1
0
mirror of https://github.com/trezor/trezor-firmware.git synced 2024-11-18 13:38:12 +00:00
trezor-firmware/micropython/trezorhal/usb_vcp-impl.h
Jan Pochyla 38b99b306a trezorhal: add cdc vcp tx
TODO: rx support
TODO: buffering
TODO: cleanup
2017-04-06 19:06:05 +02:00

328 lines
11 KiB
C

#define USB_LEN_ASSOC_DESC (0x08)
#define USB_DESC_TYPE_ASSOCIATION (0x0b)
#define USB_DESC_TYPE_HEADER (0x00)
#define USB_DESC_TYPE_CALL_MANAGEMENT (0x01)
#define USB_DESC_TYPE_ACM (0x02)
#define USB_DESC_TYPE_UNION (0x06)
#define USB_CDC_GET_LINE_CODING (0x21)
#define USB_CDC_SET_CONTROL_LINE_STATE (0x22)
// static int ring_init(ring_buffer_t *b, uint8_t *buf, size_t cap) {
// if (cap == 0 || (cap & (cap - 1)) != 0) {
// return 1; // Capacity needs to be a power of 2
// }
// b->buf = buf;
// b->cap = cap;
// b->read = 0;
// b->write = 0;
// return 0;
// }
// static inline size_t ring_length(ring_buffer_t *b) {
// return (b->write - b->read);
// }
// static inline int ring_empty(ring_buffer_t *b) {
// return ring_length(b) == 0;
// }
// static inline int ring_full(ring_buffer_t *b) {
// return ring_length(b) == b->cap;
// }
// uint32_t ring_read(ring_buffer_t *b, uint8_t *buf, uint32_t len) {
// const uint32_t mask = b->cap - 1;
// uint32_t i;
// for (i = 0; (i < len) && !ring_empty(b); i++) {
// buf[i] = b->buf[b->read & mask];
// b->read++;
// }
// return i;
// }
// uint32_t ring_write(ring_buffer_t *b, const uint8_t *buf, uint32_t len) {
// const uint32_t mask = b->cap - 1;
// uint32_t i;
// for (i = 0; (i < len) && !ring_full(b); i++) {
// b->buf[b->write & mask] = buf[i];
// b->write++;
// }
// return i;
// }
/* usb_vcp_add adds and configures new USB VCP interface according to
* configuration options passed in `info`. */
int usb_vcp_add(const usb_vcp_info_t *info) {
usb_iface_t *iface = usb_get_iface(info->iface_num);
if (iface == NULL) {
return 1; // Invalid interface number
}
if (iface->type != USB_IFACE_TYPE_DISABLED) {
return 1; // Interface is already enabled
}
usb_vcp_descriptor_block_t *d = usb_desc_alloc_iface(sizeof(usb_vcp_descriptor_block_t));
if (d == NULL) {
return 1; // Not enough space in the configuration descriptor
}
if ((info->ep_cmd & USB_EP_DIR_MSK) != USB_EP_DIR_IN) {
return 1; // CMD EP is invalid
}
if ((info->ep_in & USB_EP_DIR_MSK) != USB_EP_DIR_IN) {
return 1; // IN EP is invalid
}
if ((info->ep_out & USB_EP_DIR_MSK) != USB_EP_DIR_OUT) {
return 1; // OUT EP is invalid
}
// Interface association descriptor
d->assoc.bLength = USB_LEN_ASSOC_DESC;
d->assoc.bDescriptorType = USB_DESC_TYPE_ASSOCIATION;
d->assoc.bFirstInterface = info->iface_num;
d->assoc.bInterfaceCount = 2;
d->assoc.bFunctionClass = 0x02; // Communication Interface Class
d->assoc.bFunctionSubClass = 0x02; // Abstract Control Model
d->assoc.bFunctionProtocol = 0x01; // Common AT commands
d->assoc.iFunction = 0x00; // Index of string descriptor describing the function
// Interface descriptor
d->iface_cdc.bLength = USB_LEN_IF_DESC;
d->iface_cdc.bDescriptorType = USB_DESC_TYPE_INTERFACE;
d->iface_cdc.bInterfaceNumber = info->iface_num;
d->iface_cdc.bAlternateSetting = 0x00;
d->iface_cdc.bNumEndpoints = 1;
d->iface_cdc.bInterfaceClass = 0x02; // Communication Interface Class
d->iface_cdc.bInterfaceSubClass = 0x02; // Abstract Control Model
d->iface_cdc.bInterfaceProtocol = 0x01; // Common AT commands
d->iface_cdc.iInterface = 0x00; // Index of string descriptor describing the interface
// Header Functional Descriptor
d->fheader.bFunctionLength = sizeof(usb_vcp_header_descriptor_t);
d->fheader.bDescriptorType = 0x24; // CS_INTERFACE
d->fheader.bDescriptorSubtype = 0x00; // Header Func desc
d->fheader.bcdCDC = 0x1001; // Spec release number
// Call Management Functional Descriptor
d->fcm.bFunctionLength = sizeof(usb_vcp_cm_descriptor_t);
d->fcm.bDescriptorType = 0x24; // CS_INTERFACE
d->fcm.bDescriptorSubtype = 0x01; // Call Management Func desc
d->fcm.bmCapabilities = 0x00; // D0+D1
d->fcm.bDataInterface = info->data_iface_num;
// ACM Functional Descriptor
d->facm.bFunctionLength = sizeof(usb_vcp_acm_descriptor_t);
d->facm.bDescriptorType = 0x24; // CS_INTERFACE
d->facm.bDescriptorSubtype = 0x02; // Abstract Control Management desc
d->facm.bmCapabilities = 0x02;
// Union Functional Descriptor
d->funion.bFunctionLength = sizeof(usb_vcp_union_descriptor_t);
d->funion.bDescriptorType = 0x24; // CS_INTERFACE
d->funion.bDescriptorSubtype = 0x06; // Union Func desc
d->funion.bControlInterface = info->iface_num;
d->funion.bSubordinateInterface0 = info->data_iface_num;
// IN CMD endpoint (control)
d->ep_cmd.bLength = USB_LEN_EP_DESC;
d->ep_cmd.bDescriptorType = USB_DESC_TYPE_ENDPOINT;
d->ep_cmd.bEndpointAddress = info->ep_cmd;
d->ep_cmd.bmAttributes = USBD_EP_TYPE_INTR;
d->ep_cmd.wMaxPacketSize = info->max_cmd_packet_len;
d->ep_cmd.bInterval = info->polling_interval;
// Interface descriptor
d->iface_data.bLength = USB_LEN_IF_DESC;
d->iface_data.bDescriptorType = USB_DESC_TYPE_INTERFACE;
d->iface_data.bInterfaceNumber = info->data_iface_num;
d->iface_data.bAlternateSetting = 0x00;
d->iface_data.bNumEndpoints = 2;
d->iface_data.bInterfaceClass = 0x0A; // CDC
d->iface_data.bInterfaceSubClass = 0x00;
d->iface_data.bInterfaceProtocol = 0x00;
d->iface_data.iInterface = 0x00; // Index of string descriptor describing the interface
// OUT endpoint (receiving)
d->ep_out.bLength = USB_LEN_EP_DESC;
d->ep_out.bDescriptorType = USB_DESC_TYPE_ENDPOINT;
d->ep_out.bEndpointAddress = info->ep_out;
d->ep_out.bmAttributes = USBD_EP_TYPE_BULK;
d->ep_out.wMaxPacketSize = info->max_data_packet_len;
d->ep_out.bInterval = 0x00; // Ignored for bulk endpoints
// IN endpoint (sending)
d->ep_in.bLength = USB_LEN_EP_DESC;
d->ep_in.bDescriptorType = USB_DESC_TYPE_ENDPOINT;
d->ep_in.bEndpointAddress = info->ep_in;
d->ep_in.bmAttributes = USBD_EP_TYPE_BULK;
d->ep_in.wMaxPacketSize = info->max_data_packet_len;
d->ep_in.bInterval = 0x00; // Ignored for bulk endpoints
// Config descriptor
// TODO: do this in a clean way
usb_desc_add_iface(sizeof(usb_vcp_descriptor_block_t));
usb_config_desc->bNumInterfaces++;
// Interface state
iface->type = USB_IFACE_TYPE_VCP;
iface->vcp.data_iface_num = info->data_iface_num;
iface->vcp.ep_cmd = info->ep_cmd;
iface->vcp.ep_in = info->ep_in;
iface->vcp.ep_out = info->ep_out;
iface->vcp.max_cmd_packet_len = info->max_cmd_packet_len;
iface->vcp.max_data_packet_len = info->max_data_packet_len;
iface->vcp.desc_block = d;
return 0;
}
int usb_vcp_can_read(uint8_t iface_num) {
return 0;
}
int usb_vcp_can_write(uint8_t iface_num) {
usb_iface_t *iface = usb_get_iface(iface_num);
if (iface == NULL) {
return 0; // Invalid interface number
}
if (iface->type != USB_IFACE_TYPE_VCP) {
return 0; // Invalid interface type
}
if (iface->vcp.in_idle == 0) {
return 0; // Last transmission is not over yet
}
if (usb_dev_handle.dev_state != USBD_STATE_CONFIGURED) {
return 0; // Device is not configured
}
return 1;
}
int usb_vcp_read(uint8_t iface_num, uint8_t *buf, uint32_t len) {
usb_iface_t *iface = usb_get_iface(iface_num);
if (iface == NULL) {
return -1; // Invalid interface number
}
if (iface->type != USB_IFACE_TYPE_VCP) {
return -2; // Interface interface type
}
// usb_vcp_state_t *state = &iface->vcp;
// TODO
return 0;
}
int usb_vcp_write(uint8_t iface_num, const uint8_t *buf, uint32_t len) {
usb_iface_t *iface = usb_get_iface(iface_num);
if (iface == NULL) {
return -1; // Invalid interface number
}
if (iface->type != USB_IFACE_TYPE_VCP) {
return -2; // Interface interface type
}
usb_vcp_state_t *state = &iface->vcp;
if (!state->is_connected) {
return 0;
}
state->in_idle = 0;
USBD_LL_Transmit(&usb_dev_handle, state->ep_in, UNCONST(buf), (uint16_t)len);
return len;
}
int usb_vcp_read_blocking(uint8_t iface_num, uint8_t *buf, uint32_t len, uint32_t timeout) {
uint32_t start = HAL_GetTick();
while (!usb_vcp_can_read(iface_num)) {
if (HAL_GetTick() - start >= timeout) {
return 0; // Timeout
}
__WFI(); // Enter sleep mode, waiting for interrupt
}
return usb_vcp_read(iface_num, buf, len);
}
int usb_vcp_write_blocking(uint8_t iface_num, const uint8_t *buf, uint32_t len, uint32_t timeout) {
uint32_t start = HAL_GetTick();
while (!usb_vcp_can_write(iface_num)) {
if (HAL_GetTick() - start >= timeout) {
return 0; // Timeout
}
__WFI(); // Enter sleep mode, waiting for interrupt
}
return usb_vcp_write(iface_num, buf, len);
}
static int usb_vcp_class_init(USBD_HandleTypeDef *dev, usb_vcp_state_t *state, uint8_t cfg_idx) {
// Open endpoints
USBD_LL_OpenEP(dev, state->ep_in, USBD_EP_TYPE_BULK, state->max_data_packet_len);
USBD_LL_OpenEP(dev, state->ep_out, USBD_EP_TYPE_BULK, state->max_data_packet_len);
USBD_LL_OpenEP(dev, state->ep_cmd, USBD_EP_TYPE_INTR, state->max_cmd_packet_len);
// Reset the state
state->in_idle = 1;
// TODO
// Prepare the OUT EP to receive next packet
// USBD_LL_PrepareReceive(dev, state->ep_out, state->rx_buffer, state->max_data_packet_len);
return USBD_OK;
}
static int usb_vcp_class_deinit(USBD_HandleTypeDef *dev, usb_vcp_state_t *state, uint8_t cfg_idx) {
// Close endpoints
USBD_LL_CloseEP(dev, state->ep_in);
USBD_LL_CloseEP(dev, state->ep_out);
USBD_LL_CloseEP(dev, state->ep_cmd);
return USBD_OK;
}
static int usb_vcp_class_setup(USBD_HandleTypeDef *dev, usb_vcp_state_t *state, USBD_SetupReqTypedef *req) {
static const uint8_t line_coding[] = {
(uint8_t)(115200 >> 0),
(uint8_t)(115200 >> 8),
(uint8_t)(115200 >> 16),
(uint8_t)(115200 >> 24),
0, // Stop bits
0, // Parity
8, // Number of bits
};
switch (req->bmRequest & USB_REQ_TYPE_MASK) {
// Class request
case USB_REQ_TYPE_CLASS :
switch (req->bRequest) {
case USB_CDC_GET_LINE_CODING:
USBD_CtlSendData(dev, UNCONST(line_coding), sizeof(line_coding));
break;
case USB_CDC_SET_CONTROL_LINE_STATE:
state->is_connected = req->wLength & 1;
break;
}
break;
}
return USBD_OK;
}
static uint8_t usb_vcp_class_data_in(USBD_HandleTypeDef *dev, usb_vcp_state_t *state, uint8_t ep_num) {
if ((ep_num | USB_EP_DIR_IN) == state->ep_in) {
state->in_idle = 1;
}
return USBD_OK;
}
static uint8_t usb_vcp_class_data_out(USBD_HandleTypeDef *dev, usb_vcp_state_t *state, uint8_t ep_num) {
// TODO: process received data
return USBD_OK;
}