1
0
mirror of https://github.com/trezor/trezor-firmware.git synced 2024-12-27 00:28:10 +00:00
trezor-firmware/crypto/tests/test_wycheproof.py
Tomas Susanka 456d98ac03 all: style
2019-04-23 14:41:59 +02:00

722 lines
21 KiB
Python
Executable File

#!/usr/bin/env python
import ctypes
import json
import os
from binascii import hexlify, unhexlify
import pytest
from pyasn1.codec.ber.decoder import decode as ber_decode
from pyasn1.codec.der.decoder import decode as der_decode
from pyasn1.codec.der.encoder import encode as der_encode
from pyasn1.type import namedtype, univ
class EcSignature(univ.Sequence):
componentType = namedtype.NamedTypes(
namedtype.NamedType("r", univ.Integer()),
namedtype.NamedType("s", univ.Integer()),
)
class EcKeyInfo(univ.Sequence):
componentType = namedtype.NamedTypes(
namedtype.NamedType("key_type", univ.ObjectIdentifier()),
namedtype.NamedType("curve_name", univ.ObjectIdentifier()),
)
class EcPublicKey(univ.Sequence):
componentType = namedtype.NamedTypes(
namedtype.NamedType("key_info", EcKeyInfo()),
namedtype.NamedType("public_key", univ.BitString()),
)
class EdKeyInfo(univ.Sequence):
componentType = namedtype.NamedTypes(
namedtype.NamedType("key_type", univ.ObjectIdentifier())
)
class EdPublicKey(univ.Sequence):
componentType = namedtype.NamedTypes(
namedtype.NamedType("key_info", EdKeyInfo()),
namedtype.NamedType("public_key", univ.BitString()),
)
class ParseError(Exception):
pass
class NotSupported(Exception):
pass
class DataError(Exception):
pass
class curve_info(ctypes.Structure):
_fields_ = [("bip32_name", ctypes.c_char_p), ("params", ctypes.c_void_p)]
def keys_in_dict(dictionary, keys):
return keys <= set(dictionary.keys())
def parse_eddsa_signature(signature):
if len(signature) != 64:
raise ParseError("Not a valid EdDSA signature")
return signature
def parse_ecdh256_privkey(private_key):
if private_key < 0 or private_key.bit_length() > 256:
raise ParseError("Not a valid 256 bit ECDH private key")
return private_key.to_bytes(32, byteorder="big")
def parse_signed_hex(string):
if len(string) % 2 == 1:
string = "0" + string
number = int(string, 16)
if int(string[0], 16) & 8:
return -number
else:
return number
def parse_result(result):
if result == "valid":
return True
elif result == "invalid":
return False
elif result == "acceptable":
return None
else:
raise DataError()
def is_valid_der(data):
try:
structure, _ = der_decode(data)
return data == der_encode(structure)
except Exception:
return False
def parse_ed_pubkey(public_key):
try:
public_key, _ = ber_decode(public_key, asn1Spec=EdPublicKey())
except Exception:
raise ParseError("Not a BER encoded Edwards curve public key")
if not public_key["key_info"]["key_type"] == univ.ObjectIdentifier("1.3.101.112"):
raise ParseError("Not a BER encoded Edwards curve public key")
public_key = bytes(public_key["public_key"].asOctets())
return public_key
def parse_ec_pubkey(public_key):
try:
public_key, _ = ber_decode(public_key, asn1Spec=EcPublicKey())
except Exception:
raise ParseError("Not a BER encoded named elliptic curve public key")
if not public_key["key_info"]["key_type"] == univ.ObjectIdentifier(
"1.2.840.10045.2.1"
):
raise ParseError("Not a BER encoded named elliptic curve public key")
curve_identifier = public_key["key_info"]["curve_name"]
curve_name = get_curve_name_by_identifier(curve_identifier)
if curve_name is None:
raise NotSupported(
"Unsupported named elliptic curve: {}".format(curve_identifier)
)
try:
public_key = bytes(public_key["public_key"].asOctets())
except Exception:
raise ParseError("Not a BER encoded named elliptic curve public key")
return curve_name, public_key
def parse_ecdsa256_signature(signature):
s = signature
if not is_valid_der(signature):
raise ParseError("Not a valid DER")
try:
signature, _ = der_decode(signature, asn1Spec=EcSignature())
except Exception:
raise ParseError("Not a valid DER encoded ECDSA signature")
try:
r = int(signature["r"]).to_bytes(32, byteorder="big")
s = int(signature["s"]).to_bytes(32, byteorder="big")
signature = r + s
except Exception:
raise ParseError("Not a valid DER encoded 256 bit ECDSA signature")
return signature
def parse_digest(name):
if name == "SHA-256":
return 0
else:
raise NotSupported("Unsupported hash function: {}".format(name))
def get_curve_by_name(name):
lib.get_curve_by_name.restype = ctypes.c_void_p
curve = lib.get_curve_by_name(bytes(name, "ascii"))
if curve is None:
return None
curve = ctypes.cast(curve, ctypes.POINTER(curve_info))
return ctypes.c_void_p(curve.contents.params)
def parse_curve_name(name):
if name == "secp256r1":
return "nist256p1"
elif name == "secp256k1":
return "secp256k1"
elif name == "curve25519":
return "curve25519"
else:
return None
def get_curve_name_by_identifier(identifier):
if identifier == univ.ObjectIdentifier("1.3.132.0.10"):
return "secp256k1"
elif identifier == univ.ObjectIdentifier("1.2.840.10045.3.1.7"):
return "nist256p1"
else:
return None
def chacha_poly_encrypt(key, iv, associated_data, plaintext):
context = bytes(context_structure_length)
tag = bytes(16)
ciphertext = bytes(len(plaintext))
lib.rfc7539_init(context, key, iv)
lib.rfc7539_auth(context, associated_data, len(associated_data))
lib.chacha20poly1305_encrypt(context, plaintext, ciphertext, len(plaintext))
lib.rfc7539_finish(context, len(associated_data), len(plaintext), tag)
return ciphertext, tag
def chacha_poly_decrypt(key, iv, associated_data, ciphertext, tag):
context = bytes(context_structure_length)
computed_tag = bytes(16)
plaintext = bytes(len(ciphertext))
lib.rfc7539_init(context, key, iv)
lib.rfc7539_auth(context, associated_data, len(associated_data))
lib.chacha20poly1305_decrypt(context, ciphertext, plaintext, len(ciphertext))
lib.rfc7539_finish(context, len(associated_data), len(ciphertext), computed_tag)
return plaintext if tag == computed_tag else False
def add_pkcs_padding(data):
padding_length = 16 - len(data) % 16
return data + bytes([padding_length] * padding_length)
def remove_pkcs_padding(data):
padding_length = data[-1]
if not (
0 < padding_length <= 16
and data[-padding_length:] == bytes([padding_length] * padding_length)
):
return False
else:
return data[:-padding_length]
def aes_encrypt_initialise(key, context):
if len(key) == (128 / 8):
lib.aes_encrypt_key128(key, context)
elif len(key) == (192 / 8):
lib.aes_encrypt_key192(key, context)
elif len(key) == (256 / 8):
lib.aes_encrypt_key256(key, context)
else:
raise NotSupported("Unsupported key length: {}".format(len(key) * 8))
def aes_cbc_encrypt(key, iv, plaintext):
plaintext = add_pkcs_padding(plaintext)
context = bytes(context_structure_length)
ciphertext = bytes(len(plaintext))
aes_encrypt_initialise(key, context)
lib.aes_cbc_encrypt(
plaintext, ciphertext, len(plaintext), bytes(bytearray(iv)), context
)
return ciphertext
def aes_decrypt_initialise(key, context):
if len(key) == (128 / 8):
lib.aes_decrypt_key128(key, context)
elif len(key) == (192 / 8):
lib.aes_decrypt_key192(key, context)
elif len(key) == (256 / 8):
lib.aes_decrypt_key256(key, context)
else:
raise NotSupported("Unsupported AES key length: {}".format(len(key) * 8))
def aes_cbc_decrypt(key, iv, ciphertext):
context = bytes(context_structure_length)
plaintext = bytes(len(ciphertext))
aes_decrypt_initialise(key, context)
lib.aes_cbc_decrypt(ciphertext, plaintext, len(ciphertext), iv, context)
return remove_pkcs_padding(plaintext)
def load_json_testvectors(filename):
try:
result = json.loads(open(os.path.join(testvectors_directory, filename)).read())
except Exception:
raise DataError()
return result
def generate_aes(filename):
vectors = []
data = load_json_testvectors(filename)
if not keys_in_dict(data, {"algorithm", "testGroups"}):
raise DataError()
if data["algorithm"] != "AES-CBC-PKCS5":
raise DataError()
for test_group in data["testGroups"]:
if not keys_in_dict(test_group, {"tests"}):
raise DataError()
for test in test_group["tests"]:
if not keys_in_dict(test, {"key", "iv", "msg", "ct", "result"}):
raise DataError()
try:
key = unhexlify(test["key"])
iv = unhexlify(test["iv"])
plaintext = unhexlify(test["msg"])
ciphertext = unhexlify(test["ct"])
result = parse_result(test["result"])
except Exception:
raise DataError()
if len(key) not in [128 / 8, 192 / 8, 256 / 8]:
continue
if result is None:
continue
vectors.append(
(
hexlify(key),
hexlify(iv),
hexlify(plaintext),
hexlify(ciphertext),
result,
)
)
return vectors
def generate_chacha_poly(filename):
vectors = []
data = load_json_testvectors(filename)
if not keys_in_dict(data, {"algorithm", "testGroups"}):
raise DataError()
if data["algorithm"] != "CHACHA20-POLY1305":
raise DataError()
for test_group in data["testGroups"]:
if not keys_in_dict(test_group, {"tests"}):
raise DataError()
for test in test_group["tests"]:
if not keys_in_dict(
test, {"key", "iv", "aad", "msg", "ct", "tag", "result"}
):
raise DataError()
try:
key = unhexlify(test["key"])
iv = unhexlify(test["iv"])
associated_data = unhexlify(test["aad"])
plaintext = unhexlify(test["msg"])
ciphertext = unhexlify(test["ct"])
tag = unhexlify(test["tag"])
result = parse_result(test["result"])
except Exception:
raise DataError()
if result is None:
continue
vectors.append(
(
hexlify(key),
hexlify(iv),
hexlify(associated_data),
hexlify(plaintext),
hexlify(ciphertext),
hexlify(tag),
result,
)
)
return vectors
def generate_curve25519_dh(filename):
vectors = []
data = load_json_testvectors(filename)
if not keys_in_dict(data, {"algorithm", "testGroups"}):
raise DataError()
if data["algorithm"] != "X25519":
raise DataError()
for test_group in data["testGroups"]:
if not keys_in_dict(test_group, {"tests"}):
raise DataError()
for test in test_group["tests"]:
if not keys_in_dict(
test, {"public", "private", "shared", "result", "curve"}
):
raise DataError()
try:
public_key = unhexlify(test["public"])
curve_name = parse_curve_name(test["curve"])
private_key = unhexlify(test["private"])
shared = unhexlify(test["shared"])
result = parse_result(test["result"])
except Exception:
raise DataError()
if curve_name != "curve25519":
continue
if result is None:
continue
vectors.append(
(hexlify(public_key), hexlify(private_key), hexlify(shared), result)
)
return vectors
def generate_ecdh(filename):
vectors = []
data = load_json_testvectors(filename)
if not keys_in_dict(data, {"algorithm", "testGroups"}):
raise DataError()
if data["algorithm"] != "ECDH":
raise DataError()
for test_group in data["testGroups"]:
if not keys_in_dict(test_group, {"tests"}):
raise DataError()
for test in test_group["tests"]:
if not keys_in_dict(
test, {"public", "private", "shared", "result", "curve"}
):
raise DataError()
try:
public_key = unhexlify(test["public"])
curve_name = parse_curve_name(test["curve"])
private_key = parse_signed_hex(test["private"])
shared = unhexlify(test["shared"])
result = parse_result(test["result"])
except Exception:
raise DataError()
try:
private_key = parse_ecdh256_privkey(private_key)
except ParseError:
continue
try:
key_curve_name, public_key = parse_ec_pubkey(public_key)
except NotSupported:
continue
except ParseError:
continue
if key_curve_name != curve_name:
continue
if result is None:
continue
vectors.append(
(
curve_name,
hexlify(public_key),
hexlify(private_key),
hexlify(shared),
result,
)
)
return vectors
def generate_ecdsa(filename):
vectors = []
data = load_json_testvectors(filename)
if not keys_in_dict(data, {"algorithm", "testGroups"}):
raise DataError()
if data["algorithm"] != "ECDSA":
raise DataError()
for test_group in data["testGroups"]:
if not keys_in_dict(test_group, {"tests", "keyDer", "sha"}):
raise DataError()
try:
public_key = unhexlify(test_group["keyDer"])
except Exception:
raise DataError()
try:
curve_name, public_key = parse_ec_pubkey(public_key)
except NotSupported:
continue
except ParseError:
continue
try:
hasher = parse_digest(test_group["sha"])
except NotSupported:
continue
for test in test_group["tests"]:
if not keys_in_dict(test, {"sig", "msg", "result"}):
raise DataError()
try:
signature = unhexlify(test["sig"])
message = unhexlify(test["msg"])
result = parse_result(test["result"])
except Exception:
raise DataError()
if result is None:
continue
try:
signature = parse_ecdsa256_signature(signature)
except ParseError:
continue
vectors.append(
(
curve_name,
hexlify(public_key),
hasher,
hexlify(message),
hexlify(signature),
result,
)
)
return vectors
def generate_eddsa(filename):
vectors = []
data = load_json_testvectors(filename)
if not keys_in_dict(data, {"algorithm", "testGroups"}):
raise DataError()
if data["algorithm"] != "EDDSA":
raise DataError()
for test_group in data["testGroups"]:
if not keys_in_dict(test_group, {"tests", "keyDer"}):
raise DataError()
try:
public_key = unhexlify(test_group["keyDer"])
except Exception:
raise DataError()
try:
public_key = parse_ed_pubkey(public_key)
except ParseError:
continue
for test in test_group["tests"]:
if not keys_in_dict(test, {"sig", "msg", "result"}):
raise DataError()
try:
signature = unhexlify(test["sig"])
message = unhexlify(test["msg"])
result = parse_result(test["result"])
except Exception:
raise DataError()
if result is None:
continue
try:
signature = parse_eddsa_signature(signature)
except ParseError:
continue
vectors.append(
(hexlify(public_key), hexlify(message), hexlify(signature), result)
)
return vectors
dir = os.path.abspath(os.path.dirname(__file__))
lib = ctypes.cdll.LoadLibrary(os.path.join(dir, "libtrezor-crypto.so"))
testvectors_directory = os.path.join(dir, "wycheproof/testvectors")
context_structure_length = 1024
ecdh_vectors = generate_ecdh("ecdh_test.json")
curve25519_dh_vectors = generate_curve25519_dh("x25519_test.json")
eddsa_vectors = generate_eddsa("eddsa_test.json")
ecdsa_vectors = (
generate_ecdsa("ecdsa_test.json")
+ generate_ecdsa("ecdsa_secp256k1_sha256_test.json")
+ generate_ecdsa("ecdsa_secp256r1_sha256_test.json")
)
ecdh_vectors = (
generate_ecdh("ecdh_test.json")
+ generate_ecdh("ecdh_secp256k1_test.json")
+ generate_ecdh("ecdh_secp256r1_test.json")
)
chacha_poly_vectors = generate_chacha_poly("chacha20_poly1305_test.json")
aes_vectors = generate_aes("aes_cbc_pkcs5_test.json")
@pytest.mark.parametrize("public_key, message, signature, result", eddsa_vectors)
def test_eddsa(public_key, message, signature, result):
public_key = unhexlify(public_key)
signature = unhexlify(signature)
message = unhexlify(message)
computed_result = (
lib.ed25519_sign_open(message, len(message), public_key, signature) == 0
)
assert result == computed_result
@pytest.mark.parametrize(
"curve_name, public_key, hasher, message, signature, result", ecdsa_vectors
)
def test_ecdsa(curve_name, public_key, hasher, message, signature, result):
curve = get_curve_by_name(curve_name)
if curve is None:
raise NotSupported("Curve not supported: {}".format(curve_name))
public_key = unhexlify(public_key)
signature = unhexlify(signature)
message = unhexlify(message)
computed_result = (
lib.ecdsa_verify(curve, hasher, public_key, signature, message, len(message))
== 0
)
assert result == computed_result
@pytest.mark.parametrize(
"public_key, private_key, shared, result", curve25519_dh_vectors
)
def test_curve25519_dh(public_key, private_key, shared, result):
public_key = unhexlify(public_key)
private_key = unhexlify(private_key)
shared = unhexlify(shared)
computed_shared = bytes([0] * 32)
lib.curve25519_scalarmult(computed_shared, private_key, public_key)
computed_result = shared == computed_shared
assert result == computed_result
@pytest.mark.parametrize(
"curve_name, public_key, private_key, shared, result", ecdh_vectors
)
def test_ecdh(curve_name, public_key, private_key, shared, result):
curve = get_curve_by_name(curve_name)
if curve is None:
raise NotSupported("Curve not supported: {}".format(curve_name))
public_key = unhexlify(public_key)
private_key = unhexlify(private_key)
shared = unhexlify(shared)
computed_shared = bytes([0] * 2 * 32)
lib.ecdh_multiply(curve, private_key, public_key, computed_shared)
computed_shared = computed_shared[1:33]
computed_result = shared == computed_shared
assert result == computed_result
@pytest.mark.parametrize(
"key, iv, associated_data, plaintext, ciphertext, tag, result", chacha_poly_vectors
)
def test_chacha_poly(key, iv, associated_data, plaintext, ciphertext, tag, result):
key = unhexlify(key)
iv = unhexlify(iv)
associated_data = unhexlify(associated_data)
plaintext = unhexlify(plaintext)
ciphertext = unhexlify(ciphertext)
tag = unhexlify(tag)
computed_ciphertext, computed_tag = chacha_poly_encrypt(
key, iv, associated_data, plaintext
)
computed_result = ciphertext == computed_ciphertext and tag == computed_tag
assert result == computed_result
computed_plaintext = chacha_poly_decrypt(key, iv, associated_data, ciphertext, tag)
computed_result = plaintext == computed_plaintext
assert result == computed_result
@pytest.mark.parametrize("key, iv, plaintext, ciphertext, result", aes_vectors)
def test_aes(key, iv, plaintext, ciphertext, result):
key = unhexlify(key)
iv = unhexlify(iv)
plaintext = unhexlify(plaintext)
ciphertext = unhexlify(ciphertext)
computed_ciphertext = aes_cbc_encrypt(key, iv, plaintext)
computed_result = ciphertext == computed_ciphertext
assert result == computed_result
computed_plaintext = aes_cbc_decrypt(key, bytes(iv), ciphertext)
computed_result = plaintext == computed_plaintext
assert result == computed_result