mirror of
https://github.com/trezor/trezor-firmware.git
synced 2025-01-04 12:31:02 +00:00
958 lines
30 KiB
C
958 lines
30 KiB
C
/*
|
|
---------------------------------------------------------------------------
|
|
Copyright (c) 1998-2013, Brian Gladman, Worcester, UK. All rights reserved.
|
|
|
|
The redistribution and use of this software (with or without changes)
|
|
is allowed without the payment of fees or royalties provided that:
|
|
|
|
source code distributions include the above copyright notice, this
|
|
list of conditions and the following disclaimer;
|
|
|
|
binary distributions include the above copyright notice, this list
|
|
of conditions and the following disclaimer in their documentation.
|
|
|
|
This software is provided 'as is' with no explicit or implied warranties
|
|
in respect of its operation, including, but not limited to, correctness
|
|
and fitness for purpose.
|
|
---------------------------------------------------------------------------
|
|
Issue Date: 20/12/2007
|
|
|
|
These subroutines implement multiple block AES modes for ECB, CBC, CFB,
|
|
OFB and CTR encryption, The code provides support for the VIA Advanced
|
|
Cryptography Engine (ACE).
|
|
|
|
NOTE: In the following subroutines, the AES contexts (ctx) must be
|
|
16 byte aligned if VIA ACE is being used
|
|
*/
|
|
|
|
#include <string.h>
|
|
#include <assert.h>
|
|
#include <stdint.h>
|
|
|
|
#include "aesopt.h"
|
|
|
|
#if defined( AES_MODES )
|
|
#if defined(__cplusplus)
|
|
extern "C"
|
|
{
|
|
#endif
|
|
|
|
#if defined( _MSC_VER ) && ( _MSC_VER > 800 )
|
|
#pragma intrinsic(memcpy)
|
|
#endif
|
|
|
|
#define BFR_BLOCKS 8
|
|
|
|
/* These values are used to detect long word alignment in order to */
|
|
/* speed up some buffer operations. This facility may not work on */
|
|
/* some machines so this define can be commented out if necessary */
|
|
|
|
#define FAST_BUFFER_OPERATIONS
|
|
|
|
#define lp32(x) ((uint32_t*)(x))
|
|
|
|
#if defined( USE_VIA_ACE_IF_PRESENT )
|
|
|
|
#include "aes_via_ace.h"
|
|
|
|
#pragma pack(16)
|
|
|
|
aligned_array(unsigned long, enc_gen_table, 12, 16) = NEH_ENC_GEN_DATA;
|
|
aligned_array(unsigned long, enc_load_table, 12, 16) = NEH_ENC_LOAD_DATA;
|
|
aligned_array(unsigned long, enc_hybrid_table, 12, 16) = NEH_ENC_HYBRID_DATA;
|
|
aligned_array(unsigned long, dec_gen_table, 12, 16) = NEH_DEC_GEN_DATA;
|
|
aligned_array(unsigned long, dec_load_table, 12, 16) = NEH_DEC_LOAD_DATA;
|
|
aligned_array(unsigned long, dec_hybrid_table, 12, 16) = NEH_DEC_HYBRID_DATA;
|
|
|
|
/* NOTE: These control word macros must only be used after */
|
|
/* a key has been set up because they depend on key size */
|
|
/* See the VIA ACE documentation for key type information */
|
|
/* and aes_via_ace.h for non-default NEH_KEY_TYPE values */
|
|
|
|
#ifndef NEH_KEY_TYPE
|
|
# define NEH_KEY_TYPE NEH_HYBRID
|
|
#endif
|
|
|
|
#if NEH_KEY_TYPE == NEH_LOAD
|
|
#define kd_adr(c) ((uint8_t*)(c)->ks)
|
|
#elif NEH_KEY_TYPE == NEH_GENERATE
|
|
#define kd_adr(c) ((uint8_t*)(c)->ks + (c)->inf.b[0])
|
|
#elif NEH_KEY_TYPE == NEH_HYBRID
|
|
#define kd_adr(c) ((uint8_t*)(c)->ks + ((c)->inf.b[0] == 160 ? 160 : 0))
|
|
#else
|
|
#error no key type defined for VIA ACE
|
|
#endif
|
|
|
|
#else
|
|
|
|
#define aligned_array(type, name, no, stride) type name[no]
|
|
#define aligned_auto(type, name, no, stride) type name[no]
|
|
|
|
#endif
|
|
|
|
#if defined( _MSC_VER ) && _MSC_VER > 1200
|
|
|
|
#define via_cwd(cwd, ty, dir, len) \
|
|
unsigned long* cwd = (dir##_##ty##_table + ((len - 128) >> 4))
|
|
|
|
#else
|
|
|
|
#define via_cwd(cwd, ty, dir, len) \
|
|
aligned_auto(unsigned long, cwd, 4, 16); \
|
|
cwd[1] = cwd[2] = cwd[3] = 0; \
|
|
cwd[0] = neh_##dir##_##ty##_key(len)
|
|
|
|
#endif
|
|
|
|
/* test the code for detecting and setting pointer alignment */
|
|
|
|
AES_RETURN aes_test_alignment_detection(unsigned int n) /* 4 <= n <= 16 */
|
|
{ uint8_t p[16];
|
|
uint32_t i, count_eq = 0, count_neq = 0;
|
|
|
|
if(n < 4 || n > 16)
|
|
return EXIT_FAILURE;
|
|
|
|
for(i = 0; i < n; ++i)
|
|
{
|
|
uint8_t *qf = ALIGN_FLOOR(p + i, n),
|
|
*qh = ALIGN_CEIL(p + i, n);
|
|
|
|
if(qh == qf)
|
|
++count_eq;
|
|
else if(qh == qf + n)
|
|
++count_neq;
|
|
else
|
|
return EXIT_FAILURE;
|
|
}
|
|
return (count_eq != 1 || count_neq != n - 1 ? EXIT_FAILURE : EXIT_SUCCESS);
|
|
}
|
|
|
|
AES_RETURN aes_mode_reset(aes_encrypt_ctx ctx[1])
|
|
{
|
|
ctx->inf.b[2] = 0;
|
|
return EXIT_SUCCESS;
|
|
}
|
|
|
|
AES_RETURN aes_ecb_encrypt(const unsigned char *ibuf, unsigned char *obuf,
|
|
int len, const aes_encrypt_ctx ctx[1])
|
|
{ int nb = len >> 4;
|
|
|
|
if(len & (AES_BLOCK_SIZE - 1))
|
|
return EXIT_FAILURE;
|
|
|
|
#if defined( USE_VIA_ACE_IF_PRESENT )
|
|
|
|
if(ctx->inf.b[1] == 0xff)
|
|
{ uint8_t *ksp = (uint8_t*)(ctx->ks);
|
|
via_cwd(cwd, hybrid, enc, 2 * ctx->inf.b[0] - 192);
|
|
|
|
if(ALIGN_OFFSET( ctx, 16 ))
|
|
return EXIT_FAILURE;
|
|
|
|
if(!ALIGN_OFFSET( ibuf, 16 ) && !ALIGN_OFFSET( obuf, 16 ))
|
|
{
|
|
via_ecb_op5(ksp, cwd, ibuf, obuf, nb);
|
|
}
|
|
else
|
|
{ aligned_auto(uint8_t, buf, BFR_BLOCKS * AES_BLOCK_SIZE, 16);
|
|
uint8_t *ip, *op;
|
|
|
|
while(nb)
|
|
{
|
|
int m = (nb > BFR_BLOCKS ? BFR_BLOCKS : nb);
|
|
|
|
ip = (ALIGN_OFFSET( ibuf, 16 ) ? buf : ibuf);
|
|
op = (ALIGN_OFFSET( obuf, 16 ) ? buf : obuf);
|
|
|
|
if(ip != ibuf)
|
|
memcpy(buf, ibuf, m * AES_BLOCK_SIZE);
|
|
|
|
via_ecb_op5(ksp, cwd, ip, op, m);
|
|
|
|
if(op != obuf)
|
|
memcpy(obuf, buf, m * AES_BLOCK_SIZE);
|
|
|
|
ibuf += m * AES_BLOCK_SIZE;
|
|
obuf += m * AES_BLOCK_SIZE;
|
|
nb -= m;
|
|
}
|
|
}
|
|
|
|
return EXIT_SUCCESS;
|
|
}
|
|
|
|
#endif
|
|
|
|
#if !defined( ASSUME_VIA_ACE_PRESENT )
|
|
while(nb--)
|
|
{
|
|
if(aes_encrypt(ibuf, obuf, ctx) != EXIT_SUCCESS)
|
|
return EXIT_FAILURE;
|
|
ibuf += AES_BLOCK_SIZE;
|
|
obuf += AES_BLOCK_SIZE;
|
|
}
|
|
#endif
|
|
return EXIT_SUCCESS;
|
|
}
|
|
|
|
AES_RETURN aes_ecb_decrypt(const unsigned char *ibuf, unsigned char *obuf,
|
|
int len, const aes_decrypt_ctx ctx[1])
|
|
{ int nb = len >> 4;
|
|
|
|
if(len & (AES_BLOCK_SIZE - 1))
|
|
return EXIT_FAILURE;
|
|
|
|
#if defined( USE_VIA_ACE_IF_PRESENT )
|
|
|
|
if(ctx->inf.b[1] == 0xff)
|
|
{ uint8_t *ksp = kd_adr(ctx);
|
|
via_cwd(cwd, hybrid, dec, 2 * ctx->inf.b[0] - 192);
|
|
|
|
if(ALIGN_OFFSET( ctx, 16 ))
|
|
return EXIT_FAILURE;
|
|
|
|
if(!ALIGN_OFFSET( ibuf, 16 ) && !ALIGN_OFFSET( obuf, 16 ))
|
|
{
|
|
via_ecb_op5(ksp, cwd, ibuf, obuf, nb);
|
|
}
|
|
else
|
|
{ aligned_auto(uint8_t, buf, BFR_BLOCKS * AES_BLOCK_SIZE, 16);
|
|
uint8_t *ip, *op;
|
|
|
|
while(nb)
|
|
{
|
|
int m = (nb > BFR_BLOCKS ? BFR_BLOCKS : nb);
|
|
|
|
ip = (ALIGN_OFFSET( ibuf, 16 ) ? buf : ibuf);
|
|
op = (ALIGN_OFFSET( obuf, 16 ) ? buf : obuf);
|
|
|
|
if(ip != ibuf)
|
|
memcpy(buf, ibuf, m * AES_BLOCK_SIZE);
|
|
|
|
via_ecb_op5(ksp, cwd, ip, op, m);
|
|
|
|
if(op != obuf)
|
|
memcpy(obuf, buf, m * AES_BLOCK_SIZE);
|
|
|
|
ibuf += m * AES_BLOCK_SIZE;
|
|
obuf += m * AES_BLOCK_SIZE;
|
|
nb -= m;
|
|
}
|
|
}
|
|
|
|
return EXIT_SUCCESS;
|
|
}
|
|
|
|
#endif
|
|
|
|
#if !defined( ASSUME_VIA_ACE_PRESENT )
|
|
while(nb--)
|
|
{
|
|
if(aes_decrypt(ibuf, obuf, ctx) != EXIT_SUCCESS)
|
|
return EXIT_FAILURE;
|
|
ibuf += AES_BLOCK_SIZE;
|
|
obuf += AES_BLOCK_SIZE;
|
|
}
|
|
#endif
|
|
return EXIT_SUCCESS;
|
|
}
|
|
|
|
AES_RETURN aes_cbc_encrypt(const unsigned char *ibuf, unsigned char *obuf,
|
|
int len, unsigned char *iv, const aes_encrypt_ctx ctx[1])
|
|
{ int nb = len >> 4;
|
|
|
|
if(len & (AES_BLOCK_SIZE - 1))
|
|
return EXIT_FAILURE;
|
|
|
|
#if defined( USE_VIA_ACE_IF_PRESENT )
|
|
|
|
if(ctx->inf.b[1] == 0xff)
|
|
{ uint8_t *ksp = (uint8_t*)(ctx->ks), *ivp = iv;
|
|
aligned_auto(uint8_t, liv, AES_BLOCK_SIZE, 16);
|
|
via_cwd(cwd, hybrid, enc, 2 * ctx->inf.b[0] - 192);
|
|
|
|
if(ALIGN_OFFSET( ctx, 16 ))
|
|
return EXIT_FAILURE;
|
|
|
|
if(ALIGN_OFFSET( iv, 16 )) /* ensure an aligned iv */
|
|
{
|
|
ivp = liv;
|
|
memcpy(liv, iv, AES_BLOCK_SIZE);
|
|
}
|
|
|
|
if(!ALIGN_OFFSET( ibuf, 16 ) && !ALIGN_OFFSET( obuf, 16 ) && !ALIGN_OFFSET( iv, 16 ))
|
|
{
|
|
via_cbc_op7(ksp, cwd, ibuf, obuf, nb, ivp, ivp);
|
|
}
|
|
else
|
|
{ aligned_auto(uint8_t, buf, BFR_BLOCKS * AES_BLOCK_SIZE, 16);
|
|
uint8_t *ip, *op;
|
|
|
|
while(nb)
|
|
{
|
|
int m = (nb > BFR_BLOCKS ? BFR_BLOCKS : nb);
|
|
|
|
ip = (ALIGN_OFFSET( ibuf, 16 ) ? buf : ibuf);
|
|
op = (ALIGN_OFFSET( obuf, 16 ) ? buf : obuf);
|
|
|
|
if(ip != ibuf)
|
|
memcpy(buf, ibuf, m * AES_BLOCK_SIZE);
|
|
|
|
via_cbc_op7(ksp, cwd, ip, op, m, ivp, ivp);
|
|
|
|
if(op != obuf)
|
|
memcpy(obuf, buf, m * AES_BLOCK_SIZE);
|
|
|
|
ibuf += m * AES_BLOCK_SIZE;
|
|
obuf += m * AES_BLOCK_SIZE;
|
|
nb -= m;
|
|
}
|
|
}
|
|
|
|
if(iv != ivp)
|
|
memcpy(iv, ivp, AES_BLOCK_SIZE);
|
|
|
|
return EXIT_SUCCESS;
|
|
}
|
|
|
|
#endif
|
|
|
|
#if !defined( ASSUME_VIA_ACE_PRESENT )
|
|
# ifdef FAST_BUFFER_OPERATIONS
|
|
if(!ALIGN_OFFSET( ibuf, 4 ) && !ALIGN_OFFSET( iv, 4 ))
|
|
while(nb--)
|
|
{
|
|
lp32(iv)[0] ^= lp32(ibuf)[0];
|
|
lp32(iv)[1] ^= lp32(ibuf)[1];
|
|
lp32(iv)[2] ^= lp32(ibuf)[2];
|
|
lp32(iv)[3] ^= lp32(ibuf)[3];
|
|
if(aes_encrypt(iv, iv, ctx) != EXIT_SUCCESS)
|
|
return EXIT_FAILURE;
|
|
memcpy(obuf, iv, AES_BLOCK_SIZE);
|
|
ibuf += AES_BLOCK_SIZE;
|
|
obuf += AES_BLOCK_SIZE;
|
|
}
|
|
else
|
|
# endif
|
|
while(nb--)
|
|
{
|
|
iv[ 0] ^= ibuf[ 0]; iv[ 1] ^= ibuf[ 1];
|
|
iv[ 2] ^= ibuf[ 2]; iv[ 3] ^= ibuf[ 3];
|
|
iv[ 4] ^= ibuf[ 4]; iv[ 5] ^= ibuf[ 5];
|
|
iv[ 6] ^= ibuf[ 6]; iv[ 7] ^= ibuf[ 7];
|
|
iv[ 8] ^= ibuf[ 8]; iv[ 9] ^= ibuf[ 9];
|
|
iv[10] ^= ibuf[10]; iv[11] ^= ibuf[11];
|
|
iv[12] ^= ibuf[12]; iv[13] ^= ibuf[13];
|
|
iv[14] ^= ibuf[14]; iv[15] ^= ibuf[15];
|
|
if(aes_encrypt(iv, iv, ctx) != EXIT_SUCCESS)
|
|
return EXIT_FAILURE;
|
|
memcpy(obuf, iv, AES_BLOCK_SIZE);
|
|
ibuf += AES_BLOCK_SIZE;
|
|
obuf += AES_BLOCK_SIZE;
|
|
}
|
|
#endif
|
|
return EXIT_SUCCESS;
|
|
}
|
|
|
|
AES_RETURN aes_cbc_decrypt(const unsigned char *ibuf, unsigned char *obuf,
|
|
int len, unsigned char *iv, const aes_decrypt_ctx ctx[1])
|
|
{ unsigned char tmp[AES_BLOCK_SIZE];
|
|
int nb = len >> 4;
|
|
|
|
if(len & (AES_BLOCK_SIZE - 1))
|
|
return EXIT_FAILURE;
|
|
|
|
#if defined( USE_VIA_ACE_IF_PRESENT )
|
|
|
|
if(ctx->inf.b[1] == 0xff)
|
|
{ uint8_t *ksp = kd_adr(ctx), *ivp = iv;
|
|
aligned_auto(uint8_t, liv, AES_BLOCK_SIZE, 16);
|
|
via_cwd(cwd, hybrid, dec, 2 * ctx->inf.b[0] - 192);
|
|
|
|
if(ALIGN_OFFSET( ctx, 16 ))
|
|
return EXIT_FAILURE;
|
|
|
|
if(ALIGN_OFFSET( iv, 16 )) /* ensure an aligned iv */
|
|
{
|
|
ivp = liv;
|
|
memcpy(liv, iv, AES_BLOCK_SIZE);
|
|
}
|
|
|
|
if(!ALIGN_OFFSET( ibuf, 16 ) && !ALIGN_OFFSET( obuf, 16 ) && !ALIGN_OFFSET( iv, 16 ))
|
|
{
|
|
via_cbc_op6(ksp, cwd, ibuf, obuf, nb, ivp);
|
|
}
|
|
else
|
|
{ aligned_auto(uint8_t, buf, BFR_BLOCKS * AES_BLOCK_SIZE, 16);
|
|
uint8_t *ip, *op;
|
|
|
|
while(nb)
|
|
{
|
|
int m = (nb > BFR_BLOCKS ? BFR_BLOCKS : nb);
|
|
|
|
ip = (ALIGN_OFFSET( ibuf, 16 ) ? buf : ibuf);
|
|
op = (ALIGN_OFFSET( obuf, 16 ) ? buf : obuf);
|
|
|
|
if(ip != ibuf)
|
|
memcpy(buf, ibuf, m * AES_BLOCK_SIZE);
|
|
|
|
via_cbc_op6(ksp, cwd, ip, op, m, ivp);
|
|
|
|
if(op != obuf)
|
|
memcpy(obuf, buf, m * AES_BLOCK_SIZE);
|
|
|
|
ibuf += m * AES_BLOCK_SIZE;
|
|
obuf += m * AES_BLOCK_SIZE;
|
|
nb -= m;
|
|
}
|
|
}
|
|
|
|
if(iv != ivp)
|
|
memcpy(iv, ivp, AES_BLOCK_SIZE);
|
|
|
|
return EXIT_SUCCESS;
|
|
}
|
|
#endif
|
|
|
|
#if !defined( ASSUME_VIA_ACE_PRESENT )
|
|
# ifdef FAST_BUFFER_OPERATIONS
|
|
if(!ALIGN_OFFSET( obuf, 4 ) && !ALIGN_OFFSET( iv, 4 ))
|
|
while(nb--)
|
|
{
|
|
memcpy(tmp, ibuf, AES_BLOCK_SIZE);
|
|
if(aes_decrypt(ibuf, obuf, ctx) != EXIT_SUCCESS)
|
|
return EXIT_FAILURE;
|
|
lp32(obuf)[0] ^= lp32(iv)[0];
|
|
lp32(obuf)[1] ^= lp32(iv)[1];
|
|
lp32(obuf)[2] ^= lp32(iv)[2];
|
|
lp32(obuf)[3] ^= lp32(iv)[3];
|
|
memcpy(iv, tmp, AES_BLOCK_SIZE);
|
|
ibuf += AES_BLOCK_SIZE;
|
|
obuf += AES_BLOCK_SIZE;
|
|
}
|
|
else
|
|
# endif
|
|
while(nb--)
|
|
{
|
|
memcpy(tmp, ibuf, AES_BLOCK_SIZE);
|
|
if(aes_decrypt(ibuf, obuf, ctx) != EXIT_SUCCESS)
|
|
return EXIT_FAILURE;
|
|
obuf[ 0] ^= iv[ 0]; obuf[ 1] ^= iv[ 1];
|
|
obuf[ 2] ^= iv[ 2]; obuf[ 3] ^= iv[ 3];
|
|
obuf[ 4] ^= iv[ 4]; obuf[ 5] ^= iv[ 5];
|
|
obuf[ 6] ^= iv[ 6]; obuf[ 7] ^= iv[ 7];
|
|
obuf[ 8] ^= iv[ 8]; obuf[ 9] ^= iv[ 9];
|
|
obuf[10] ^= iv[10]; obuf[11] ^= iv[11];
|
|
obuf[12] ^= iv[12]; obuf[13] ^= iv[13];
|
|
obuf[14] ^= iv[14]; obuf[15] ^= iv[15];
|
|
memcpy(iv, tmp, AES_BLOCK_SIZE);
|
|
ibuf += AES_BLOCK_SIZE;
|
|
obuf += AES_BLOCK_SIZE;
|
|
}
|
|
#endif
|
|
return EXIT_SUCCESS;
|
|
}
|
|
|
|
AES_RETURN aes_cfb_encrypt(const unsigned char *ibuf, unsigned char *obuf,
|
|
int len, unsigned char *iv, aes_encrypt_ctx ctx[1])
|
|
{ int cnt = 0, b_pos = (int)ctx->inf.b[2], nb;
|
|
|
|
if(b_pos) /* complete any partial block */
|
|
{
|
|
while(b_pos < AES_BLOCK_SIZE && cnt < len)
|
|
{
|
|
*obuf++ = (iv[b_pos++] ^= *ibuf++);
|
|
cnt++;
|
|
}
|
|
|
|
b_pos = (b_pos == AES_BLOCK_SIZE ? 0 : b_pos);
|
|
}
|
|
|
|
if((nb = (len - cnt) >> 4) != 0) /* process whole blocks */
|
|
{
|
|
#if defined( USE_VIA_ACE_IF_PRESENT )
|
|
|
|
if(ctx->inf.b[1] == 0xff)
|
|
{ int m;
|
|
uint8_t *ksp = (uint8_t*)(ctx->ks), *ivp = iv;
|
|
aligned_auto(uint8_t, liv, AES_BLOCK_SIZE, 16);
|
|
via_cwd(cwd, hybrid, enc, 2 * ctx->inf.b[0] - 192);
|
|
|
|
if(ALIGN_OFFSET( ctx, 16 ))
|
|
return EXIT_FAILURE;
|
|
|
|
if(ALIGN_OFFSET( iv, 16 )) /* ensure an aligned iv */
|
|
{
|
|
ivp = liv;
|
|
memcpy(liv, iv, AES_BLOCK_SIZE);
|
|
}
|
|
|
|
if(!ALIGN_OFFSET( ibuf, 16 ) && !ALIGN_OFFSET( obuf, 16 ))
|
|
{
|
|
via_cfb_op7(ksp, cwd, ibuf, obuf, nb, ivp, ivp);
|
|
ibuf += nb * AES_BLOCK_SIZE;
|
|
obuf += nb * AES_BLOCK_SIZE;
|
|
cnt += nb * AES_BLOCK_SIZE;
|
|
}
|
|
else /* input, output or both are unaligned */
|
|
{ aligned_auto(uint8_t, buf, BFR_BLOCKS * AES_BLOCK_SIZE, 16);
|
|
uint8_t *ip, *op;
|
|
|
|
while(nb)
|
|
{
|
|
m = (nb > BFR_BLOCKS ? BFR_BLOCKS : nb), nb -= m;
|
|
|
|
ip = (ALIGN_OFFSET( ibuf, 16 ) ? buf : ibuf);
|
|
op = (ALIGN_OFFSET( obuf, 16 ) ? buf : obuf);
|
|
|
|
if(ip != ibuf)
|
|
memcpy(buf, ibuf, m * AES_BLOCK_SIZE);
|
|
|
|
via_cfb_op7(ksp, cwd, ip, op, m, ivp, ivp);
|
|
|
|
if(op != obuf)
|
|
memcpy(obuf, buf, m * AES_BLOCK_SIZE);
|
|
|
|
ibuf += m * AES_BLOCK_SIZE;
|
|
obuf += m * AES_BLOCK_SIZE;
|
|
cnt += m * AES_BLOCK_SIZE;
|
|
}
|
|
}
|
|
|
|
if(ivp != iv)
|
|
memcpy(iv, ivp, AES_BLOCK_SIZE);
|
|
}
|
|
#else
|
|
# ifdef FAST_BUFFER_OPERATIONS
|
|
if(!ALIGN_OFFSET( ibuf, 4 ) && !ALIGN_OFFSET( obuf, 4 ) && !ALIGN_OFFSET( iv, 4 ))
|
|
while(cnt + AES_BLOCK_SIZE <= len)
|
|
{
|
|
assert(b_pos == 0);
|
|
if(aes_encrypt(iv, iv, ctx) != EXIT_SUCCESS)
|
|
return EXIT_FAILURE;
|
|
lp32(obuf)[0] = lp32(iv)[0] ^= lp32(ibuf)[0];
|
|
lp32(obuf)[1] = lp32(iv)[1] ^= lp32(ibuf)[1];
|
|
lp32(obuf)[2] = lp32(iv)[2] ^= lp32(ibuf)[2];
|
|
lp32(obuf)[3] = lp32(iv)[3] ^= lp32(ibuf)[3];
|
|
ibuf += AES_BLOCK_SIZE;
|
|
obuf += AES_BLOCK_SIZE;
|
|
cnt += AES_BLOCK_SIZE;
|
|
}
|
|
else
|
|
# endif
|
|
while(cnt + AES_BLOCK_SIZE <= len)
|
|
{
|
|
assert(b_pos == 0);
|
|
if(aes_encrypt(iv, iv, ctx) != EXIT_SUCCESS)
|
|
return EXIT_FAILURE;
|
|
obuf[ 0] = iv[ 0] ^= ibuf[ 0]; obuf[ 1] = iv[ 1] ^= ibuf[ 1];
|
|
obuf[ 2] = iv[ 2] ^= ibuf[ 2]; obuf[ 3] = iv[ 3] ^= ibuf[ 3];
|
|
obuf[ 4] = iv[ 4] ^= ibuf[ 4]; obuf[ 5] = iv[ 5] ^= ibuf[ 5];
|
|
obuf[ 6] = iv[ 6] ^= ibuf[ 6]; obuf[ 7] = iv[ 7] ^= ibuf[ 7];
|
|
obuf[ 8] = iv[ 8] ^= ibuf[ 8]; obuf[ 9] = iv[ 9] ^= ibuf[ 9];
|
|
obuf[10] = iv[10] ^= ibuf[10]; obuf[11] = iv[11] ^= ibuf[11];
|
|
obuf[12] = iv[12] ^= ibuf[12]; obuf[13] = iv[13] ^= ibuf[13];
|
|
obuf[14] = iv[14] ^= ibuf[14]; obuf[15] = iv[15] ^= ibuf[15];
|
|
ibuf += AES_BLOCK_SIZE;
|
|
obuf += AES_BLOCK_SIZE;
|
|
cnt += AES_BLOCK_SIZE;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
while(cnt < len)
|
|
{
|
|
if(!b_pos && aes_encrypt(iv, iv, ctx) != EXIT_SUCCESS)
|
|
return EXIT_FAILURE;
|
|
|
|
while(cnt < len && b_pos < AES_BLOCK_SIZE)
|
|
{
|
|
*obuf++ = (iv[b_pos++] ^= *ibuf++);
|
|
cnt++;
|
|
}
|
|
|
|
b_pos = (b_pos == AES_BLOCK_SIZE ? 0 : b_pos);
|
|
}
|
|
|
|
ctx->inf.b[2] = (uint8_t)b_pos;
|
|
return EXIT_SUCCESS;
|
|
}
|
|
|
|
AES_RETURN aes_cfb_decrypt(const unsigned char *ibuf, unsigned char *obuf,
|
|
int len, unsigned char *iv, aes_encrypt_ctx ctx[1])
|
|
{ int cnt = 0, b_pos = (int)ctx->inf.b[2], nb;
|
|
|
|
if(b_pos) /* complete any partial block */
|
|
{ uint8_t t;
|
|
|
|
while(b_pos < AES_BLOCK_SIZE && cnt < len)
|
|
{
|
|
t = *ibuf++;
|
|
*obuf++ = t ^ iv[b_pos];
|
|
iv[b_pos++] = t;
|
|
cnt++;
|
|
}
|
|
|
|
b_pos = (b_pos == AES_BLOCK_SIZE ? 0 : b_pos);
|
|
}
|
|
|
|
if((nb = (len - cnt) >> 4) != 0) /* process whole blocks */
|
|
{
|
|
#if defined( USE_VIA_ACE_IF_PRESENT )
|
|
|
|
if(ctx->inf.b[1] == 0xff)
|
|
{ int m;
|
|
uint8_t *ksp = (uint8_t*)(ctx->ks), *ivp = iv;
|
|
aligned_auto(uint8_t, liv, AES_BLOCK_SIZE, 16);
|
|
via_cwd(cwd, hybrid, dec, 2 * ctx->inf.b[0] - 192);
|
|
|
|
if(ALIGN_OFFSET( ctx, 16 ))
|
|
return EXIT_FAILURE;
|
|
|
|
if(ALIGN_OFFSET( iv, 16 )) /* ensure an aligned iv */
|
|
{
|
|
ivp = liv;
|
|
memcpy(liv, iv, AES_BLOCK_SIZE);
|
|
}
|
|
|
|
if(!ALIGN_OFFSET( ibuf, 16 ) && !ALIGN_OFFSET( obuf, 16 ))
|
|
{
|
|
via_cfb_op6(ksp, cwd, ibuf, obuf, nb, ivp);
|
|
ibuf += nb * AES_BLOCK_SIZE;
|
|
obuf += nb * AES_BLOCK_SIZE;
|
|
cnt += nb * AES_BLOCK_SIZE;
|
|
}
|
|
else /* input, output or both are unaligned */
|
|
{ aligned_auto(uint8_t, buf, BFR_BLOCKS * AES_BLOCK_SIZE, 16);
|
|
uint8_t *ip, *op;
|
|
|
|
while(nb)
|
|
{
|
|
m = (nb > BFR_BLOCKS ? BFR_BLOCKS : nb), nb -= m;
|
|
|
|
ip = (ALIGN_OFFSET( ibuf, 16 ) ? buf : ibuf);
|
|
op = (ALIGN_OFFSET( obuf, 16 ) ? buf : obuf);
|
|
|
|
if(ip != ibuf) /* input buffer is not aligned */
|
|
memcpy(buf, ibuf, m * AES_BLOCK_SIZE);
|
|
|
|
via_cfb_op6(ksp, cwd, ip, op, m, ivp);
|
|
|
|
if(op != obuf) /* output buffer is not aligned */
|
|
memcpy(obuf, buf, m * AES_BLOCK_SIZE);
|
|
|
|
ibuf += m * AES_BLOCK_SIZE;
|
|
obuf += m * AES_BLOCK_SIZE;
|
|
cnt += m * AES_BLOCK_SIZE;
|
|
}
|
|
}
|
|
|
|
if(ivp != iv)
|
|
memcpy(iv, ivp, AES_BLOCK_SIZE);
|
|
}
|
|
#else
|
|
# ifdef FAST_BUFFER_OPERATIONS
|
|
if(!ALIGN_OFFSET( ibuf, 4 ) && !ALIGN_OFFSET( obuf, 4 ) &&!ALIGN_OFFSET( iv, 4 ))
|
|
while(cnt + AES_BLOCK_SIZE <= len)
|
|
{ uint32_t t;
|
|
|
|
assert(b_pos == 0);
|
|
if(aes_encrypt(iv, iv, ctx) != EXIT_SUCCESS)
|
|
return EXIT_FAILURE;
|
|
t = lp32(ibuf)[0], lp32(obuf)[0] = t ^ lp32(iv)[0], lp32(iv)[0] = t;
|
|
t = lp32(ibuf)[1], lp32(obuf)[1] = t ^ lp32(iv)[1], lp32(iv)[1] = t;
|
|
t = lp32(ibuf)[2], lp32(obuf)[2] = t ^ lp32(iv)[2], lp32(iv)[2] = t;
|
|
t = lp32(ibuf)[3], lp32(obuf)[3] = t ^ lp32(iv)[3], lp32(iv)[3] = t;
|
|
ibuf += AES_BLOCK_SIZE;
|
|
obuf += AES_BLOCK_SIZE;
|
|
cnt += AES_BLOCK_SIZE;
|
|
}
|
|
else
|
|
# endif
|
|
while(cnt + AES_BLOCK_SIZE <= len)
|
|
{ uint8_t t;
|
|
|
|
assert(b_pos == 0);
|
|
if(aes_encrypt(iv, iv, ctx) != EXIT_SUCCESS)
|
|
return EXIT_FAILURE;
|
|
t = ibuf[ 0], obuf[ 0] = t ^ iv[ 0], iv[ 0] = t;
|
|
t = ibuf[ 1], obuf[ 1] = t ^ iv[ 1], iv[ 1] = t;
|
|
t = ibuf[ 2], obuf[ 2] = t ^ iv[ 2], iv[ 2] = t;
|
|
t = ibuf[ 3], obuf[ 3] = t ^ iv[ 3], iv[ 3] = t;
|
|
t = ibuf[ 4], obuf[ 4] = t ^ iv[ 4], iv[ 4] = t;
|
|
t = ibuf[ 5], obuf[ 5] = t ^ iv[ 5], iv[ 5] = t;
|
|
t = ibuf[ 6], obuf[ 6] = t ^ iv[ 6], iv[ 6] = t;
|
|
t = ibuf[ 7], obuf[ 7] = t ^ iv[ 7], iv[ 7] = t;
|
|
t = ibuf[ 8], obuf[ 8] = t ^ iv[ 8], iv[ 8] = t;
|
|
t = ibuf[ 9], obuf[ 9] = t ^ iv[ 9], iv[ 9] = t;
|
|
t = ibuf[10], obuf[10] = t ^ iv[10], iv[10] = t;
|
|
t = ibuf[11], obuf[11] = t ^ iv[11], iv[11] = t;
|
|
t = ibuf[12], obuf[12] = t ^ iv[12], iv[12] = t;
|
|
t = ibuf[13], obuf[13] = t ^ iv[13], iv[13] = t;
|
|
t = ibuf[14], obuf[14] = t ^ iv[14], iv[14] = t;
|
|
t = ibuf[15], obuf[15] = t ^ iv[15], iv[15] = t;
|
|
ibuf += AES_BLOCK_SIZE;
|
|
obuf += AES_BLOCK_SIZE;
|
|
cnt += AES_BLOCK_SIZE;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
while(cnt < len)
|
|
{ uint8_t t;
|
|
|
|
if(!b_pos && aes_encrypt(iv, iv, ctx) != EXIT_SUCCESS)
|
|
return EXIT_FAILURE;
|
|
|
|
while(cnt < len && b_pos < AES_BLOCK_SIZE)
|
|
{
|
|
t = *ibuf++;
|
|
*obuf++ = t ^ iv[b_pos];
|
|
iv[b_pos++] = t;
|
|
cnt++;
|
|
}
|
|
|
|
b_pos = (b_pos == AES_BLOCK_SIZE ? 0 : b_pos);
|
|
}
|
|
|
|
ctx->inf.b[2] = (uint8_t)b_pos;
|
|
return EXIT_SUCCESS;
|
|
}
|
|
|
|
AES_RETURN aes_ofb_crypt(const unsigned char *ibuf, unsigned char *obuf,
|
|
int len, unsigned char *iv, aes_encrypt_ctx ctx[1])
|
|
{ int cnt = 0, b_pos = (int)ctx->inf.b[2], nb;
|
|
|
|
if(b_pos) /* complete any partial block */
|
|
{
|
|
while(b_pos < AES_BLOCK_SIZE && cnt < len)
|
|
{
|
|
*obuf++ = iv[b_pos++] ^ *ibuf++;
|
|
cnt++;
|
|
}
|
|
|
|
b_pos = (b_pos == AES_BLOCK_SIZE ? 0 : b_pos);
|
|
}
|
|
|
|
if((nb = (len - cnt) >> 4) != 0) /* process whole blocks */
|
|
{
|
|
#if defined( USE_VIA_ACE_IF_PRESENT )
|
|
|
|
if(ctx->inf.b[1] == 0xff)
|
|
{ int m;
|
|
uint8_t *ksp = (uint8_t*)(ctx->ks), *ivp = iv;
|
|
aligned_auto(uint8_t, liv, AES_BLOCK_SIZE, 16);
|
|
via_cwd(cwd, hybrid, enc, 2 * ctx->inf.b[0] - 192);
|
|
|
|
if(ALIGN_OFFSET( ctx, 16 ))
|
|
return EXIT_FAILURE;
|
|
|
|
if(ALIGN_OFFSET( iv, 16 )) /* ensure an aligned iv */
|
|
{
|
|
ivp = liv;
|
|
memcpy(liv, iv, AES_BLOCK_SIZE);
|
|
}
|
|
|
|
if(!ALIGN_OFFSET( ibuf, 16 ) && !ALIGN_OFFSET( obuf, 16 ))
|
|
{
|
|
via_ofb_op6(ksp, cwd, ibuf, obuf, nb, ivp);
|
|
ibuf += nb * AES_BLOCK_SIZE;
|
|
obuf += nb * AES_BLOCK_SIZE;
|
|
cnt += nb * AES_BLOCK_SIZE;
|
|
}
|
|
else /* input, output or both are unaligned */
|
|
{ aligned_auto(uint8_t, buf, BFR_BLOCKS * AES_BLOCK_SIZE, 16);
|
|
uint8_t *ip, *op;
|
|
|
|
while(nb)
|
|
{
|
|
m = (nb > BFR_BLOCKS ? BFR_BLOCKS : nb), nb -= m;
|
|
|
|
ip = (ALIGN_OFFSET( ibuf, 16 ) ? buf : ibuf);
|
|
op = (ALIGN_OFFSET( obuf, 16 ) ? buf : obuf);
|
|
|
|
if(ip != ibuf)
|
|
memcpy(buf, ibuf, m * AES_BLOCK_SIZE);
|
|
|
|
via_ofb_op6(ksp, cwd, ip, op, m, ivp);
|
|
|
|
if(op != obuf)
|
|
memcpy(obuf, buf, m * AES_BLOCK_SIZE);
|
|
|
|
ibuf += m * AES_BLOCK_SIZE;
|
|
obuf += m * AES_BLOCK_SIZE;
|
|
cnt += m * AES_BLOCK_SIZE;
|
|
}
|
|
}
|
|
|
|
if(ivp != iv)
|
|
memcpy(iv, ivp, AES_BLOCK_SIZE);
|
|
}
|
|
#else
|
|
# ifdef FAST_BUFFER_OPERATIONS
|
|
if(!ALIGN_OFFSET( ibuf, 4 ) && !ALIGN_OFFSET( obuf, 4 ) && !ALIGN_OFFSET( iv, 4 ))
|
|
while(cnt + AES_BLOCK_SIZE <= len)
|
|
{
|
|
assert(b_pos == 0);
|
|
if(aes_encrypt(iv, iv, ctx) != EXIT_SUCCESS)
|
|
return EXIT_FAILURE;
|
|
lp32(obuf)[0] = lp32(iv)[0] ^ lp32(ibuf)[0];
|
|
lp32(obuf)[1] = lp32(iv)[1] ^ lp32(ibuf)[1];
|
|
lp32(obuf)[2] = lp32(iv)[2] ^ lp32(ibuf)[2];
|
|
lp32(obuf)[3] = lp32(iv)[3] ^ lp32(ibuf)[3];
|
|
ibuf += AES_BLOCK_SIZE;
|
|
obuf += AES_BLOCK_SIZE;
|
|
cnt += AES_BLOCK_SIZE;
|
|
}
|
|
else
|
|
# endif
|
|
while(cnt + AES_BLOCK_SIZE <= len)
|
|
{
|
|
assert(b_pos == 0);
|
|
if(aes_encrypt(iv, iv, ctx) != EXIT_SUCCESS)
|
|
return EXIT_FAILURE;
|
|
obuf[ 0] = iv[ 0] ^ ibuf[ 0]; obuf[ 1] = iv[ 1] ^ ibuf[ 1];
|
|
obuf[ 2] = iv[ 2] ^ ibuf[ 2]; obuf[ 3] = iv[ 3] ^ ibuf[ 3];
|
|
obuf[ 4] = iv[ 4] ^ ibuf[ 4]; obuf[ 5] = iv[ 5] ^ ibuf[ 5];
|
|
obuf[ 6] = iv[ 6] ^ ibuf[ 6]; obuf[ 7] = iv[ 7] ^ ibuf[ 7];
|
|
obuf[ 8] = iv[ 8] ^ ibuf[ 8]; obuf[ 9] = iv[ 9] ^ ibuf[ 9];
|
|
obuf[10] = iv[10] ^ ibuf[10]; obuf[11] = iv[11] ^ ibuf[11];
|
|
obuf[12] = iv[12] ^ ibuf[12]; obuf[13] = iv[13] ^ ibuf[13];
|
|
obuf[14] = iv[14] ^ ibuf[14]; obuf[15] = iv[15] ^ ibuf[15];
|
|
ibuf += AES_BLOCK_SIZE;
|
|
obuf += AES_BLOCK_SIZE;
|
|
cnt += AES_BLOCK_SIZE;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
while(cnt < len)
|
|
{
|
|
if(!b_pos && aes_encrypt(iv, iv, ctx) != EXIT_SUCCESS)
|
|
return EXIT_FAILURE;
|
|
|
|
while(cnt < len && b_pos < AES_BLOCK_SIZE)
|
|
{
|
|
*obuf++ = iv[b_pos++] ^ *ibuf++;
|
|
cnt++;
|
|
}
|
|
|
|
b_pos = (b_pos == AES_BLOCK_SIZE ? 0 : b_pos);
|
|
}
|
|
|
|
ctx->inf.b[2] = (uint8_t)b_pos;
|
|
return EXIT_SUCCESS;
|
|
}
|
|
|
|
#define BFR_LENGTH (BFR_BLOCKS * AES_BLOCK_SIZE)
|
|
|
|
AES_RETURN aes_ctr_crypt(const unsigned char *ibuf, unsigned char *obuf,
|
|
int len, unsigned char *cbuf, cbuf_inc ctr_inc, aes_encrypt_ctx ctx[1])
|
|
{ unsigned char *ip;
|
|
int i, blen, b_pos = (int)(ctx->inf.b[2]);
|
|
|
|
#if defined( USE_VIA_ACE_IF_PRESENT )
|
|
aligned_auto(uint8_t, buf, BFR_LENGTH, 16);
|
|
if(ctx->inf.b[1] == 0xff && ALIGN_OFFSET( ctx, 16 ))
|
|
return EXIT_FAILURE;
|
|
#else
|
|
uint8_t buf[BFR_LENGTH];
|
|
#endif
|
|
|
|
if(b_pos)
|
|
{
|
|
memcpy(buf, cbuf, AES_BLOCK_SIZE);
|
|
if(aes_ecb_encrypt(buf, buf, AES_BLOCK_SIZE, ctx) != EXIT_SUCCESS)
|
|
return EXIT_FAILURE;
|
|
|
|
while(b_pos < AES_BLOCK_SIZE && len)
|
|
{
|
|
*obuf++ = *ibuf++ ^ buf[b_pos++];
|
|
--len;
|
|
}
|
|
|
|
if(len)
|
|
ctr_inc(cbuf), b_pos = 0;
|
|
}
|
|
|
|
while(len)
|
|
{
|
|
blen = (len > BFR_LENGTH ? BFR_LENGTH : len), len -= blen;
|
|
|
|
for(i = 0, ip = buf; i < (blen >> 4); ++i)
|
|
{
|
|
memcpy(ip, cbuf, AES_BLOCK_SIZE);
|
|
ctr_inc(cbuf);
|
|
ip += AES_BLOCK_SIZE;
|
|
}
|
|
|
|
if(blen & (AES_BLOCK_SIZE - 1))
|
|
memcpy(ip, cbuf, AES_BLOCK_SIZE), i++;
|
|
|
|
#if defined( USE_VIA_ACE_IF_PRESENT )
|
|
if(ctx->inf.b[1] == 0xff)
|
|
{
|
|
via_cwd(cwd, hybrid, enc, 2 * ctx->inf.b[0] - 192);
|
|
via_ecb_op5((ctx->ks), cwd, buf, buf, i);
|
|
}
|
|
else
|
|
#endif
|
|
if(aes_ecb_encrypt(buf, buf, i * AES_BLOCK_SIZE, ctx) != EXIT_SUCCESS)
|
|
return EXIT_FAILURE;
|
|
|
|
i = 0; ip = buf;
|
|
# ifdef FAST_BUFFER_OPERATIONS
|
|
if(!ALIGN_OFFSET( ibuf, 4 ) && !ALIGN_OFFSET( obuf, 4 ) && !ALIGN_OFFSET( ip, 4 ))
|
|
while(i + AES_BLOCK_SIZE <= blen)
|
|
{
|
|
lp32(obuf)[0] = lp32(ibuf)[0] ^ lp32(ip)[0];
|
|
lp32(obuf)[1] = lp32(ibuf)[1] ^ lp32(ip)[1];
|
|
lp32(obuf)[2] = lp32(ibuf)[2] ^ lp32(ip)[2];
|
|
lp32(obuf)[3] = lp32(ibuf)[3] ^ lp32(ip)[3];
|
|
i += AES_BLOCK_SIZE;
|
|
ip += AES_BLOCK_SIZE;
|
|
ibuf += AES_BLOCK_SIZE;
|
|
obuf += AES_BLOCK_SIZE;
|
|
}
|
|
else
|
|
#endif
|
|
while(i + AES_BLOCK_SIZE <= blen)
|
|
{
|
|
obuf[ 0] = ibuf[ 0] ^ ip[ 0]; obuf[ 1] = ibuf[ 1] ^ ip[ 1];
|
|
obuf[ 2] = ibuf[ 2] ^ ip[ 2]; obuf[ 3] = ibuf[ 3] ^ ip[ 3];
|
|
obuf[ 4] = ibuf[ 4] ^ ip[ 4]; obuf[ 5] = ibuf[ 5] ^ ip[ 5];
|
|
obuf[ 6] = ibuf[ 6] ^ ip[ 6]; obuf[ 7] = ibuf[ 7] ^ ip[ 7];
|
|
obuf[ 8] = ibuf[ 8] ^ ip[ 8]; obuf[ 9] = ibuf[ 9] ^ ip[ 9];
|
|
obuf[10] = ibuf[10] ^ ip[10]; obuf[11] = ibuf[11] ^ ip[11];
|
|
obuf[12] = ibuf[12] ^ ip[12]; obuf[13] = ibuf[13] ^ ip[13];
|
|
obuf[14] = ibuf[14] ^ ip[14]; obuf[15] = ibuf[15] ^ ip[15];
|
|
i += AES_BLOCK_SIZE;
|
|
ip += AES_BLOCK_SIZE;
|
|
ibuf += AES_BLOCK_SIZE;
|
|
obuf += AES_BLOCK_SIZE;
|
|
}
|
|
|
|
while(i++ < blen)
|
|
*obuf++ = *ibuf++ ^ ip[b_pos++];
|
|
}
|
|
|
|
ctx->inf.b[2] = (uint8_t)b_pos;
|
|
return EXIT_SUCCESS;
|
|
}
|
|
|
|
void aes_ctr_cbuf_inc(unsigned char *cbuf)
|
|
{
|
|
int i = AES_BLOCK_SIZE - 1;
|
|
while (i >= 0) {
|
|
cbuf[i]++;
|
|
if (cbuf[i]) return; // if there was no overflow
|
|
i--;
|
|
}
|
|
}
|
|
|
|
#if defined(__cplusplus)
|
|
}
|
|
#endif
|
|
#endif
|