1
0
mirror of https://github.com/trezor/trezor-firmware.git synced 2025-01-21 21:00:58 +00:00
trezor-firmware/crypto/fuzzer/fuzzer.c

1619 lines
45 KiB
C

/**
* Copyright (c) 2020-2022 Christian Reitter
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES
* OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*/
#include <math.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
// includes for potential target functions
// based on test_check.c
#include "address.h"
#include "aes/aes.h"
#include "base32.h"
#include "base58.h"
#include "bignum.h"
#include "bip32.h"
#include "bip39.h"
#include "blake256.h"
#include "blake2b.h"
#include "blake2s.h"
#include "chacha_drbg.h"
#include "curves.h"
#include "ecdsa.h"
#include "ed25519-donna/ed25519-donna.h"
#include "ed25519-donna/ed25519-keccak.h"
#include "ed25519-donna/ed25519.h"
#include "hasher.h"
#include "hmac_drbg.h"
#include "memzero.h"
#include "monero/monero.h"
#include "nem.h"
#include "nist256p1.h"
#include "pbkdf2.h"
#include "rand.h"
#include "rc4.h"
#include "rfc6979.h"
#include "script.h"
#include "secp256k1.h"
#include "segwit_addr.h"
#include "sha2.h"
#include "sha3.h"
#include "shamir.h"
#include "slip39.h"
#include "slip39_wordlist.h"
#include "zkp_bip340.h"
#include "zkp_context.h"
#include "zkp_ecdsa.h"
#if defined(__has_feature)
#if __has_feature(memory_sanitizer)
#include <sanitizer/msan_interface.h>
#endif
#endif
#ifndef FUZZ_HONGGFUZZ
// Recent libFuzzer implementations support marking inputs as non-interesting
// via return -1; instead of the regular return 0;
// see
// https://github.com/llvm/llvm-project/commit/92fb310151d2b1e349695fc0f1c5d5d50afb3b52
#define FUZZ_MARK_UNINTERESTING -1
#else
// honggfuzz does not understand the special code
// use regular return code to avoid issues
#define FUZZ_MARK_UNINTERESTING 0
#endif
/* Code design notes
*
* By combining many individual function harnesses into one binary, a
* collection of target functions can be fuzzed collectively without handling
* dozens of individual binaries or corpus directories
* As a tradeoff, the fuzzing is expected to be less efficient due to
* statistically less successful input crossover or dictionary use
*
* If required, an exclusive target function can be picked at compile time
* for more narrow testing
*/
/* Code performance notes
*
* Use #define over runtime checks for performance reasons
* Avoid VLA arrays for performance reasons
* Potential performance drawbacks of heap usage are accepted for better out of
* bounds error detection
* Some expensive functions are hidden with compile-time switches
* Fuzzer harnesses are meant to exit early if the preconditions are not met
*/
/* Fuzzer input data handling */
const uint8_t *fuzzer_ptr;
size_t fuzzer_length;
const uint8_t *fuzzer_input(size_t len) {
if (fuzzer_length < len) {
fuzzer_length = 0;
return NULL;
}
const uint8_t *result = fuzzer_ptr;
fuzzer_length -= len;
fuzzer_ptr += len;
return result;
}
/* Fuzzer state handling */
void fuzzer_reset_state(void) {
// reset the PRNGs to make individual fuzzer runs deterministic
srand(0);
random_reseed(0);
// clear internal caches
// note: this is not strictly required for all fuzzer targets
#if USE_BIP32_CACHE
bip32_cache_clear();
#endif
#if USE_BIP39_CACHE
bip39_cache_clear();
#endif
}
__attribute__((noreturn)) void crash(void) {
// intentionally exit the program
// the fuzzer framework treats this as a crash
exit(1);
}
// IDEA are there advantages to turning this into a macro?
//
// check the memory area for memory information leaks if MSAN is available,
// crash if problems are detected
void check_msan(void *pointer, size_t length) {
#if defined(__has_feature)
#if __has_feature(memory_sanitizer)
// check `address` for memory info leakage
__msan_check_mem_is_initialized(pointer, length);
#else
// ignore if MSan is not enabled
(void)pointer;
(void)length;
#endif
#else
// ignore if the compiler does not know __has_feature()
(void)pointer;
(void)length;
#endif
}
// simplify the pointer check after a var_pointer = malloc()
// the return code marks the fuzz input as uninteresting for the fuzz engine
// warning: use only if no manual memory cleanup is needed
#define RETURN_IF_NULL(var_pointer) \
if (var_pointer == NULL) { \
return FUZZ_MARK_UNINTERESTING; \
}
void zkp_initialize_context_or_crash(void) {
// The current context usage has persistent side effects
// TODO switch to frequent re-initialization where necessary
if (!zkp_context_is_initialized()) {
if (zkp_context_init() != 0) {
crash();
}
}
}
/* Individual fuzzer harness functions */
int fuzz_bn_format(void) {
bignum256 target_bignum;
// we need some amount of initial data
if (fuzzer_length < sizeof(target_bignum) + 1 + 1) {
return FUZZ_MARK_UNINTERESTING;
}
#define FUZZ_BN_FORMAT_OUTPUT_BUFFER_SIZE 512
char buf[FUZZ_BN_FORMAT_OUTPUT_BUFFER_SIZE] = {0};
int ret = 0;
// mutate the struct contents
memcpy(&target_bignum, fuzzer_input(sizeof(target_bignum)),
sizeof(target_bignum));
uint8_t prefixlen = 0;
uint8_t suffixlen = 0;
uint32_t decimals = 0;
int32_t exponent = 0;
bool trailing = false;
// range 1 to 128
prefixlen = (fuzzer_input(1)[0] & 127) + 1;
suffixlen = (fuzzer_input(1)[0] & 127) + 1;
// check for the second half of the data
if (fuzzer_length < (size_t)(prefixlen + suffixlen + 4 + 4 + 1 - 2)) {
return FUZZ_MARK_UNINTERESTING;
}
memcpy(&decimals, fuzzer_input(4), 4);
memcpy(&exponent, fuzzer_input(4), 4);
trailing = (fuzzer_input(1)[0] & 1);
// IDEA allow prefix == NULL
char *prefix = malloc(prefixlen);
RETURN_IF_NULL(prefix);
// IDEA allow suffix == NULL
char *suffix = malloc(suffixlen);
if (suffix == NULL) {
free(prefix);
return FUZZ_MARK_UNINTERESTING;
}
memset(prefix, 0, prefixlen);
memset(suffix, 0, suffixlen);
// only fetch up to (length - 1) to ensure null termination together with the
// memset
memcpy(prefix, fuzzer_input(prefixlen - 1), prefixlen - 1);
memcpy(suffix, fuzzer_input(suffixlen - 1), suffixlen - 1);
ret = bn_format(&target_bignum, prefix, suffix, decimals, exponent, trailing,
0, buf, FUZZ_BN_FORMAT_OUTPUT_BUFFER_SIZE);
// basic sanity checks for the return values
if (ret > FUZZ_BN_FORMAT_OUTPUT_BUFFER_SIZE) {
crash();
}
check_msan(&buf, FUZZ_BN_FORMAT_OUTPUT_BUFFER_SIZE);
free(prefix);
free(suffix);
return 0;
}
// arbitrarily chosen maximum size
#define BASE32_DECODE_MAX_INPUT_LEN 512
int fuzz_base32_decode(void) {
if (fuzzer_length < 2 || fuzzer_length > BASE32_DECODE_MAX_INPUT_LEN) {
return FUZZ_MARK_UNINTERESTING;
}
char *in_buffer = malloc(fuzzer_length);
RETURN_IF_NULL(in_buffer);
// basic heuristic: the decoded output will always fit in less or equal space
uint8_t *out_buffer = malloc(fuzzer_length);
if (out_buffer == NULL) {
free(in_buffer);
return FUZZ_MARK_UNINTERESTING;
}
size_t outlen = fuzzer_length;
size_t raw_inlen = fuzzer_length;
memcpy(in_buffer, fuzzer_input(raw_inlen), raw_inlen);
// null-terminate input buffer to prevent issues with strlen()
in_buffer[raw_inlen - 1] = 0;
uint8_t *ret = base32_decode(in_buffer, raw_inlen, out_buffer, outlen,
BASE32_ALPHABET_RFC4648);
if (ret != NULL) {
check_msan(out_buffer, outlen);
}
free(in_buffer);
free(out_buffer);
return 0;
}
// arbitrarily chosen maximum size
#define BASE32_ENCODE_MAX_INPUT_LEN 512
int fuzz_base32_encode(void) {
if (fuzzer_length > BASE32_ENCODE_MAX_INPUT_LEN) {
return FUZZ_MARK_UNINTERESTING;
}
uint8_t *in_buffer = malloc(fuzzer_length);
RETURN_IF_NULL(in_buffer);
// TODO: find a better heuristic for output buffer size
size_t outlen = 2 * fuzzer_length;
char *out_buffer = malloc(outlen);
if (out_buffer == NULL) {
free(in_buffer);
return FUZZ_MARK_UNINTERESTING;
}
// mutate in_buffer
size_t raw_inlen = fuzzer_length;
memcpy(in_buffer, fuzzer_ptr, raw_inlen);
fuzzer_input(raw_inlen);
char *ret = base32_encode(in_buffer, raw_inlen, out_buffer, outlen,
BASE32_ALPHABET_RFC4648);
if (ret != NULL) {
// the return value is a pointer to the end of the written buffer,
// use it to calculate the used buffer area
check_msan(out_buffer, ret - out_buffer);
}
free(in_buffer);
free(out_buffer);
return 0;
}
// internal limit is 128, try some extra bytes
#define BASE58_ENCODE_MAX_INPUT_LEN 140
int fuzz_base58_encode_check(void) {
if (fuzzer_length > BASE58_ENCODE_MAX_INPUT_LEN) {
return FUZZ_MARK_UNINTERESTING;
}
uint8_t *in_buffer = malloc(fuzzer_length);
RETURN_IF_NULL(in_buffer);
// TODO: find a better heuristic for output buffer size
size_t outlen = 2 * fuzzer_length;
char *out_buffer = malloc(outlen);
if (out_buffer == NULL) {
free(in_buffer);
return FUZZ_MARK_UNINTERESTING;
}
// mutate in_buffer
size_t raw_inlen = fuzzer_length;
memcpy(in_buffer, fuzzer_input(raw_inlen), raw_inlen);
int ret = 0;
// run multiple hasher variants for the same input
base58_encode_check(in_buffer, raw_inlen, HASHER_SHA2D, out_buffer, outlen);
base58_encode_check(in_buffer, raw_inlen, HASHER_BLAKED, out_buffer, outlen);
base58_encode_check(in_buffer, raw_inlen, HASHER_GROESTLD_TRUNC, out_buffer,
outlen);
ret = base58_encode_check(in_buffer, raw_inlen, HASHER_SHA3K, out_buffer,
outlen);
// check one of the encode results
if (ret != 0) {
// the return value describes how many characters are written
check_msan(out_buffer, ret);
}
free(in_buffer);
free(out_buffer);
return 0;
}
// internal limit is 128, try some extra bytes
#define BASE58_DECODE_MAX_INPUT_LEN 140
int fuzz_base58_decode_check(void) {
if (fuzzer_length > BASE58_DECODE_MAX_INPUT_LEN) {
return FUZZ_MARK_UNINTERESTING;
}
uint8_t *in_buffer = malloc(fuzzer_length + 1);
RETURN_IF_NULL(in_buffer);
size_t raw_inlen = fuzzer_length;
memcpy(in_buffer, fuzzer_input(raw_inlen), raw_inlen);
uint8_t out_buffer[MAX_ADDR_RAW_SIZE] = {0};
// force null-termination
in_buffer[raw_inlen] = 0;
const char *in_char = (const char *)in_buffer;
// run multiple hasher variants for the same input
base58_decode_check(in_char, HASHER_SHA2D, out_buffer, MAX_ADDR_RAW_SIZE);
base58_decode_check(in_char, HASHER_BLAKED, out_buffer, MAX_ADDR_RAW_SIZE);
base58_decode_check(in_char, HASHER_GROESTLD_TRUNC, out_buffer,
MAX_ADDR_RAW_SIZE);
base58_decode_check(in_char, HASHER_SHA3K, out_buffer, MAX_ADDR_RAW_SIZE);
check_msan(out_buffer, MAX_ADDR_RAW_SIZE);
free(in_buffer);
return 0;
}
// arbitrarily chosen maximum size meant to limit input complexity
// there is no input size limit for the target function
#define XMR_BASE58_ADDR_DECODE_MAX_INPUT_LEN 512
int fuzz_xmr_base58_addr_decode_check(void) {
if (fuzzer_length > XMR_BASE58_ADDR_DECODE_MAX_INPUT_LEN) {
return FUZZ_MARK_UNINTERESTING;
}
// TODO no null termination used !?
// TODO use better size heuristic
size_t outlen = fuzzer_length;
char *in_buffer = malloc(fuzzer_length);
RETURN_IF_NULL(in_buffer);
uint8_t *out_buffer = malloc(outlen);
if (out_buffer == NULL) {
free(in_buffer);
return FUZZ_MARK_UNINTERESTING;
}
// tag is only written to
uint64_t tag = 0;
size_t raw_inlen = fuzzer_length;
// mutate in_buffer
memcpy(in_buffer, fuzzer_input(raw_inlen), raw_inlen);
int ret = xmr_base58_addr_decode_check(in_buffer, raw_inlen, &tag, out_buffer,
outlen);
// IDEA check tag for expected values?
// IDEA re-encode valid decoding results to check function consistency?
if (ret != 0) {
check_msan(out_buffer, outlen);
}
free(in_buffer);
free(out_buffer);
return 0;
}
// arbitrarily chosen maximum size
#define XMR_BASE58_DECODE_MAX_INPUT_LEN 512
// a more focused variant of the xmr_base58_addr_decode_check() harness
int fuzz_xmr_base58_decode(void) {
if (fuzzer_length > XMR_BASE58_DECODE_MAX_INPUT_LEN) {
return FUZZ_MARK_UNINTERESTING;
}
// TODO better size heuristic
size_t outlen = fuzzer_length;
char *in_buffer = malloc(fuzzer_length);
RETURN_IF_NULL(in_buffer);
uint8_t *out_buffer = malloc(outlen);
if (out_buffer == NULL) {
free(in_buffer);
return FUZZ_MARK_UNINTERESTING;
}
memset(out_buffer, 0, outlen);
// mutate in_buffer
size_t raw_inlen = fuzzer_length;
memcpy(in_buffer, fuzzer_input(raw_inlen), raw_inlen);
xmr_base58_decode(in_buffer, raw_inlen, out_buffer, &outlen);
free(in_buffer);
free(out_buffer);
return 0;
}
// arbitrarily chosen maximum size
#define XMR_BASE58_ADDR_ENCODE_MAX_INPUT_LEN 140
int fuzz_xmr_base58_addr_encode_check(void) {
// tag_in is internally limited
uint8_t tag_in;
int ret1 = 0;
size_t tag_size = sizeof(tag_in);
if (fuzzer_length < tag_size + 1 ||
fuzzer_length > XMR_BASE58_ADDR_ENCODE_MAX_INPUT_LEN) {
return FUZZ_MARK_UNINTERESTING;
}
// mutate tag_in
memcpy(&tag_in, fuzzer_input(tag_size), tag_size);
// TODO better size heuristic
size_t outlen = fuzzer_length * 2;
uint8_t *in_buffer = malloc(fuzzer_length);
RETURN_IF_NULL(in_buffer);
char *out_buffer = malloc(outlen);
if (out_buffer == NULL) {
free(in_buffer);
return FUZZ_MARK_UNINTERESTING;
}
memset(out_buffer, 0, outlen);
// mutate in_buffer
size_t raw_inlen = fuzzer_length;
memcpy(in_buffer, fuzzer_input(raw_inlen), raw_inlen);
ret1 = xmr_base58_addr_encode_check(tag_in, in_buffer, raw_inlen, out_buffer,
outlen);
if (ret1 != 0) {
// encoding successful
uint64_t second_tag = 0;
// TODO improve length
uint8_t dummy_buffer[XMR_BASE58_ADDR_ENCODE_MAX_INPUT_LEN] = {0};
int ret2 = 0;
// ret1 represents the actual length of the encoded string
// this is important for the decode function to succeed
ret2 = xmr_base58_addr_decode_check(out_buffer, ret1, &second_tag,
dummy_buffer, sizeof(dummy_buffer));
// the tag comparison is between unequal types, but this is acceptable here
if (ret2 == 0 || tag_in != second_tag) {
crash();
}
}
free(in_buffer);
free(out_buffer);
return 0;
}
// arbitrarily chosen maximum size
#define XMR_BASE58_ENCODE_MAX_INPUT_LEN 512
// a more focused variant of the xmr_base58_addr_encode_check() harness
int fuzz_xmr_base58_encode(void) {
if (fuzzer_length > XMR_BASE58_ENCODE_MAX_INPUT_LEN) {
return FUZZ_MARK_UNINTERESTING;
}
// TODO better size heuristic
size_t outlen = fuzzer_length * 2;
uint8_t *in_buffer = malloc(fuzzer_length);
RETURN_IF_NULL(in_buffer);
char *out_buffer = malloc(outlen);
if (out_buffer == NULL) {
free(in_buffer);
return FUZZ_MARK_UNINTERESTING;
}
memset(out_buffer, 0, outlen);
// mutate in_buffer
size_t raw_inlen = fuzzer_length;
memcpy(in_buffer, fuzzer_input(raw_inlen), raw_inlen);
xmr_base58_encode(out_buffer, &outlen, in_buffer, raw_inlen);
free(in_buffer);
free(out_buffer);
return 0;
}
int fuzz_xmr_serialize_varint(void) {
// arbitrarily chosen maximum size
#define XMR_SERIALIZE_VARINT_MAX_INPUT_LEN 128
uint64_t varint_in;
size_t varint_in_size = sizeof(varint_in);
if (fuzzer_length <= varint_in_size ||
fuzzer_length > XMR_SERIALIZE_VARINT_MAX_INPUT_LEN) {
return FUZZ_MARK_UNINTERESTING;
}
uint8_t out_buffer[XMR_SERIALIZE_VARINT_MAX_INPUT_LEN] = {0};
size_t outlen = sizeof(out_buffer);
uint64_t varint_out = 0;
// mutate varint_in
memcpy(&varint_in, fuzzer_input(varint_in_size), varint_in_size);
// mutate in_buffer
size_t raw_inlen = fuzzer_length;
uint8_t *in_buffer = malloc(raw_inlen);
RETURN_IF_NULL(in_buffer);
memcpy(in_buffer, fuzzer_input(raw_inlen), raw_inlen);
// use the varint
xmr_size_varint(varint_in);
xmr_write_varint(out_buffer, outlen, varint_in);
// use the input buffer
xmr_read_varint(in_buffer, raw_inlen, &varint_out);
// IDEA cross-check write/read results
free(in_buffer);
return 0;
}
// arbitrarily chosen maximum size
#define NEM_VALIDATE_ADDRESS_MAX_INPUT_LEN 128
int fuzz_nem_validate_address(void) {
if (fuzzer_length < 1 || fuzzer_length > NEM_VALIDATE_ADDRESS_MAX_INPUT_LEN) {
return FUZZ_MARK_UNINTERESTING;
}
uint8_t network = fuzzer_input(1)[0];
size_t raw_inlen = fuzzer_length + 1;
char *in_buffer = malloc(raw_inlen);
RETURN_IF_NULL(in_buffer);
// mutate the buffer
memcpy(in_buffer, fuzzer_input(raw_inlen - 1), raw_inlen - 1);
// force null-termination
in_buffer[raw_inlen - 1] = 0;
nem_validate_address(in_buffer, network);
free(in_buffer);
return 0;
}
int fuzz_nem_get_address(void) {
unsigned char ed25519_public_key_fuzz[32] = {0};
uint8_t version = 0;
// TODO switch to < comparison?
if (fuzzer_length != (sizeof(ed25519_public_key_fuzz) + sizeof(version))) {
return FUZZ_MARK_UNINTERESTING;
}
char address[NEM_ADDRESS_SIZE + 1] = {0};
memcpy(ed25519_public_key_fuzz, fuzzer_input(sizeof(ed25519_public_key_fuzz)),
sizeof(ed25519_public_key_fuzz));
memcpy(&version, fuzzer_input(sizeof(version)), sizeof(version));
nem_get_address(ed25519_public_key_fuzz, version, address);
check_msan(&address, sizeof(address));
return 0;
}
int fuzz_xmr_get_subaddress_secret_key(void) {
bignum256modm m = {0};
uint32_t major = 0;
uint32_t minor = 0;
if (fuzzer_length != (sizeof(bignum256modm) + 2 * sizeof(uint32_t))) {
return FUZZ_MARK_UNINTERESTING;
}
bignum256modm output = {0};
memcpy(m, fuzzer_input(sizeof(bignum256modm)), sizeof(bignum256modm));
memcpy(&major, fuzzer_input(sizeof(uint32_t)), sizeof(uint32_t));
memcpy(&minor, fuzzer_input(sizeof(uint32_t)), sizeof(uint32_t));
xmr_get_subaddress_secret_key(output, major, minor, m);
check_msan(&output, sizeof(output));
return 0;
}
int fuzz_xmr_derive_private_key(void) {
bignum256modm base = {0};
ge25519 deriv = {0};
uint32_t idx = 0;
if (fuzzer_length !=
(sizeof(bignum256modm) + sizeof(ge25519) + sizeof(uint32_t))) {
return FUZZ_MARK_UNINTERESTING;
}
memcpy(base, fuzzer_input(sizeof(bignum256modm)), sizeof(bignum256modm));
memcpy(&deriv, fuzzer_input(sizeof(ge25519)), sizeof(ge25519));
memcpy(&idx, fuzzer_input(sizeof(uint32_t)), sizeof(uint32_t));
bignum256modm output = {0};
xmr_derive_private_key(output, &deriv, idx, base);
check_msan(&output, sizeof(output));
return 0;
}
int fuzz_xmr_derive_public_key(void) {
ge25519 base = {0};
ge25519 deriv = {0};
uint32_t idx = 0;
if (fuzzer_length != (2 * sizeof(ge25519) + sizeof(uint32_t))) {
return FUZZ_MARK_UNINTERESTING;
}
memcpy(&base, fuzzer_input(sizeof(ge25519)), sizeof(ge25519));
memcpy(&deriv, fuzzer_input(sizeof(ge25519)), sizeof(ge25519));
memcpy(&idx, fuzzer_input(sizeof(uint32_t)), sizeof(uint32_t));
ge25519 output = {0};
xmr_derive_public_key(&output, &deriv, idx, &base);
check_msan(&output, sizeof(output));
return 0;
}
#define SHAMIR_MAX_SHARE_COUNT 16
#define SHAMIR_MAX_DATA_LEN (SHAMIR_MAX_SHARE_COUNT * SHAMIR_MAX_LEN)
int fuzz_shamir_interpolate(void) {
if (fuzzer_length != (2 * sizeof(uint8_t) + SHAMIR_MAX_SHARE_COUNT +
SHAMIR_MAX_DATA_LEN + sizeof(size_t))) {
return FUZZ_MARK_UNINTERESTING;
}
uint8_t result[SHAMIR_MAX_LEN] = {0};
uint8_t result_index = 0;
uint8_t share_indices[SHAMIR_MAX_SHARE_COUNT] = {0};
uint8_t share_values_content[SHAMIR_MAX_SHARE_COUNT][SHAMIR_MAX_LEN] = {0};
const uint8_t *share_values[SHAMIR_MAX_SHARE_COUNT] = {0};
uint8_t share_count = 0;
size_t len = 0;
for (size_t i = 0; i < SHAMIR_MAX_SHARE_COUNT; i++) {
share_values[i] = share_values_content[i];
}
memcpy(&result_index, fuzzer_input(sizeof(uint8_t)), sizeof(uint8_t));
memcpy(&share_indices, fuzzer_input(SHAMIR_MAX_SHARE_COUNT),
SHAMIR_MAX_SHARE_COUNT);
memcpy(&share_values_content, fuzzer_input(SHAMIR_MAX_DATA_LEN),
SHAMIR_MAX_DATA_LEN);
memcpy(&share_count, fuzzer_input(sizeof(uint8_t)), sizeof(uint8_t));
// note: this is platform specific via byte length of size_t
memcpy(&len, fuzzer_input(sizeof(size_t)), sizeof(size_t));
// mirror a check that the real code does
if (share_count < 1 || share_count > SHAMIR_MAX_SHARE_COUNT) {
return 0;
}
// (len > SHAMIR_MAX_LEN) is handled in the target function
shamir_interpolate(result, result_index, share_indices, share_values,
share_count, len);
check_msan(&result, sizeof(result));
return 0;
}
int fuzz_ecdsa_sign_digest_functions(void) {
// bug result reference: https://github.com/trezor/trezor-firmware/pull/1697
uint8_t curve_decider = 0;
uint8_t priv_key[32] = {0};
uint8_t digest[32] = {0};
uint8_t sig1[64] = {0};
uint8_t sig2[64] = {0};
uint8_t pby1, pby2 = 0;
if (fuzzer_length < 1 + sizeof(priv_key) + sizeof(digest)) {
return FUZZ_MARK_UNINTERESTING;
}
const ecdsa_curve *curve;
memcpy(&curve_decider, fuzzer_input(1), 1);
memcpy(&priv_key, fuzzer_input(sizeof(priv_key)), sizeof(priv_key));
memcpy(&digest, fuzzer_input(sizeof(digest)), sizeof(digest));
// pick one of the standard curves
if ((curve_decider & 0x1) == 1) {
curve = &secp256k1;
} else {
curve = &nist256p1;
}
int res = 0;
// IDEA optionally set a function for is_canonical() callback
int res1 = ecdsa_sign_digest(curve, priv_key, digest, sig1, &pby1, NULL);
// the zkp function variant is only defined for a specific curve
if (curve == &secp256k1) {
int res2 =
zkp_ecdsa_sign_digest(curve, priv_key, digest, sig2, &pby2, NULL);
if ((res1 == 0 && res2 != 0) || (res1 != 0 && res2 == 0)) {
// one variant succeeded where the other did not
crash();
}
if (res1 == 0 && res2 == 0) {
if ((pby1 != pby2) || memcmp(&sig1, &sig2, sizeof(sig1)) != 0) {
// result values are different
crash();
}
}
}
// successful signing
if (res1 == 0) {
uint8_t pub_key[33] = {0};
res = ecdsa_get_public_key33(curve, priv_key, pub_key);
if (res != 0) {
// pubkey derivation did not succeed
crash();
}
res = ecdsa_verify_digest(curve, pub_key, sig1, digest);
if (res != 0) {
// verification did not succeed
crash();
}
}
return 0;
}
int fuzz_ecdsa_verify_digest_functions(void) {
uint8_t curve_decider = 0;
uint8_t hash[32] = {0};
uint8_t sig[64] = {0};
uint8_t pub_key[65] = {0};
if (fuzzer_length < 1 + sizeof(hash) + sizeof(sig) + sizeof(pub_key)) {
return FUZZ_MARK_UNINTERESTING;
}
memcpy(&curve_decider, fuzzer_input(1), 1);
memcpy(&hash, fuzzer_input(sizeof(hash)), sizeof(hash));
memcpy(&sig, fuzzer_input(sizeof(sig)), sizeof(sig));
memcpy(&pub_key, fuzzer_input(sizeof(pub_key)), sizeof(pub_key));
const ecdsa_curve *curve;
// pick one of the standard curves
if ((curve_decider & 0x1) == 1) {
curve = &secp256k1;
} else {
curve = &nist256p1;
}
int res1 = ecdsa_verify_digest(curve, (const uint8_t *)&pub_key,
(const uint8_t *)&sig, (const uint8_t *)&hash);
// the zkp_ecdsa* function only accepts the secp256k1 curve
if (curve == &secp256k1) {
int res2 =
zkp_ecdsa_verify_digest(curve, (const uint8_t *)&pub_key,
(const uint8_t *)&sig, (const uint8_t *)&hash);
// the error code behavior is different between both functions, compare only
// verification state
if ((res1 == 0 && res2 != 0) || (res1 != 0 && res2 == 0)) {
// results differ, this is a problem
crash();
}
}
return 0;
}
int fuzz_word_index(void) {
#define MAX_WORD_LENGTH 12
if (fuzzer_length < MAX_WORD_LENGTH) {
return FUZZ_MARK_UNINTERESTING;
}
char word[MAX_WORD_LENGTH + 1] = {0};
memcpy(&word, fuzzer_ptr, MAX_WORD_LENGTH);
size_t word_length = strlen(word);
uint16_t index = 0;
word_index(&index, (const char *)&word, word_length);
return 0;
}
int fuzz_slip39_word_completion_mask(void) {
if (fuzzer_length != 2) {
return FUZZ_MARK_UNINTERESTING;
}
uint16_t sequence = (fuzzer_ptr[0] << 8) + fuzzer_ptr[1];
fuzzer_input(2);
slip39_word_completion_mask(sequence);
return 0;
}
// regular MAX_MNEMONIC_LEN is 240, try some extra bytes
#define MAX_MNEMONIC_FUZZ_LENGTH 256
int fuzz_mnemonic_check(void) {
if (fuzzer_length < MAX_MNEMONIC_FUZZ_LENGTH) {
return FUZZ_MARK_UNINTERESTING;
}
char mnemonic[MAX_MNEMONIC_FUZZ_LENGTH + 1] = {0};
memcpy(&mnemonic, fuzzer_ptr, MAX_MNEMONIC_FUZZ_LENGTH);
// at the time of creation of this fuzzer harness, mnemonic_check()
// internally calls mnemonic_to_bits() while checking the result
int ret = mnemonic_check(mnemonic);
(void)ret;
/*
if(ret == 1) {
// correct result
}
*/
return 0;
}
int fuzz_mnemonic_from_data(void) {
if (fuzzer_length < 16 || fuzzer_length > 32) {
return FUZZ_MARK_UNINTERESTING;
}
const char *mnemo_result = mnemonic_from_data(fuzzer_ptr, fuzzer_length);
if (mnemo_result != NULL) {
int res = mnemonic_check(mnemo_result);
if (res == 0) {
// TODO the mnemonic_check() function is currently incorrectly rejecting
// valid 15 and 21 word seeds
// remove this workaround limitation later
if (fuzzer_length != 20 && fuzzer_length != 28) {
// the generated mnemonic has an invalid format
crash();
}
}
}
// scrub the internal buffer to rule out persistent side effects
mnemonic_clear();
return 0;
}
// passphrase normally has a 64 or 256 byte length maximum
#define MAX_PASSPHRASE_FUZZ_LENGTH 257
int fuzz_mnemonic_to_seed(void) {
if (fuzzer_length < MAX_MNEMONIC_FUZZ_LENGTH + MAX_PASSPHRASE_FUZZ_LENGTH) {
return FUZZ_MARK_UNINTERESTING;
}
char mnemonic[MAX_PASSPHRASE_FUZZ_LENGTH + 1] = {0};
char passphrase[MAX_MNEMONIC_FUZZ_LENGTH + 1] = {0};
uint8_t seed[512 / 8] = {0};
memcpy(&mnemonic, fuzzer_input(MAX_MNEMONIC_FUZZ_LENGTH),
MAX_MNEMONIC_FUZZ_LENGTH);
memcpy(&passphrase, fuzzer_input(MAX_PASSPHRASE_FUZZ_LENGTH),
MAX_PASSPHRASE_FUZZ_LENGTH);
mnemonic_to_seed(mnemonic, passphrase, seed, NULL);
return 0;
}
int fuzz_ethereum_address_checksum(void) {
uint8_t addr[20] = {0};
char address[43] = {0};
uint64_t chain_id = 0;
bool rskip60 = false;
if (fuzzer_length < sizeof(addr) + sizeof(address) + sizeof(chain_id) + 1) {
return FUZZ_MARK_UNINTERESTING;
}
memcpy(addr, fuzzer_input(sizeof(addr)), sizeof(addr));
memcpy(address, fuzzer_input(sizeof(address)), sizeof(address));
memcpy(&chain_id, fuzzer_input(sizeof(chain_id)), sizeof(chain_id));
// usually dependent on chain_id, but determined separately here
rskip60 = (*fuzzer_input(1)) & 0x1;
ethereum_address_checksum(addr, address, rskip60, chain_id);
return 0;
}
int fuzz_aes(void) {
if (fuzzer_length < 1 + 16 + 16 + 32) {
return FUZZ_MARK_UNINTERESTING;
}
aes_encrypt_ctx ctxe;
aes_decrypt_ctx ctxd;
uint8_t ibuf[16] = {0};
uint8_t obuf[16] = {0};
uint8_t iv[16] = {0};
uint8_t cbuf[16] = {0};
const uint8_t *keylength_decider = fuzzer_input(1);
// note: the unit test uses the fixed 32 byte key
// 603deb1015ca71be2b73aef0857d77811f352c073b6108d72d9810a30914dff4
uint8_t keybuf[32] = {0};
memcpy(&keybuf, fuzzer_input(32), 32);
#ifdef AES_VAR
// try 128, 192, 256 bit key lengths
size_t keylength = 32;
switch (keylength_decider[0] & 0x3) {
case 0:
// invalid length
keylength = 1;
break;
case 1:
keylength = 16;
break;
case 2:
keylength = 24;
break;
case 3:
keylength = 32;
break;
}
if (aes_encrypt_key((const unsigned char *)&keybuf, keylength, &ctxe) ||
aes_decrypt_key((const unsigned char *)&keybuf, keylength, &ctxd)) {
// initialization problems, stop processing
// we expect this to happen with the invalid key length
return 0;
}
#else
// use a 256 bit key length
(void)keylength_decider;
aes_encrypt_key256((const unsigned char *)&keybuf, &ctxe);
aes_decrypt_key256((const unsigned char *)&keybuf, &ctxd);
#endif
memcpy(ibuf, fuzzer_input(16), 16);
memcpy(iv, fuzzer_input(16), 16);
aes_ecb_encrypt(ibuf, obuf, 16, &ctxe);
aes_ecb_decrypt(ibuf, obuf, 16, &ctxd);
aes_cbc_encrypt(ibuf, obuf, 16, iv, &ctxe);
aes_cbc_decrypt(ibuf, obuf, 16, iv, &ctxd);
aes_cfb_encrypt(ibuf, obuf, 16, iv, &ctxe);
aes_cfb_decrypt(ibuf, obuf, 16, iv, &ctxe);
aes_ofb_encrypt(ibuf, obuf, 16, iv, &ctxe);
aes_ofb_decrypt(ibuf, obuf, 16, iv, &ctxe);
aes_ctr_encrypt(ibuf, obuf, 16, cbuf, aes_ctr_cbuf_inc, &ctxe);
aes_ctr_decrypt(ibuf, obuf, 16, cbuf, aes_ctr_cbuf_inc, &ctxe);
return 0;
}
int fuzz_chacha_drbg(void) {
#define CHACHA_DRBG_ENTROPY_LENGTH 32
#define CHACHA_DRBG_RESEED_LENGTH 32
#define CHACHA_DRBG_NONCE_LENGTH 16
#define CHACHA_DRBG_RESULT_LENGTH 16
if (fuzzer_length < CHACHA_DRBG_ENTROPY_LENGTH + CHACHA_DRBG_RESEED_LENGTH +
CHACHA_DRBG_NONCE_LENGTH) {
return FUZZ_MARK_UNINTERESTING;
}
uint8_t entropy[CHACHA_DRBG_ENTROPY_LENGTH] = {0};
uint8_t reseed[CHACHA_DRBG_RESEED_LENGTH] = {0};
uint8_t nonce_bytes[CHACHA_DRBG_NONCE_LENGTH] = {0};
uint8_t result[CHACHA_DRBG_RESULT_LENGTH] = {0};
CHACHA_DRBG_CTX ctx;
// IDEA switch to variable input sizes
memcpy(&entropy, fuzzer_input(CHACHA_DRBG_ENTROPY_LENGTH),
CHACHA_DRBG_ENTROPY_LENGTH);
memcpy(&reseed, fuzzer_input(CHACHA_DRBG_RESEED_LENGTH),
CHACHA_DRBG_RESEED_LENGTH);
memcpy(&nonce_bytes, fuzzer_input(CHACHA_DRBG_NONCE_LENGTH),
CHACHA_DRBG_NONCE_LENGTH);
chacha_drbg_init(&ctx, entropy, sizeof(entropy), nonce_bytes,
sizeof(nonce_bytes));
chacha_drbg_reseed(&ctx, reseed, sizeof(reseed), NULL, 0);
chacha_drbg_generate(&ctx, result, sizeof(result));
return 0;
}
int fuzz_ed25519_sign_verify(void) {
ed25519_secret_key secret_key;
ed25519_signature signature;
ed25519_public_key public_key;
// length chosen arbitrarily
uint8_t message[32] = {0};
int ret = 0;
if (fuzzer_length <
sizeof(secret_key) + sizeof(signature) + sizeof(message)) {
return FUZZ_MARK_UNINTERESTING;
}
memcpy(&secret_key, fuzzer_input(sizeof(secret_key)), sizeof(secret_key));
memcpy(&signature, fuzzer_input(sizeof(signature)), sizeof(signature));
memcpy(&message, fuzzer_input(sizeof(message)), sizeof(message));
ed25519_publickey(secret_key, public_key);
// sign message, this should always succeed
ed25519_sign(message, sizeof(message), secret_key, signature);
// verify message, we expect this to work
ret = ed25519_sign_open(message, sizeof(message), public_key, signature);
if (ret != 0) {
// verification did not succeed
crash();
}
return 0;
}
int fuzz_zkp_bip340_sign_digest(void) {
uint8_t priv_key[32] = {0};
uint8_t aux_input[32] = {0};
uint8_t digest[32] = {0};
uint8_t pub_key[32] = {0};
uint8_t sig[64] = {0};
if (fuzzer_length <
sizeof(priv_key) + sizeof(aux_input) + sizeof(digest) + sizeof(sig)) {
return FUZZ_MARK_UNINTERESTING;
}
memcpy(priv_key, fuzzer_input(sizeof(priv_key)), sizeof(priv_key));
memcpy(digest, fuzzer_input(sizeof(digest)), sizeof(digest));
// TODO leave initialized to 0x0?
memcpy(aux_input, fuzzer_input(sizeof(aux_input)), sizeof(aux_input));
// TODO leave initialized to 0x0?
memcpy(sig, fuzzer_input(sizeof(sig)), sizeof(sig));
zkp_bip340_get_public_key(priv_key, pub_key);
check_msan(&pub_key, sizeof(pub_key));
zkp_bip340_sign_digest(priv_key, digest, sig, aux_input);
check_msan(&sig, sizeof(sig));
check_msan(&aux_input, sizeof(aux_input));
// IDEA test sign result?
return 0;
}
int fuzz_zkp_bip340_verify_digest(void) {
int res = 0;
uint8_t pub_key[32] = {0};
uint8_t digest[32] = {0};
uint8_t sig[64] = {0};
if (fuzzer_length < sizeof(digest) + sizeof(pub_key) + sizeof(sig)) {
return FUZZ_MARK_UNINTERESTING;
}
memcpy(pub_key, fuzzer_input(sizeof(pub_key)), sizeof(pub_key));
memcpy(digest, fuzzer_input(sizeof(digest)), sizeof(digest));
memcpy(sig, fuzzer_input(sizeof(sig)), sizeof(sig));
res = zkp_bip340_verify_digest(pub_key, sig, digest);
(void)res;
return 0;
}
int fuzz_zkp_bip340_tweak_keys(void) {
uint8_t internal_priv[32] = {0};
uint8_t root_hash[32] = {0};
uint8_t internal_pub[32] = {0};
uint8_t result[32] = {0};
if (fuzzer_length <
sizeof(internal_priv) + sizeof(root_hash) + sizeof(internal_pub)) {
return FUZZ_MARK_UNINTERESTING;
}
memcpy(internal_priv, fuzzer_input(sizeof(internal_priv)),
sizeof(internal_priv));
memcpy(root_hash, fuzzer_input(sizeof(root_hash)), sizeof(root_hash));
memcpy(internal_pub, fuzzer_input(sizeof(internal_pub)),
sizeof(internal_pub));
// IDEA act on return values
zkp_bip340_tweak_private_key(internal_priv, root_hash, result);
zkp_bip340_tweak_public_key(internal_pub, root_hash, result);
return 0;
}
int fuzz_ecdsa_get_public_key_functions(void) {
uint8_t privkey[32] = {0};
uint8_t pubkey33_1[33] = {0};
uint8_t pubkey33_2[33] = {0};
uint8_t pubkey65_1[65] = {0};
uint8_t pubkey65_2[65] = {0};
// note: the zkp_ecdsa_* variants require this specific curve
const ecdsa_curve *curve = &secp256k1;
if (fuzzer_length < sizeof(privkey)) {
return FUZZ_MARK_UNINTERESTING;
}
memcpy(privkey, fuzzer_input(sizeof(privkey)), sizeof(privkey));
int res_33_1 = ecdsa_get_public_key33(curve, privkey, pubkey33_1);
int res_33_2 = zkp_ecdsa_get_public_key33(curve, privkey, pubkey33_2);
int res_65_1 = ecdsa_get_public_key65(curve, privkey, pubkey65_1);
int res_65_2 = zkp_ecdsa_get_public_key65(curve, privkey, pubkey65_2);
// the function pairs have different return error codes for the same input
// only fail if the one succeeds where the other does not
if ((res_33_1 == 0 && res_33_2 != 0) || (res_33_1 != 0 && res_33_2 == 0)) {
// function result mismatch
crash();
}
if ((res_65_1 == 0 && res_65_2 != 0) || (res_65_1 != 0 && res_65_2 == 0)) {
// function result mismatch
crash();
}
if (res_33_1 == 0 && res_33_2 == 0 &&
memcmp(&pubkey33_1, &pubkey33_2, sizeof(pubkey33_1)) != 0) {
// function result data mismatch
crash();
}
if (res_65_1 == 0 && res_65_2 == 0 &&
memcmp(&pubkey65_1, &pubkey65_2, sizeof(pubkey65_1)) != 0) {
// function result data mismatch
crash();
}
return 0;
}
int fuzz_ecdsa_recover_pub_from_sig_functions(void) {
uint8_t digest[32] = {0};
uint8_t sig[64] = {0};
const ecdsa_curve *curve = &secp256k1;
uint8_t recid = 0;
uint8_t pubkey1[65] = {0};
uint8_t pubkey2[65] = {0};
if (fuzzer_length < sizeof(digest) + sizeof(sig) + sizeof(recid)) {
return FUZZ_MARK_UNINTERESTING;
}
memcpy(digest, fuzzer_input(sizeof(digest)), sizeof(digest));
memcpy(sig, fuzzer_input(sizeof(sig)), sizeof(sig));
memcpy(&recid, fuzzer_input(sizeof(recid)), sizeof(recid));
// conform to parameter requirements
recid = recid & 0x03;
int res1 = zkp_ecdsa_recover_pub_from_sig(curve, pubkey1, sig, digest, recid);
int res2 = ecdsa_recover_pub_from_sig(curve, pubkey2, sig, digest, recid);
if ((res1 == 0 && res2 != 0) || (res1 != 0 && res2 == 0)) {
// result mismatch
// bug result reference: https://github.com/trezor/trezor-firmware/pull/2050
crash();
}
if (res1 == 0 && res2 == 0 &&
memcmp(&pubkey1, &pubkey2, sizeof(pubkey1)) != 0) {
// pubkey result mismatch
crash();
}
return 0;
}
int fuzz_ecdsa_sig_from_der(void) {
// bug result reference: https://github.com/trezor/trezor-firmware/pull/2058
uint8_t der[72] = {0};
uint8_t out[72] = {0};
if (fuzzer_length < sizeof(der)) {
return FUZZ_MARK_UNINTERESTING;
}
memcpy(der, fuzzer_input(sizeof(der)), sizeof(der));
// null-terminate
der[sizeof(der) - 1] = 0;
size_t der_len = strlen((const char *)der);
// IDEA use different fuzzer-controlled der_len such as 1 to 73
int ret = ecdsa_sig_from_der(der, der_len, out);
(void)ret;
// IDEA check if back conversion works
return 0;
}
int fuzz_ecdsa_sig_to_der(void) {
uint8_t sig[64] = {0};
uint8_t der[72] = {0};
if (fuzzer_length < sizeof(sig)) {
return FUZZ_MARK_UNINTERESTING;
}
memcpy(sig, fuzzer_input(sizeof(sig)), sizeof(sig));
int ret = ecdsa_sig_to_der((const uint8_t *)&sig, der);
(void)ret;
// IDEA check if back conversion works
return 0;
}
int fuzz_button_sequence_to_word(void) {
uint16_t input = 0;
if (fuzzer_length < sizeof(input)) {
return FUZZ_MARK_UNINTERESTING;
}
memcpy(&input, fuzzer_input(sizeof(input)), sizeof(input));
button_sequence_to_word(input);
return 0;
}
int fuzz_xmr_add_keys(void) {
bignum256modm a, b;
ge25519 A, B;
if (fuzzer_length < sizeof(bignum256modm) * 2 + sizeof(ge25519) * 2) {
return FUZZ_MARK_UNINTERESTING;
}
memcpy(&a, fuzzer_input(sizeof(bignum256modm)), sizeof(bignum256modm));
memcpy(&b, fuzzer_input(sizeof(bignum256modm)), sizeof(bignum256modm));
memcpy(&A, fuzzer_input(sizeof(ge25519)), sizeof(ge25519));
memcpy(&B, fuzzer_input(sizeof(ge25519)), sizeof(ge25519));
ge25519 r;
xmr_add_keys2(&r, a, b, &B);
check_msan(&r, sizeof(r));
xmr_add_keys2_vartime(&r, a, b, &B);
check_msan(&r, sizeof(r));
xmr_add_keys3(&r, a, &A, b, &B);
check_msan(&r, sizeof(r));
xmr_add_keys3_vartime(&r, a, &A, b, &B);
check_msan(&r, sizeof(r));
return 0;
}
int fuzz_ecdh_multiply(void) {
uint8_t priv_key[32];
// 33 or 65 bytes content
uint8_t pub_key[65];
uint8_t decider;
if (fuzzer_length < sizeof(priv_key) + sizeof(pub_key) + sizeof(decider)) {
return FUZZ_MARK_UNINTERESTING;
}
memcpy(&priv_key, fuzzer_input(sizeof(priv_key)), sizeof(priv_key));
memcpy(&pub_key, fuzzer_input(sizeof(pub_key)), sizeof(pub_key));
memcpy(&decider, fuzzer_input(sizeof(decider)), sizeof(decider));
uint8_t session_key[65] = {0};
int res1 = 0;
// TODO evaluate crash with &curve == NULL, documentation / convention issue?
const ecdsa_curve *curve2;
// ecdh_multiply() is only called with secp256k1 and nist256p1 curve from
// modtrezorcrypto code theoretically other curve parameters are also possible
if ((decider & 1) == 0) {
curve2 = &nist256p1;
} else {
curve2 = &secp256k1;
}
res1 = ecdh_multiply(curve2, (uint8_t *)&priv_key, (uint8_t *)&pub_key,
(uint8_t *)&session_key);
check_msan(&session_key, sizeof(session_key));
if (res1 != 0) {
// failure case
}
return 0;
}
int fuzz_segwit_addr_encode(void) {
// the current firmware code only uses witver = 0 and witver = 1
// we give more flexibility, but do not allow the full int range
uint8_t chosen_witver = 0;
// restrict fuzzer variations to lengths of 0 to 255
uint8_t chosen_witprog_len = 0;
// in typical use, hrp is a bech32 prefix of 2 to 4 chars
// TODO make this dynamic, investigate lowercase requirements
// see also https://github.com/sipa/bech32/issues/38
char *hrp = "bc";
if (fuzzer_length < sizeof(chosen_witver) + sizeof(chosen_witprog_len)) {
return FUZZ_MARK_UNINTERESTING;
}
memcpy(&chosen_witver, fuzzer_input(sizeof(chosen_witver)),
sizeof(chosen_witver));
memcpy(&chosen_witprog_len, fuzzer_input(sizeof(chosen_witprog_len)),
sizeof(chosen_witprog_len));
if (chosen_witprog_len > fuzzer_length) {
return FUZZ_MARK_UNINTERESTING;
}
char output_address[MAX_ADDR_SIZE] = {0};
uint8_t *witprog = malloc(chosen_witprog_len);
RETURN_IF_NULL(witprog);
memcpy(witprog, fuzzer_input(chosen_witprog_len), chosen_witprog_len);
int ret = segwit_addr_encode(output_address, hrp, chosen_witver, witprog,
chosen_witprog_len);
// IDEA act depending on ret
(void)ret;
free(witprog);
return 0;
}
int fuzz_segwit_addr_decode(void) {
int decoded_witver = 0;
size_t decoded_witprog_len = 0;
// TODO
uint8_t addr_raw[MAX_ADDR_RAW_SIZE] = {0};
uint8_t chosen_addr_len = 0;
if (fuzzer_length < sizeof(chosen_addr_len)) {
return FUZZ_MARK_UNINTERESTING;
}
memcpy(&chosen_addr_len, fuzzer_input(sizeof(chosen_addr_len)),
sizeof(chosen_addr_len));
if (chosen_addr_len > fuzzer_length) {
return FUZZ_MARK_UNINTERESTING;
}
char *addr = malloc(chosen_addr_len + 1);
RETURN_IF_NULL(addr);
memcpy(addr, fuzzer_input(chosen_addr_len), chosen_addr_len);
// null termination
addr[chosen_addr_len] = 0;
// TODO see comments in fuzz_segwit_addr_encode()
char *hrp = "bc";
int ret = segwit_addr_decode(&decoded_witver, addr_raw, &decoded_witprog_len,
hrp, addr);
// IDEA act depending on ret
(void)ret;
free(addr);
return 0;
}
/* Fuzzer main function */
#define META_HEADER_SIZE 3
int LLVMFuzzerTestOneInput(const uint8_t *data, size_t size) {
// reject input that is too short
if (size < META_HEADER_SIZE) {
return FUZZ_MARK_UNINTERESTING;
}
fuzzer_reset_state();
// this controls up to 256 different test cases
uint8_t target_decision = data[0];
// data[1] is reserved for explicit sub decisions
// uint8_t target_sub_decision = data[1];
// data[2] is reserved for future use
// assign the fuzzer payload data for the target functions
fuzzer_ptr = data + META_HEADER_SIZE;
fuzzer_length = size - META_HEADER_SIZE;
// if active: reject all other inputs that are not the selected target
// this is helpful for directing the fuzzing focus on a specific case
#ifdef FUZZ_EXCLUSIVE_TARGET
if (target_decision != FUZZ_EXCLUSIVE_TARGET) {
return FUZZ_MARK_UNINTERESTING;
}
#endif
int target_result = 0;
// TODO reorder and regroup target functions
switch (target_decision) {
case 0:
target_result = fuzz_bn_format();
break;
case 1:
target_result = fuzz_base32_decode();
break;
case 2:
target_result = fuzz_base32_encode();
break;
case 3:
target_result = fuzz_base58_encode_check();
break;
case 4:
target_result = fuzz_base58_decode_check();
break;
case 5:
target_result = fuzz_xmr_base58_addr_decode_check();
break;
case 6:
target_result = fuzz_xmr_base58_addr_encode_check();
break;
case 7:
target_result = fuzz_xmr_serialize_varint();
break;
case 8:
target_result = fuzz_nem_validate_address();
break;
case 9:
target_result = fuzz_nem_get_address();
break;
case 10:
target_result = fuzz_xmr_get_subaddress_secret_key();
break;
case 11:
target_result = fuzz_xmr_derive_private_key();
break;
case 12:
target_result = fuzz_xmr_derive_public_key();
break;
case 13:
target_result = fuzz_shamir_interpolate();
break;
case 14:
#ifdef FUZZ_ALLOW_SLOW
zkp_initialize_context_or_crash();
// slow through expensive bignum operations
target_result = fuzz_ecdsa_verify_digest_functions();
#endif
break;
case 15:
target_result = fuzz_word_index();
break;
case 16:
target_result = fuzz_slip39_word_completion_mask();
break;
case 17:
target_result = fuzz_mnemonic_check();
break;
case 18:
#ifdef FUZZ_ALLOW_SLOW
target_result = fuzz_aes();
#endif
break;
case 22:
target_result = fuzz_chacha_drbg();
break;
case 23:
#ifdef FUZZ_ALLOW_SLOW
zkp_initialize_context_or_crash();
// slow through expensive bignum operations
target_result = fuzz_ecdsa_sign_digest_functions();
#endif
break;
case 24:
target_result = fuzz_ed25519_sign_verify();
break;
case 25:
target_result = fuzz_mnemonic_from_data();
break;
case 26:
target_result = fuzz_mnemonic_to_seed();
break;
case 27:
target_result = fuzz_button_sequence_to_word();
break;
case 28:
target_result = fuzz_segwit_addr_encode();
break;
case 29:
target_result = fuzz_segwit_addr_decode();
break;
case 30:
target_result = fuzz_ethereum_address_checksum();
break;
case 41:
zkp_initialize_context_or_crash();
target_result = fuzz_zkp_bip340_sign_digest();
break;
case 42:
zkp_initialize_context_or_crash();
target_result = fuzz_zkp_bip340_verify_digest();
break;
case 43:
zkp_initialize_context_or_crash();
target_result = fuzz_zkp_bip340_tweak_keys();
break;
case 50:
zkp_initialize_context_or_crash();
target_result = fuzz_ecdsa_get_public_key_functions();
break;
case 51:
zkp_initialize_context_or_crash();
target_result = fuzz_ecdsa_recover_pub_from_sig_functions();
break;
case 52:
target_result = fuzz_ecdsa_sig_from_der();
break;
case 53:
target_result = fuzz_ecdsa_sig_to_der();
break;
case 60:
target_result = fuzz_xmr_base58_encode();
break;
case 61:
target_result = fuzz_xmr_base58_decode();
break;
case 63:
target_result = fuzz_xmr_add_keys();
break;
case 64:
target_result = fuzz_ecdh_multiply();
break;
default:
return FUZZ_MARK_UNINTERESTING;
// break will never be reached
break;
}
return target_result;
}