1
0
mirror of https://github.com/trezor/trezor-firmware.git synced 2024-12-21 05:48:23 +00:00
trezor-firmware/crypto/zkp_ecdsa.c

383 lines
11 KiB
C

/**
* Copyright (c) SatoshiLabs
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES
* OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*/
#include <assert.h>
#include <stdbool.h>
#include <string.h>
#include "memzero.h"
#include "secp256k1.h"
#include "zkp_context.h"
#include "vendor/secp256k1-zkp/include/secp256k1.h"
#include "vendor/secp256k1-zkp/include/secp256k1_extrakeys.h"
#include "vendor/secp256k1-zkp/include/secp256k1_preallocated.h"
#include "vendor/secp256k1-zkp/include/secp256k1_recovery.h"
#include "zkp_ecdsa.h"
static bool is_zero_digest(const uint8_t *digest) {
const uint8_t zeroes[32] = {0};
return memcmp(digest, zeroes, 32) == 0;
}
// ECDSA compressed public key derivation
// curve has to be &secp256k1
// private_key_bytes has 32 bytes
// public_key_bytes has 33 bytes
// returns 0 on success
int zkp_ecdsa_get_public_key33(const ecdsa_curve *curve,
const uint8_t *private_key_bytes,
uint8_t *public_key_bytes) {
assert(curve == &secp256k1);
if (curve != &secp256k1) {
return 1;
}
int result = 0;
secp256k1_context *context_writable = NULL;
if (result == 0) {
context_writable = zkp_context_acquire_writable();
if (context_writable == NULL) {
result = 1;
}
}
if (result == 0) {
if (secp256k1_context_writable_randomize(context_writable) != 0) {
result = 1;
}
}
secp256k1_pubkey public_key = {0};
if (result == 0) {
if (secp256k1_ec_pubkey_create(context_writable, &public_key,
private_key_bytes) != 1) {
result = 1;
}
}
if (context_writable) {
zkp_context_release_writable();
context_writable = NULL;
}
if (result == 0) {
size_t written = 33;
const secp256k1_context *context_read_only = zkp_context_get_read_only();
int returned = secp256k1_ec_pubkey_serialize(
context_read_only, public_key_bytes, &written, &public_key,
SECP256K1_EC_COMPRESSED);
if (returned != 1 || written != 33) {
result = 1;
}
}
memzero(&public_key, sizeof(public_key));
return result;
}
// ECDSA uncompressed public key derivation
// curve has to be &secp256k1
// private_key_bytes has 32 bytes
// public_key_bytes has 65 bytes
// returns 0 on success
int zkp_ecdsa_get_public_key65(const ecdsa_curve *curve,
const uint8_t *private_key_bytes,
uint8_t *public_key_bytes) {
assert(curve == &secp256k1);
if (curve != &secp256k1) {
return 1;
}
int result = 0;
secp256k1_context *context_writable = NULL;
if (result == 0) {
context_writable = zkp_context_acquire_writable();
if (context_writable == NULL) {
result = 1;
}
}
if (result == 0) {
if (secp256k1_context_writable_randomize(context_writable) != 0) {
result = 1;
}
}
secp256k1_pubkey public_key = {0};
if (result == 0) {
if (secp256k1_ec_pubkey_create(context_writable, &public_key,
private_key_bytes) != 1) {
result = 1;
}
}
if (context_writable) {
zkp_context_release_writable();
context_writable = NULL;
}
if (result == 0) {
size_t written = 65;
const secp256k1_context *context_read_only = zkp_context_get_read_only();
int returned = secp256k1_ec_pubkey_serialize(
context_read_only, public_key_bytes, &written, &public_key,
SECP256K1_EC_UNCOMPRESSED);
if (returned != 1 || written != 65) {
result = 1;
}
}
memzero(&public_key, sizeof(public_key));
return result;
}
// ECDSA signing
// curve has to be &secp256k1
// private_key_bytes has 32 bytes
// digest has 32 bytes
// signature_bytes has 64 bytes
// pby is one byte
// is_canonical has to be NULL
// returns 0 on success
int zkp_ecdsa_sign_digest(
const ecdsa_curve *curve, const uint8_t *private_key_bytes,
const uint8_t *digest, uint8_t *signature_bytes, uint8_t *pby,
int (*is_canonical)(uint8_t by, uint8_t signature_bytes[64])) {
assert(curve == &secp256k1);
assert(is_canonical == NULL);
if (curve != &secp256k1 || is_canonical != NULL) {
return 1;
}
int result = 0;
if (result == 0) {
if (is_zero_digest(digest)) {
// The probability of the digest being all-zero by chance is
// infinitesimal, so this is most likely an indication of a bug.
// Furthermore, the signature has no value, because in this case it can be
// easily forged for any public key, see zkp_ecdsa_verify_digest().
result = 1;
}
}
secp256k1_context *context_writable = NULL;
if (result == 0) {
context_writable = zkp_context_acquire_writable();
if (context_writable == NULL) {
result = 1;
}
}
if (result == 0) {
if (secp256k1_context_writable_randomize(context_writable) != 0) {
result = 1;
}
}
secp256k1_ecdsa_recoverable_signature recoverable_signature = {0};
if (result == 0) {
if (secp256k1_ecdsa_sign_recoverable(context_writable,
&recoverable_signature, digest,
private_key_bytes, NULL, NULL) != 1) {
result = 1;
}
}
if (context_writable) {
zkp_context_release_writable();
context_writable = NULL;
}
if (result == 0) {
int recid = 0;
const secp256k1_context *context_read_only = zkp_context_get_read_only();
if (secp256k1_ecdsa_recoverable_signature_serialize_compact(
context_read_only, signature_bytes, &recid,
&recoverable_signature) != 1) {
result = 1;
}
if (pby != NULL) {
*pby = (uint8_t)recid;
}
}
memzero(&recoverable_signature, sizeof(recoverable_signature));
return result;
}
// ECDSA public key recovery
// public_key_bytes has 65 bytes
// signature_bytes has 64 bytes
// digest has 32 bytes
// recid is 0, 1, 2 or 3
// returns 0 on success
int zkp_ecdsa_recover_pub_from_sig(const ecdsa_curve *curve,
uint8_t *public_key_bytes,
const uint8_t *signature_bytes,
const uint8_t *digest, int recid) {
assert(curve == &secp256k1);
if (curve != &secp256k1) {
return 1;
}
int result = 0;
const secp256k1_context *context_read_only = zkp_context_get_read_only();
secp256k1_ecdsa_recoverable_signature recoverable_signature = {0};
if (result == 0) {
if (secp256k1_ecdsa_recoverable_signature_parse_compact(
context_read_only, &recoverable_signature, signature_bytes,
recid) != 1) {
result = 1;
}
}
secp256k1_pubkey public_key = {0};
if (result == 0) {
if (secp256k1_ecdsa_recover(context_read_only, &public_key,
&recoverable_signature, digest) != 1) {
result = 1;
}
}
memzero(&recoverable_signature, sizeof(recoverable_signature));
if (result == 0) {
size_t written = 65;
int returned = secp256k1_ec_pubkey_serialize(
context_read_only, public_key_bytes, &written, &public_key,
SECP256K1_EC_UNCOMPRESSED);
if (returned != 1 || written != 65) {
result = 1;
}
}
memzero(&public_key, sizeof(public_key));
return result;
}
// ECDSA verification
// curve has to be &secp256k1
// public_key_bytes has 33 or 65 bytes
// signature_bytes has 64 bytes
// digest has 32 bytes
// returns 0 if verification succeeded
int zkp_ecdsa_verify_digest(const ecdsa_curve *curve,
const uint8_t *public_key_bytes,
const uint8_t *signature_bytes,
const uint8_t *digest) {
assert(curve == &secp256k1);
if (curve != &secp256k1) {
return 1;
}
int result = 0;
int public_key_length = 0;
if (result == 0) {
if (public_key_bytes[0] == 0x04) {
public_key_length = 65;
} else if (public_key_bytes[0] == 0x02 || public_key_bytes[0] == 0x03) {
public_key_length = 33;
} else {
result = 1;
}
}
if (result == 0) {
if (is_zero_digest(digest)) {
// The digest was all-zero. The probability of this happening by chance is
// infinitesimal, but it could be induced by a fault injection. In this
// case the signature (r,s) can be forged by taking r := (t * Q).x mod n
// and s := r * t^-1 mod n for any t in [1, n-1]. We fail verification,
// because there is no guarantee that the signature was created by the
// owner of the private key.
result = 3;
}
}
const secp256k1_context *context_read_only = zkp_context_get_read_only();
secp256k1_pubkey public_key = {0};
if (result == 0) {
if (secp256k1_ec_pubkey_parse(context_read_only, &public_key,
public_key_bytes, public_key_length) != 1) {
result = 1;
}
}
secp256k1_ecdsa_signature signature = {0};
if (result == 0) {
if (secp256k1_ecdsa_signature_parse_compact(context_read_only, &signature,
signature_bytes) != 1) {
result = 2;
}
}
if (result == 0) {
secp256k1_ecdsa_signature_normalize(context_read_only, &signature,
&signature);
if (secp256k1_ecdsa_verify(context_read_only, &signature, digest,
&public_key) != 1) {
result = 5;
}
}
memzero(&public_key, sizeof(public_key));
memzero(&signature, sizeof(signature));
return result;
}
// ECDSA verification
// curve has to be &secp256k1
// public_key_bytes has 33 or 65 bytes
// signature_bytes has 64 bytes
// returns 0 if verification succeeded
int zkp_ecdsa_verify(const ecdsa_curve *curve, HasherType hasher_type,
const uint8_t *public_key_bytes,
const uint8_t *signature_bytes, const uint8_t *message,
uint32_t message_length) {
assert(curve == &secp256k1);
if (curve != &secp256k1) {
return 1;
}
uint8_t hash[32] = {0};
hasher_Raw(hasher_type, message, message_length, hash);
int result =
zkp_ecdsa_verify_digest(curve, public_key_bytes, signature_bytes, hash);
memzero(hash, sizeof(hash));
return result;
}