
0
mirror of https://github.com/trezor/trezor-firmware.git synced 2024-11-16 04:29:08 +00:00
trezor-firmware/crypto/nem.c

508 lines
17 KiB
C

/**
* Copyright (c) 2017 Saleem Rashid
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, E1PRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES
* OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*/
#include "nem.h"
#include <string.h>
#include "base32.h"
#include "ed25519-donna/ed25519-keccak.h"
#include "memzero.h"
#include "ripemd160.h"
#include "sha3.h"
#define CAN_WRITE(NEEDED) ((ctx->offset + (NEEDED)) <= ctx->size)
#define SERIALIZE_U32(DATA) \
do { \
if (!nem_write_u32(ctx, (DATA))) return false; \
} while (0)
#define SERIALIZE_U64(DATA) \
do { \
if (!nem_write_u64(ctx, (DATA))) return false; \
} while (0)
#define SERIALIZE_TAGGED(DATA, LENGTH) \
do { \
if (!nem_write_tagged(ctx, (DATA), (LENGTH))) return false; \
} while (0)
const char *nem_network_name(uint8_t network) {
switch (network) {
case NEM_NETWORK_MAINNET:
return "NEM Mainnet";
case NEM_NETWORK_TESTNET:
return "NEM Testnet";
case NEM_NETWORK_MIJIN:
return "Mijin";
default:
return NULL;
}
}
static inline bool nem_write_checked(nem_transaction_ctx *ctx,
const uint8_t *data, uint32_t length) {
if (!CAN_WRITE(length)) {
return false;
}
memcpy(&ctx->buffer[ctx->offset], data, length);
ctx->offset += length;
return true;
}
static inline bool nem_write_u32(nem_transaction_ctx *ctx, uint32_t data) {
if (!CAN_WRITE(4)) {
return false;
}
ctx->buffer[ctx->offset++] = (data >> 0) & 0xff;
ctx->buffer[ctx->offset++] = (data >> 8) & 0xff;
ctx->buffer[ctx->offset++] = (data >> 16) & 0xff;
ctx->buffer[ctx->offset++] = (data >> 24) & 0xff;
return true;
}
static inline bool nem_write_u64(nem_transaction_ctx *ctx, uint64_t data) {
SERIALIZE_U32((data >> 0) & 0xffffffff);
SERIALIZE_U32((data >> 32) & 0xffffffff);
return true;
}
static inline bool nem_write_tagged(nem_transaction_ctx *ctx,
const uint8_t *data, uint32_t length) {
SERIALIZE_U32(length);
return nem_write_checked(ctx, data, length);
}
static inline bool nem_write_mosaic_str(nem_transaction_ctx *ctx,
const char *name, const char *value) {
uint32_t name_length = strlen(name);
uint32_t value_length = strlen(value);
SERIALIZE_U32(sizeof(uint32_t) + name_length + sizeof(uint32_t) +
value_length);
SERIALIZE_TAGGED((const uint8_t *)name, name_length);
SERIALIZE_TAGGED((const uint8_t *)value, value_length);
return true;
}
static inline bool nem_write_mosaic_bool(nem_transaction_ctx *ctx,
const char *name, bool value) {
return nem_write_mosaic_str(ctx, name, value ? "true" : "false");
}
static inline bool nem_write_mosaic_u64(nem_transaction_ctx *ctx,
const char *name, uint64_t value) {
char buffer[21] = {0};
if (bn_format_uint64(value, NULL, NULL, 0, 0, false, 0, buffer,
sizeof(buffer)) == 0) {
return false;
}
return nem_write_mosaic_str(ctx, name, buffer);
}
void nem_get_address_raw(const ed25519_public_key public_key, uint8_t version,
uint8_t *address) {
uint8_t hash[SHA3_256_DIGEST_LENGTH] = {0};
/* 1. Perform 256-bit Sha3 on the public key */
keccak_256(public_key, sizeof(ed25519_public_key), hash);
/* 2. Perform 160-bit Ripemd of hash resulting from step 1. */
ripemd160(hash, SHA3_256_DIGEST_LENGTH, &address[1]);
/* 3. Prepend version byte to Ripemd hash (either 0x68 or 0x98) */
address[0] = version;
/* 4. Perform 256-bit Sha3 on the result, take the first four bytes as a
* checksum */
keccak_256(address, 1 + RIPEMD160_DIGEST_LENGTH, hash);
/* 5. Concatenate output of step 3 and the checksum from step 4 */
memcpy(&address[1 + RIPEMD160_DIGEST_LENGTH], hash, 4);
memzero(hash, sizeof(hash));
}
bool nem_get_address(const ed25519_public_key public_key, uint8_t version,
char *address) {
uint8_t pubkeyhash[NEM_ADDRESS_SIZE_RAW] = {0};
nem_get_address_raw(public_key, version, pubkeyhash);
char *ret = base32_encode(pubkeyhash, sizeof(pubkeyhash), address,
NEM_ADDRESS_SIZE + 1, BASE32_ALPHABET_RFC4648);
memzero(pubkeyhash, sizeof(pubkeyhash));
return (ret != NULL);
}
bool nem_validate_address_raw(const uint8_t *address, uint8_t network) {
if (!nem_network_name(network) || address[0] != network) {
return false;
}
uint8_t hash[SHA3_256_DIGEST_LENGTH] = {0};
keccak_256(address, 1 + RIPEMD160_DIGEST_LENGTH, hash);
bool valid = (memcmp(&address[1 + RIPEMD160_DIGEST_LENGTH], hash, 4) == 0);
memzero(hash, sizeof(hash));
return valid;
}
bool nem_validate_address(const char *address, uint8_t network) {
uint8_t pubkeyhash[NEM_ADDRESS_SIZE_RAW] = {0};
if (strlen(address) != NEM_ADDRESS_SIZE) {
return false;
}
uint8_t *ret = base32_decode(address, NEM_ADDRESS_SIZE, pubkeyhash,
sizeof(pubkeyhash), BASE32_ALPHABET_RFC4648);
bool valid = (ret != NULL) && nem_validate_address_raw(pubkeyhash, network);
memzero(pubkeyhash, sizeof(pubkeyhash));
return valid;
}
void nem_transaction_start(nem_transaction_ctx *ctx,
const ed25519_public_key public_key, uint8_t *buffer,
size_t size) {
memcpy(ctx->public_key, public_key, sizeof(ctx->public_key));
ctx->buffer = buffer;
ctx->offset = 0;
ctx->size = size;
}
size_t nem_transaction_end(nem_transaction_ctx *ctx,
const ed25519_secret_key private_key,
ed25519_signature signature) {
if (private_key != NULL && signature != NULL) {
ed25519_sign_keccak(ctx->buffer, ctx->offset, private_key, signature);
}
return ctx->offset;
}
bool nem_transaction_write_common(nem_transaction_ctx *ctx, uint32_t type,
uint32_t version, uint32_t timestamp,
const ed25519_public_key signer, uint64_t fee,
uint32_t deadline) {
SERIALIZE_U32(type);
SERIALIZE_U32(version);
SERIALIZE_U32(timestamp);
SERIALIZE_TAGGED(signer, sizeof(ed25519_public_key));
SERIALIZE_U64(fee);
SERIALIZE_U32(deadline);
return true;
}
bool nem_transaction_create_transfer(nem_transaction_ctx *ctx, uint8_t network,
uint32_t timestamp,
const ed25519_public_key signer,
uint64_t fee, uint32_t deadline,
const char *recipient, uint64_t amount,
const uint8_t *payload, uint32_t length,
bool encrypted, uint32_t mosaics) {
if (!signer) {
signer = ctx->public_key;
}
if (!payload) {
length = 0;
}
bool ret =
nem_transaction_write_common(ctx, NEM_TRANSACTION_TYPE_TRANSFER,
(uint32_t)network << 24 | (mosaics ? 2 : 1),
timestamp, signer, fee, deadline);
if (!ret) return false;
SERIALIZE_TAGGED((const uint8_t *)recipient, NEM_ADDRESS_SIZE);
SERIALIZE_U64(amount);
if (length) {
SERIALIZE_U32(sizeof(uint32_t) + sizeof(uint32_t) + length);
SERIALIZE_U32(encrypted ? 0x02 : 0x01);
SERIALIZE_TAGGED(payload, length);
} else {
SERIALIZE_U32(0);
}
if (mosaics) {
SERIALIZE_U32(mosaics);
}
return true;
}
bool nem_transaction_write_mosaic(nem_transaction_ctx *ctx,
const char *namespace, const char *mosaic,
uint64_t quantity) {
size_t namespace_length = strlen(namespace);
size_t mosaic_length = strlen(mosaic);
size_t identifier_length =
sizeof(uint32_t) + namespace_length + sizeof(uint32_t) + mosaic_length;
SERIALIZE_U32(sizeof(uint32_t) + sizeof(uint64_t) + identifier_length);
SERIALIZE_U32(identifier_length);
SERIALIZE_TAGGED((const uint8_t *)namespace, namespace_length);
SERIALIZE_TAGGED((const uint8_t *)mosaic, mosaic_length);
SERIALIZE_U64(quantity);
return true;
}
bool nem_transaction_create_multisig(nem_transaction_ctx *ctx, uint8_t network,
uint32_t timestamp,
const ed25519_public_key signer,
uint64_t fee, uint32_t deadline,
const nem_transaction_ctx *inner) {
if (!signer) {
signer = ctx->public_key;
}
bool ret = nem_transaction_write_common(ctx, NEM_TRANSACTION_TYPE_MULTISIG,
(uint32_t)network << 24 | 1,
timestamp, signer, fee, deadline);
if (!ret) return false;
SERIALIZE_TAGGED(inner->buffer, inner->offset);
return true;
}
bool nem_transaction_create_multisig_signature(
nem_transaction_ctx *ctx, uint8_t network, uint32_t timestamp,
const ed25519_public_key signer, uint64_t fee, uint32_t deadline,
const nem_transaction_ctx *inner) {
if (!signer) {
signer = ctx->public_key;
}
bool ret = nem_transaction_write_common(
ctx, NEM_TRANSACTION_TYPE_MULTISIG_SIGNATURE, (uint32_t)network << 24 | 1,
timestamp, signer, fee, deadline);
if (!ret) return false;
char address[NEM_ADDRESS_SIZE + 1] = {0};
nem_get_address(inner->public_key, network, address);
uint8_t hash[SHA3_256_DIGEST_LENGTH] = {0};
keccak_256(inner->buffer, inner->offset, hash);
SERIALIZE_U32(sizeof(uint32_t) + SHA3_256_DIGEST_LENGTH);
SERIALIZE_TAGGED(hash, SHA3_256_DIGEST_LENGTH);
SERIALIZE_TAGGED((const uint8_t *)address, NEM_ADDRESS_SIZE);
return true;
}
bool nem_transaction_create_provision_namespace(
nem_transaction_ctx *ctx, uint8_t network, uint32_t timestamp,
const ed25519_public_key signer, uint64_t fee, uint32_t deadline,
const char *namespace, const char *parent, const char *rental_sink,
uint64_t rental_fee) {
if (!signer) {
signer = ctx->public_key;
}
bool ret = nem_transaction_write_common(
ctx, NEM_TRANSACTION_TYPE_PROVISION_NAMESPACE,
(uint32_t)network << 24 | 1, timestamp, signer, fee, deadline);
if (!ret) return false;
if (parent) {
SERIALIZE_TAGGED((const uint8_t *)rental_sink, NEM_ADDRESS_SIZE);
SERIALIZE_U64(rental_fee);
SERIALIZE_TAGGED((const uint8_t *)namespace, strlen(namespace));
SERIALIZE_TAGGED((const uint8_t *)parent, strlen(parent));
} else {
SERIALIZE_TAGGED((const uint8_t *)rental_sink, NEM_ADDRESS_SIZE);
SERIALIZE_U64(rental_fee);
SERIALIZE_TAGGED((const uint8_t *)namespace, strlen(namespace));
SERIALIZE_U32(0xffffffff);
}
return true;
}
bool nem_transaction_create_mosaic_creation(
nem_transaction_ctx *ctx, uint8_t network, uint32_t timestamp,
const ed25519_public_key signer, uint64_t fee, uint32_t deadline,
const char *namespace, const char *mosaic, const char *description,
uint32_t divisibility, uint64_t supply, bool mutable_supply,
bool transferable, uint32_t levy_type, uint64_t levy_fee,
const char *levy_address, const char *levy_namespace,
const char *levy_mosaic, const char *creation_sink, uint64_t creation_fee) {
if (!signer) {
signer = ctx->public_key;
}
bool ret = nem_transaction_write_common(
ctx, NEM_TRANSACTION_TYPE_MOSAIC_CREATION, (uint32_t)network << 24 | 1,
timestamp, signer, fee, deadline);
if (!ret) return false;
size_t namespace_length = strlen(namespace);
size_t mosaic_length = strlen(mosaic);
size_t identifier_length =
sizeof(uint32_t) + namespace_length + sizeof(uint32_t) + mosaic_length;
// This length will be rewritten later on
nem_transaction_ctx state = {0};
memcpy(&state, ctx, sizeof(state));
SERIALIZE_U32(0);
SERIALIZE_TAGGED(signer, sizeof(ed25519_public_key));
SERIALIZE_U32(identifier_length);
SERIALIZE_TAGGED((const uint8_t *)namespace, namespace_length);
SERIALIZE_TAGGED((const uint8_t *)mosaic, mosaic_length);
SERIALIZE_TAGGED((const uint8_t *)description, strlen(description));
SERIALIZE_U32(4); // Number of properties
if (!nem_write_mosaic_u64(ctx, "divisibility", divisibility)) return false;
if (!nem_write_mosaic_u64(ctx, "initialSupply", supply)) return false;
if (!nem_write_mosaic_bool(ctx, "supplyMutable", mutable_supply))
return false;
if (!nem_write_mosaic_bool(ctx, "transferable", transferable)) return false;
if (levy_type) {
size_t levy_namespace_length = strlen(levy_namespace);
size_t levy_mosaic_length = strlen(levy_mosaic);
size_t levy_identifier_length = sizeof(uint32_t) + levy_namespace_length +
sizeof(uint32_t) + levy_mosaic_length;
SERIALIZE_U32(sizeof(uint32_t) + sizeof(uint32_t) + NEM_ADDRESS_SIZE +
sizeof(uint32_t) + levy_identifier_length + sizeof(uint64_t));
SERIALIZE_U32(levy_type);
SERIALIZE_TAGGED((const uint8_t *)levy_address, NEM_ADDRESS_SIZE);
SERIALIZE_U32(levy_identifier_length);
SERIALIZE_TAGGED((const uint8_t *)levy_namespace, levy_namespace_length);
SERIALIZE_TAGGED((const uint8_t *)levy_mosaic, levy_mosaic_length);
SERIALIZE_U64(levy_fee);
} else {
SERIALIZE_U32(0);
}
// Rewrite length
nem_write_u32(&state, ctx->offset - state.offset - sizeof(uint32_t));
SERIALIZE_TAGGED((const uint8_t *)creation_sink, NEM_ADDRESS_SIZE);
SERIALIZE_U64(creation_fee);
return true;
}
bool nem_transaction_create_mosaic_supply_change(
nem_transaction_ctx *ctx, uint8_t network, uint32_t timestamp,
const ed25519_public_key signer, uint64_t fee, uint32_t deadline,
const char *namespace, const char *mosaic, uint32_t type, uint64_t delta) {
if (!signer) {
signer = ctx->public_key;
}
bool ret = nem_transaction_write_common(
ctx, NEM_TRANSACTION_TYPE_MOSAIC_SUPPLY_CHANGE,
(uint32_t)network << 24 | 1, timestamp, signer, fee, deadline);
if (!ret) return false;
size_t namespace_length = strlen(namespace);
size_t mosaic_length = strlen(mosaic);
size_t identifier_length =
sizeof(uint32_t) + namespace_length + sizeof(uint32_t) + mosaic_length;
SERIALIZE_U32(identifier_length);
SERIALIZE_TAGGED((const uint8_t *)namespace, namespace_length);
SERIALIZE_TAGGED((const uint8_t *)mosaic, mosaic_length);
SERIALIZE_U32(type);
SERIALIZE_U64(delta);
return true;
}
bool nem_transaction_create_aggregate_modification(
nem_transaction_ctx *ctx, uint8_t network, uint32_t timestamp,
const ed25519_public_key signer, uint64_t fee, uint32_t deadline,
uint32_t modifications, bool relative_change) {
if (!signer) {
signer = ctx->public_key;
}
bool ret = nem_transaction_write_common(
ctx, NEM_TRANSACTION_TYPE_AGGREGATE_MODIFICATION,
(uint32_t)network << 24 | (relative_change ? 2 : 1), timestamp, signer,
fee, deadline);
if (!ret) return false;
SERIALIZE_U32(modifications);
return true;
}
bool nem_transaction_write_cosignatory_modification(
nem_transaction_ctx *ctx, uint32_t type,
const ed25519_public_key cosignatory) {
SERIALIZE_U32(sizeof(uint32_t) + sizeof(uint32_t) +
sizeof(ed25519_public_key));
SERIALIZE_U32(type);
SERIALIZE_TAGGED(cosignatory, sizeof(ed25519_public_key));
return true;
}
bool nem_transaction_write_minimum_cosignatories(nem_transaction_ctx *ctx,
int32_t relative_change) {
SERIALIZE_U32(sizeof(uint32_t));
SERIALIZE_U32((uint32_t)relative_change);
return true;
}
bool nem_transaction_create_importance_transfer(
nem_transaction_ctx *ctx, uint8_t network, uint32_t timestamp,
const ed25519_public_key signer, uint64_t fee, uint32_t deadline,
uint32_t mode, const ed25519_public_key remote) {
if (!signer) {
signer = ctx->public_key;
}
bool ret = nem_transaction_write_common(
ctx, NEM_TRANSACTION_TYPE_IMPORTANCE_TRANSFER,
(uint32_t)network << 24 | 1, timestamp, signer, fee, deadline);
if (!ret) return false;
SERIALIZE_U32(mode);
SERIALIZE_TAGGED(remote, sizeof(ed25519_public_key));
return true;
}