1
0
mirror of https://github.com/trezor/trezor-firmware.git synced 2024-11-27 01:48:17 +00:00
trezor-firmware/crypto/ripemd160.c
2019-10-09 17:05:33 +02:00

344 lines
10 KiB
C

/*
* RIPE MD-160 implementation
*
* Copyright (C) 2006-2015, ARM Limited, All Rights Reserved
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License"); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* This file is part of mbed TLS (https://tls.mbed.org)
*/
/*
* The RIPEMD-160 algorithm was designed by RIPE in 1996
* http://homes.esat.kuleuven.be/~bosselae/ripemd160.html
* http://ehash.iaik.tugraz.at/wiki/RIPEMD-160
*/
#include <string.h>
#include "ripemd160.h"
#include "memzero.h"
/*
* 32-bit integer manipulation macros (little endian)
*/
#ifndef GET_UINT32_LE
#define GET_UINT32_LE(n,b,i) \
{ \
(n) = ( (uint32_t) (b)[(i) ] ) \
| ( (uint32_t) (b)[(i) + 1] << 8 ) \
| ( (uint32_t) (b)[(i) + 2] << 16 ) \
| ( (uint32_t) (b)[(i) + 3] << 24 ); \
}
#endif
#ifndef PUT_UINT32_LE
#define PUT_UINT32_LE(n,b,i) \
{ \
(b)[(i) ] = (uint8_t) ( ( (n) ) & 0xFF ); \
(b)[(i) + 1] = (uint8_t) ( ( (n) >> 8 ) & 0xFF ); \
(b)[(i) + 2] = (uint8_t) ( ( (n) >> 16 ) & 0xFF ); \
(b)[(i) + 3] = (uint8_t) ( ( (n) >> 24 ) & 0xFF ); \
}
#endif
/*
* RIPEMD-160 context setup
*/
void ripemd160_Init(RIPEMD160_CTX *ctx)
{
memzero(ctx, sizeof(RIPEMD160_CTX));
ctx->total[0] = 0;
ctx->total[1] = 0;
ctx->state[0] = 0x67452301;
ctx->state[1] = 0xEFCDAB89;
ctx->state[2] = 0x98BADCFE;
ctx->state[3] = 0x10325476;
ctx->state[4] = 0xC3D2E1F0;
}
#if !defined(MBEDTLS_RIPEMD160_PROCESS_ALT)
/*
* Process one block
*/
void ripemd160_process( RIPEMD160_CTX *ctx, const uint8_t data[RIPEMD160_BLOCK_LENGTH] )
{
uint32_t A = 0, B = 0, C = 0, D = 0, E = 0, Ap = 0, Bp = 0, Cp = 0, Dp = 0, Ep = 0, X[16] = {0};
GET_UINT32_LE( X[ 0], data, 0 );
GET_UINT32_LE( X[ 1], data, 4 );
GET_UINT32_LE( X[ 2], data, 8 );
GET_UINT32_LE( X[ 3], data, 12 );
GET_UINT32_LE( X[ 4], data, 16 );
GET_UINT32_LE( X[ 5], data, 20 );
GET_UINT32_LE( X[ 6], data, 24 );
GET_UINT32_LE( X[ 7], data, 28 );
GET_UINT32_LE( X[ 8], data, 32 );
GET_UINT32_LE( X[ 9], data, 36 );
GET_UINT32_LE( X[10], data, 40 );
GET_UINT32_LE( X[11], data, 44 );
GET_UINT32_LE( X[12], data, 48 );
GET_UINT32_LE( X[13], data, 52 );
GET_UINT32_LE( X[14], data, 56 );
GET_UINT32_LE( X[15], data, 60 );
A = Ap = ctx->state[0];
B = Bp = ctx->state[1];
C = Cp = ctx->state[2];
D = Dp = ctx->state[3];
E = Ep = ctx->state[4];
#define F1( x, y, z ) ( x ^ y ^ z )
#define F2( x, y, z ) ( ( x & y ) | ( ~x & z ) )
#define F3( x, y, z ) ( ( x | ~y ) ^ z )
#define F4( x, y, z ) ( ( x & z ) | ( y & ~z ) )
#define F5( x, y, z ) ( x ^ ( y | ~z ) )
#define S( x, n ) ( ( x << n ) | ( x >> (32 - n) ) )
#define P( a, b, c, d, e, r, s, f, k ) \
a += f( b, c, d ) + X[r] + k; \
a = S( a, s ) + e; \
c = S( c, 10 );
#define P2( a, b, c, d, e, r, s, rp, sp ) \
P( a, b, c, d, e, r, s, F, K ); \
P( a ## p, b ## p, c ## p, d ## p, e ## p, rp, sp, Fp, Kp );
#define F F1
#define K 0x00000000
#define Fp F5
#define Kp 0x50A28BE6
P2( A, B, C, D, E, 0, 11, 5, 8 );
P2( E, A, B, C, D, 1, 14, 14, 9 );
P2( D, E, A, B, C, 2, 15, 7, 9 );
P2( C, D, E, A, B, 3, 12, 0, 11 );
P2( B, C, D, E, A, 4, 5, 9, 13 );
P2( A, B, C, D, E, 5, 8, 2, 15 );
P2( E, A, B, C, D, 6, 7, 11, 15 );
P2( D, E, A, B, C, 7, 9, 4, 5 );
P2( C, D, E, A, B, 8, 11, 13, 7 );
P2( B, C, D, E, A, 9, 13, 6, 7 );
P2( A, B, C, D, E, 10, 14, 15, 8 );
P2( E, A, B, C, D, 11, 15, 8, 11 );
P2( D, E, A, B, C, 12, 6, 1, 14 );
P2( C, D, E, A, B, 13, 7, 10, 14 );
P2( B, C, D, E, A, 14, 9, 3, 12 );
P2( A, B, C, D, E, 15, 8, 12, 6 );
#undef F
#undef K
#undef Fp
#undef Kp
#define F F2
#define K 0x5A827999
#define Fp F4
#define Kp 0x5C4DD124
P2( E, A, B, C, D, 7, 7, 6, 9 );
P2( D, E, A, B, C, 4, 6, 11, 13 );
P2( C, D, E, A, B, 13, 8, 3, 15 );
P2( B, C, D, E, A, 1, 13, 7, 7 );
P2( A, B, C, D, E, 10, 11, 0, 12 );
P2( E, A, B, C, D, 6, 9, 13, 8 );
P2( D, E, A, B, C, 15, 7, 5, 9 );
P2( C, D, E, A, B, 3, 15, 10, 11 );
P2( B, C, D, E, A, 12, 7, 14, 7 );
P2( A, B, C, D, E, 0, 12, 15, 7 );
P2( E, A, B, C, D, 9, 15, 8, 12 );
P2( D, E, A, B, C, 5, 9, 12, 7 );
P2( C, D, E, A, B, 2, 11, 4, 6 );
P2( B, C, D, E, A, 14, 7, 9, 15 );
P2( A, B, C, D, E, 11, 13, 1, 13 );
P2( E, A, B, C, D, 8, 12, 2, 11 );
#undef F
#undef K
#undef Fp
#undef Kp
#define F F3
#define K 0x6ED9EBA1
#define Fp F3
#define Kp 0x6D703EF3
P2( D, E, A, B, C, 3, 11, 15, 9 );
P2( C, D, E, A, B, 10, 13, 5, 7 );
P2( B, C, D, E, A, 14, 6, 1, 15 );
P2( A, B, C, D, E, 4, 7, 3, 11 );
P2( E, A, B, C, D, 9, 14, 7, 8 );
P2( D, E, A, B, C, 15, 9, 14, 6 );
P2( C, D, E, A, B, 8, 13, 6, 6 );
P2( B, C, D, E, A, 1, 15, 9, 14 );
P2( A, B, C, D, E, 2, 14, 11, 12 );
P2( E, A, B, C, D, 7, 8, 8, 13 );
P2( D, E, A, B, C, 0, 13, 12, 5 );
P2( C, D, E, A, B, 6, 6, 2, 14 );
P2( B, C, D, E, A, 13, 5, 10, 13 );
P2( A, B, C, D, E, 11, 12, 0, 13 );
P2( E, A, B, C, D, 5, 7, 4, 7 );
P2( D, E, A, B, C, 12, 5, 13, 5 );
#undef F
#undef K
#undef Fp
#undef Kp
#define F F4
#define K 0x8F1BBCDC
#define Fp F2
#define Kp 0x7A6D76E9
P2( C, D, E, A, B, 1, 11, 8, 15 );
P2( B, C, D, E, A, 9, 12, 6, 5 );
P2( A, B, C, D, E, 11, 14, 4, 8 );
P2( E, A, B, C, D, 10, 15, 1, 11 );
P2( D, E, A, B, C, 0, 14, 3, 14 );
P2( C, D, E, A, B, 8, 15, 11, 14 );
P2( B, C, D, E, A, 12, 9, 15, 6 );
P2( A, B, C, D, E, 4, 8, 0, 14 );
P2( E, A, B, C, D, 13, 9, 5, 6 );
P2( D, E, A, B, C, 3, 14, 12, 9 );
P2( C, D, E, A, B, 7, 5, 2, 12 );
P2( B, C, D, E, A, 15, 6, 13, 9 );
P2( A, B, C, D, E, 14, 8, 9, 12 );
P2( E, A, B, C, D, 5, 6, 7, 5 );
P2( D, E, A, B, C, 6, 5, 10, 15 );
P2( C, D, E, A, B, 2, 12, 14, 8 );
#undef F
#undef K
#undef Fp
#undef Kp
#define F F5
#define K 0xA953FD4E
#define Fp F1
#define Kp 0x00000000
P2( B, C, D, E, A, 4, 9, 12, 8 );
P2( A, B, C, D, E, 0, 15, 15, 5 );
P2( E, A, B, C, D, 5, 5, 10, 12 );
P2( D, E, A, B, C, 9, 11, 4, 9 );
P2( C, D, E, A, B, 7, 6, 1, 12 );
P2( B, C, D, E, A, 12, 8, 5, 5 );
P2( A, B, C, D, E, 2, 13, 8, 14 );
P2( E, A, B, C, D, 10, 12, 7, 6 );
P2( D, E, A, B, C, 14, 5, 6, 8 );
P2( C, D, E, A, B, 1, 12, 2, 13 );
P2( B, C, D, E, A, 3, 13, 13, 6 );
P2( A, B, C, D, E, 8, 14, 14, 5 );
P2( E, A, B, C, D, 11, 11, 0, 15 );
P2( D, E, A, B, C, 6, 8, 3, 13 );
P2( C, D, E, A, B, 15, 5, 9, 11 );
P2( B, C, D, E, A, 13, 6, 11, 11 );
#undef F
#undef K
#undef Fp
#undef Kp
C = ctx->state[1] + C + Dp;
ctx->state[1] = ctx->state[2] + D + Ep;
ctx->state[2] = ctx->state[3] + E + Ap;
ctx->state[3] = ctx->state[4] + A + Bp;
ctx->state[4] = ctx->state[0] + B + Cp;
ctx->state[0] = C;
}
#endif /* !MBEDTLS_RIPEMD160_PROCESS_ALT */
/*
* RIPEMD-160 process buffer
*/
void ripemd160_Update( RIPEMD160_CTX *ctx, const uint8_t *input, uint32_t ilen )
{
uint32_t fill = 0;
uint32_t left = 0;
if( ilen == 0 )
return;
left = ctx->total[0] & 0x3F;
fill = RIPEMD160_BLOCK_LENGTH - left;
ctx->total[0] += (uint32_t) ilen;
ctx->total[0] &= 0xFFFFFFFF;
if( ctx->total[0] < (uint32_t) ilen )
ctx->total[1]++;
if( left && ilen >= fill )
{
memcpy( (void *) (ctx->buffer + left), input, fill );
ripemd160_process( ctx, ctx->buffer );
input += fill;
ilen -= fill;
left = 0;
}
while( ilen >= RIPEMD160_BLOCK_LENGTH )
{
ripemd160_process( ctx, input );
input += RIPEMD160_BLOCK_LENGTH;
ilen -= RIPEMD160_BLOCK_LENGTH;
}
if( ilen > 0 )
{
memcpy( (void *) (ctx->buffer + left), input, ilen );
}
}
static const uint8_t ripemd160_padding[RIPEMD160_BLOCK_LENGTH] =
{
0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
};
/*
* RIPEMD-160 final digest
*/
void ripemd160_Final( RIPEMD160_CTX *ctx, uint8_t output[RIPEMD160_DIGEST_LENGTH] )
{
uint32_t last = 0; uint32_t padn = 0;
uint32_t high = 0; uint32_t low = 0;
uint8_t msglen[8] = {0};
high = ( ctx->total[0] >> 29 )
| ( ctx->total[1] << 3 );
low = ( ctx->total[0] << 3 );
PUT_UINT32_LE( low, msglen, 0 );
PUT_UINT32_LE( high, msglen, 4 );
last = ctx->total[0] & 0x3F;
padn = ( last < 56 ) ? ( 56 - last ) : ( 120 - last );
ripemd160_Update( ctx, ripemd160_padding, padn );
ripemd160_Update( ctx, msglen, 8 );
PUT_UINT32_LE( ctx->state[0], output, 0 );
PUT_UINT32_LE( ctx->state[1], output, 4 );
PUT_UINT32_LE( ctx->state[2], output, 8 );
PUT_UINT32_LE( ctx->state[3], output, 12 );
PUT_UINT32_LE( ctx->state[4], output, 16 );
memzero(ctx, sizeof(RIPEMD160_CTX));
}
/*
* output = RIPEMD-160( input buffer )
*/
void ripemd160(const uint8_t *msg, uint32_t msg_len, uint8_t hash[RIPEMD160_DIGEST_LENGTH])
{
RIPEMD160_CTX ctx = {0};
ripemd160_Init( &ctx );
ripemd160_Update( &ctx, msg, msg_len );
ripemd160_Final( &ctx, hash );
}