mirror of
https://github.com/trezor/trezor-firmware.git
synced 2025-01-09 06:50:58 +00:00
439 lines
12 KiB
Python
Executable File
439 lines
12 KiB
Python
Executable File
#!/usr/bin/py.test
|
|
import ctypes as c
|
|
import curve25519
|
|
import random
|
|
import ecdsa
|
|
import hashlib
|
|
import binascii
|
|
import os
|
|
import pytest
|
|
|
|
def bytes2num(s):
|
|
res = 0
|
|
for i, b in enumerate(reversed(bytearray(s))):
|
|
res += b << (i * 8)
|
|
return res
|
|
|
|
|
|
curves = {
|
|
'nist256p1': ecdsa.curves.NIST256p,
|
|
'secp256k1': ecdsa.curves.SECP256k1
|
|
}
|
|
|
|
class Point:
|
|
def __init__(self, name, x, y):
|
|
self.curve = name
|
|
self.x = x
|
|
self.y = y
|
|
|
|
points = [
|
|
Point('secp256k1', 0x79be667ef9dcbbac55a06295ce870b07029bfcdb2dce28d959f2815b16f81798, 0x483ada7726a3c4655da4fbfc0e1108a8fd17b448a68554199c47d08ffb10d4b8),
|
|
Point('secp256k1', 0x1, 0x4218f20ae6c646b363db68605822fb14264ca8d2587fdd6fbc750d587e76a7ee),
|
|
Point('secp256k1', 0x2, 0x66fbe727b2ba09e09f5a98d70a5efce8424c5fa425bbda1c511f860657b8535e),
|
|
Point('secp256k1', 0x1b,0x1adcea1cf831b0ad1653e769d1a229091d0cc68d4b0328691b9caacc76e37c90),
|
|
Point('nist256p1', 0x6b17d1f2e12c4247f8bce6e563a440f277037d812deb33a0f4a13945d898c296, 0x4fe342e2fe1a7f9b8ee7eb4a7c0f9e162bce33576b315ececbb6406837bf51f5),
|
|
Point('nist256p1', 0x0, 0x66485c780e2f83d72433bd5d84a06bb6541c2af31dae871728bf856a174f93f4),
|
|
Point('nist256p1', 0x0, 0x99b7a386f1d07c29dbcc42a27b5f9449abe3d50de25178e8d7407a95e8b06c0b),
|
|
Point('nist256p1', 0xaf8bbdfe8cdd5577acbf345b543d28cf402f4e94d3865b97ea0787f2d3aa5d22,0x35802b8b376b995265918b078bc109c21a535176585c40f519aca52d6afc147c),
|
|
Point('nist256p1', 0x80000, 0x580610071f440f0dcc14a22e2d5d5afc1224c0cd11a3b4b51b8ecd2224ee1ce2)
|
|
]
|
|
|
|
random_iters = int(os.environ.get('ITERS', 1))
|
|
|
|
lib = c.cdll.LoadLibrary('./libtrezor-crypto.so')
|
|
|
|
class curve_info(c.Structure):
|
|
_fields_ = [("bip32_name", c.c_char_p),
|
|
("params", c.c_void_p)]
|
|
lib.get_curve_by_name.restype = c.POINTER(curve_info)
|
|
|
|
BIGNUM = c.c_uint32 * 9
|
|
|
|
class Random(random.Random):
|
|
def randbytes(self, n):
|
|
buf = (c.c_uint8 * n)()
|
|
for i in range(n):
|
|
buf[i] = self.randrange(0, 256)
|
|
return buf
|
|
|
|
def randpoint(self, curve):
|
|
k = self.randrange(0, curve.order)
|
|
return k * curve.generator
|
|
|
|
|
|
def int2bn(x, bn_type=BIGNUM):
|
|
b = bn_type()
|
|
b._int = x
|
|
for i in range(len(b)):
|
|
b[i] = x % (1 << 30)
|
|
x = x >> 30
|
|
return b
|
|
|
|
|
|
def bn2int(b):
|
|
x = 0
|
|
for i in range(len(b)):
|
|
x += (b[i] << (30 * i))
|
|
return x
|
|
|
|
|
|
@pytest.fixture(params=range(random_iters))
|
|
def r(request):
|
|
seed = request.param
|
|
return Random(seed + int(os.environ.get('SEED', 0)))
|
|
|
|
|
|
@pytest.fixture(params=list(sorted(curves)))
|
|
def curve(request):
|
|
name = request.param
|
|
curve_ptr = lib.get_curve_by_name(bytes(name, "ascii")).contents.params
|
|
assert curve_ptr, 'curve {} not found'.format(name)
|
|
curve_obj = curves[name]
|
|
curve_obj.ptr = c.c_void_p(curve_ptr)
|
|
curve_obj.p = curve_obj.curve.p() # shorthand
|
|
return curve_obj
|
|
|
|
@pytest.fixture(params=points)
|
|
def point(request):
|
|
name = request.param.curve
|
|
curve_ptr = lib.get_curve_by_name(bytes(name, "ascii")).contents.params
|
|
assert curve_ptr, 'curve {} not found'.format(name)
|
|
curve_obj = curves[name]
|
|
curve_obj.ptr = c.c_void_p(curve_ptr)
|
|
curve_obj.p = ecdsa.ellipticcurve.Point(curve_obj.curve, request.param.x, request.param.y)
|
|
return curve_obj
|
|
|
|
def test_inverse(curve, r):
|
|
x = r.randrange(1, curve.p)
|
|
y = int2bn(x)
|
|
lib.bn_inverse(y, int2bn(curve.p))
|
|
y = bn2int(y)
|
|
y_ = ecdsa.numbertheory.inverse_mod(x, curve.p)
|
|
assert y == y_
|
|
|
|
|
|
def test_is_less(curve, r):
|
|
x = r.randrange(0, curve.p)
|
|
y = r.randrange(0, curve.p)
|
|
x_ = int2bn(x)
|
|
y_ = int2bn(y)
|
|
|
|
res = lib.bn_is_less(x_, y_)
|
|
assert res == (x < y)
|
|
|
|
res = lib.bn_is_less(y_, x_)
|
|
assert res == (y < x)
|
|
|
|
|
|
def test_is_equal(curve, r):
|
|
x = r.randrange(0, curve.p)
|
|
y = r.randrange(0, curve.p)
|
|
x_ = int2bn(x)
|
|
y_ = int2bn(y)
|
|
|
|
assert lib.bn_is_equal(x_, y_) == (x == y)
|
|
assert lib.bn_is_equal(x_, x_) == 1
|
|
assert lib.bn_is_equal(y_, y_) == 1
|
|
|
|
|
|
def test_is_zero(curve, r):
|
|
x = r.randrange(0, curve.p);
|
|
assert lib.bn_is_zero(int2bn(x)) == (not x)
|
|
|
|
|
|
def test_simple_comparisons():
|
|
assert lib.bn_is_zero(int2bn(0)) == 1
|
|
assert lib.bn_is_zero(int2bn(1)) == 0
|
|
|
|
assert lib.bn_is_less(int2bn(0), int2bn(0)) == 0
|
|
assert lib.bn_is_less(int2bn(1), int2bn(0)) == 0
|
|
assert lib.bn_is_less(int2bn(0), int2bn(1)) == 1
|
|
|
|
assert lib.bn_is_equal(int2bn(0), int2bn(0)) == 1
|
|
assert lib.bn_is_equal(int2bn(1), int2bn(0)) == 0
|
|
assert lib.bn_is_equal(int2bn(0), int2bn(1)) == 0
|
|
|
|
|
|
def test_mult_half(curve, r):
|
|
x = r.randrange(0, 2*curve.p)
|
|
y = int2bn(x)
|
|
lib.bn_mult_half(y, int2bn(curve.p))
|
|
y = bn2int(y)
|
|
if y >= curve.p:
|
|
y -= curve.p
|
|
half = ecdsa.numbertheory.inverse_mod(2, curve.p)
|
|
assert y == (x * half) % curve.p
|
|
|
|
|
|
def test_subtractmod(curve, r):
|
|
x = r.randrange(0, 2 ** 256)
|
|
y = r.randrange(0, 2 ** 256)
|
|
z = int2bn(0)
|
|
lib.bn_subtractmod(int2bn(x), int2bn(y), z, int2bn(curve.p))
|
|
z = bn2int(z)
|
|
z_ = x + 2*curve.p - y
|
|
assert z == z_
|
|
|
|
|
|
def test_subtract2(r):
|
|
x = r.randrange(0, 2 ** 256)
|
|
y = r.randrange(0, 2 ** 256)
|
|
x, y = max(x, y), min(x, y)
|
|
z = int2bn(0)
|
|
lib.bn_subtract(int2bn(x), int2bn(y), z)
|
|
z = bn2int(z)
|
|
z_ = x - y
|
|
assert z == z_
|
|
|
|
|
|
def test_add(curve, r):
|
|
x = r.randrange(0, 2 ** 256)
|
|
y = r.randrange(0, 2 ** 256)
|
|
z_ = x + y
|
|
z = int2bn(x)
|
|
lib.bn_add(z, int2bn(y))
|
|
z = bn2int(z)
|
|
|
|
assert z == z_
|
|
|
|
|
|
def test_addmod(curve, r):
|
|
x = r.randrange(0, 2 ** 256)
|
|
y = r.randrange(0, 2 ** 256)
|
|
z_ = (x + y) % curve.p
|
|
z = int2bn(x)
|
|
lib.bn_addmod(z, int2bn(y), int2bn(curve.p))
|
|
z = bn2int(z)
|
|
if z >= curve.p:
|
|
z = z - curve.p
|
|
assert z == z_
|
|
|
|
|
|
def test_multiply(curve, r):
|
|
k = r.randrange(0, 2 * curve.p)
|
|
x = r.randrange(0, 2 * curve.p)
|
|
z = (k * x) % curve.p
|
|
k = int2bn(k)
|
|
z_ = int2bn(x)
|
|
p_ = int2bn(curve.p)
|
|
lib.bn_multiply(k, z_, p_)
|
|
z_ = bn2int(z_)
|
|
assert z_ < 2*curve.p
|
|
if z_ >= curve.p:
|
|
z_ = z_ - curve.p
|
|
assert z_ == z
|
|
|
|
|
|
def test_multiply1(curve, r):
|
|
k = r.randrange(0, 2 * curve.p)
|
|
x = r.randrange(0, 2 * curve.p)
|
|
kx = k * x
|
|
res = int2bn(0, bn_type=(c.c_uint32 * 18))
|
|
lib.bn_multiply_long(int2bn(k), int2bn(x), res)
|
|
res = bn2int(res)
|
|
assert res == kx
|
|
|
|
|
|
def test_multiply2(curve, r):
|
|
x = int2bn(0)
|
|
s = r.randrange(0, 2 ** 526)
|
|
res = int2bn(s, bn_type=(c.c_uint32 * 18))
|
|
prime = int2bn(curve.p)
|
|
lib.bn_multiply_reduce(x, res, prime)
|
|
|
|
x = bn2int(x) % curve.p
|
|
x_ = s % curve.p
|
|
|
|
assert x == x_
|
|
|
|
|
|
def test_fast_mod(curve, r):
|
|
x = r.randrange(0, 128*curve.p)
|
|
y = int2bn(x)
|
|
lib.bn_fast_mod(y, int2bn(curve.p))
|
|
y = bn2int(y)
|
|
assert y < 2*curve.p
|
|
if y >= curve.p:
|
|
y -= curve.p
|
|
assert x % curve.p == y
|
|
|
|
|
|
def test_mod(curve, r):
|
|
x = r.randrange(0, 2*curve.p)
|
|
y = int2bn(x)
|
|
lib.bn_mod(y, int2bn(curve.p))
|
|
assert bn2int(y) == x % curve.p
|
|
|
|
def test_mod_specific(curve):
|
|
p = curve.p
|
|
for x in [0, 1, 2, p - 2, p - 1, p, p + 1, p + 2, 2*p - 2, 2*p - 1]:
|
|
y = int2bn(x)
|
|
lib.bn_mod(y, int2bn(curve.p))
|
|
assert bn2int(y) == x % p
|
|
|
|
POINT = BIGNUM * 2
|
|
to_POINT = lambda p: POINT(int2bn(p.x()), int2bn(p.y()))
|
|
from_POINT = lambda p: (bn2int(p[0]), bn2int(p[1]))
|
|
|
|
JACOBIAN = BIGNUM * 3
|
|
to_JACOBIAN = lambda jp: JACOBIAN(int2bn(jp[0]), int2bn(jp[1]), int2bn(jp[2]))
|
|
from_JACOBIAN = lambda p: (bn2int(p[0]), bn2int(p[1]), bn2int(p[2]))
|
|
|
|
|
|
def test_point_multiply(curve, r):
|
|
p = r.randpoint(curve)
|
|
k = r.randrange(0, 2 ** 256)
|
|
kp = k * p
|
|
res = POINT(int2bn(0), int2bn(0))
|
|
lib.point_multiply(curve.ptr, int2bn(k), to_POINT(p), res)
|
|
res = from_POINT(res)
|
|
assert res == (kp.x(), kp.y())
|
|
|
|
|
|
def test_point_add(curve, r):
|
|
p1 = r.randpoint(curve)
|
|
p2 = r.randpoint(curve)
|
|
#print '-' * 80
|
|
q = p1 + p2
|
|
q1 = to_POINT(p1)
|
|
q2 = to_POINT(p2)
|
|
lib.point_add(curve.ptr, q1, q2)
|
|
q_ = from_POINT(q2)
|
|
assert q_ == (q.x(), q.y())
|
|
|
|
|
|
def test_point_double(curve, r):
|
|
p = r.randpoint(curve)
|
|
q = p.double()
|
|
q_ = to_POINT(p)
|
|
lib.point_double(curve.ptr, q_)
|
|
q_ = from_POINT(q_)
|
|
assert q_ == (q.x(), q.y())
|
|
|
|
|
|
def test_point_to_jacobian(curve, r):
|
|
p = r.randpoint(curve)
|
|
jp = JACOBIAN()
|
|
lib.curve_to_jacobian(to_POINT(p), jp, int2bn(curve.p))
|
|
jx, jy, jz = from_JACOBIAN(jp)
|
|
assert jx % curve.p == (p.x() * jz ** 2) % curve.p
|
|
assert jy % curve.p == (p.y() * jz ** 3) % curve.p
|
|
|
|
q = POINT()
|
|
lib.jacobian_to_curve(jp, q, int2bn(curve.p))
|
|
q = from_POINT(q)
|
|
assert q == (p.x(), p.y())
|
|
|
|
|
|
def test_cond_negate(curve, r):
|
|
x = r.randrange(0, curve.p)
|
|
a = int2bn(x)
|
|
lib.conditional_negate(0, a, int2bn(curve.p))
|
|
assert bn2int(a) == x
|
|
lib.conditional_negate(-1, a, int2bn(curve.p))
|
|
assert bn2int(a) == 2*curve.p - x
|
|
|
|
|
|
def test_jacobian_add(curve, r):
|
|
p1 = r.randpoint(curve)
|
|
p2 = r.randpoint(curve)
|
|
prime = int2bn(curve.p)
|
|
q = POINT()
|
|
jp2 = JACOBIAN()
|
|
lib.curve_to_jacobian(to_POINT(p2), jp2, prime)
|
|
lib.point_jacobian_add(to_POINT(p1), jp2, curve.ptr)
|
|
lib.jacobian_to_curve(jp2, q, prime)
|
|
q = from_POINT(q)
|
|
p_ = p1 + p2
|
|
assert (p_.x(), p_.y()) == q
|
|
|
|
def test_jacobian_add_double(curve, r):
|
|
p1 = r.randpoint(curve)
|
|
p2 = p1
|
|
prime = int2bn(curve.p)
|
|
q = POINT()
|
|
jp2 = JACOBIAN()
|
|
lib.curve_to_jacobian(to_POINT(p2), jp2, prime)
|
|
lib.point_jacobian_add(to_POINT(p1), jp2, curve.ptr)
|
|
lib.jacobian_to_curve(jp2, q, prime)
|
|
q = from_POINT(q)
|
|
p_ = p1 + p2
|
|
assert (p_.x(), p_.y()) == q
|
|
|
|
def test_jacobian_double(curve, r):
|
|
p = r.randpoint(curve)
|
|
p2 = p.double()
|
|
prime = int2bn(curve.p)
|
|
q = POINT()
|
|
jp = JACOBIAN()
|
|
lib.curve_to_jacobian(to_POINT(p), jp, prime)
|
|
lib.point_jacobian_double(jp, curve.ptr)
|
|
lib.jacobian_to_curve(jp, q, prime)
|
|
q = from_POINT(q)
|
|
assert (p2.x(), p2.y()) == q
|
|
|
|
def sigdecode(sig, _):
|
|
return map(bytes2num, [sig[:32], sig[32:]])
|
|
|
|
|
|
def test_sign(curve, r):
|
|
priv = r.randbytes(32)
|
|
digest = r.randbytes(32)
|
|
sig = r.randbytes(64)
|
|
|
|
lib.ecdsa_sign_digest(curve.ptr, priv, digest, sig, c.c_void_p(0), c.c_void_p(0))
|
|
|
|
exp = bytes2num(priv)
|
|
sk = ecdsa.SigningKey.from_secret_exponent(exp, curve,
|
|
hashfunc=hashlib.sha256)
|
|
vk = sk.get_verifying_key()
|
|
|
|
sig_ref = sk.sign_digest_deterministic(digest, hashfunc=hashlib.sha256, sigencode=ecdsa.util.sigencode_string_canonize)
|
|
assert binascii.hexlify(sig) == binascii.hexlify(sig_ref)
|
|
|
|
assert vk.verify_digest(sig, digest, sigdecode)
|
|
|
|
def test_validate_pubkey(curve, r):
|
|
p = r.randpoint(curve)
|
|
assert lib.ecdsa_validate_pubkey(curve.ptr, to_POINT(p))
|
|
|
|
|
|
def test_validate_pubkey_direct(point):
|
|
assert lib.ecdsa_validate_pubkey(point.ptr, to_POINT(point.p))
|
|
|
|
|
|
def test_curve25519(r):
|
|
sec1 = bytes(bytearray(r.randbytes(32)))
|
|
sec2 = bytes(bytearray(r.randbytes(32)))
|
|
pub1 = curve25519.Private(sec1).get_public()
|
|
pub2 = curve25519.Private(sec2).get_public()
|
|
|
|
session1 = r.randbytes(32)
|
|
lib.curve25519_scalarmult(session1, sec2, pub1.public)
|
|
session2 = r.randbytes(32)
|
|
lib.curve25519_scalarmult(session2, sec1, pub2.public)
|
|
assert bytearray(session1) == bytearray(session2)
|
|
|
|
shared1 = curve25519.Private(sec2).get_shared_key(pub1, hashfunc=lambda x: x)
|
|
shared2 = curve25519.Private(sec1).get_shared_key(pub2, hashfunc=lambda x: x)
|
|
assert shared1 == shared2
|
|
assert bytearray(session1) == shared1
|
|
assert bytearray(session2) == shared2
|
|
|
|
|
|
def test_curve25519_pubkey(r):
|
|
sec = bytes(bytearray(r.randbytes(32)))
|
|
pub = curve25519.Private(sec).get_public()
|
|
res = r.randbytes(32)
|
|
lib.curve25519_scalarmult_basepoint(res, sec)
|
|
assert bytearray(res) == pub.public
|
|
|
|
|
|
def test_curve25519_scalarmult_from_gpg(r):
|
|
sec = binascii.unhexlify('4a1e76f133afb29dbc7860bcbc16d0e829009cc15c2f81ed26de1179b1d9c938')
|
|
pub = binascii.unhexlify('5d6fc75c016e85b17f54e0128a216d5f9229f25bac1ec85cecab8daf48621b31')
|
|
res = r.randbytes(32)
|
|
lib.curve25519_scalarmult(res, sec[::-1], pub[::-1])
|
|
expected = 'a93dbdb23e5c99da743e203bd391af79f2b83fb8d0fd6ec813371c71f08f2d4d'
|
|
assert binascii.hexlify(bytearray(res)) == bytes(expected, "ascii")
|