1
0
mirror of https://github.com/trezor/trezor-firmware.git synced 2024-11-21 15:08:12 +00:00
trezor-firmware/crypto/ed25519-donna/modm-donna-32bit.c
2019-10-09 17:05:33 +02:00

518 lines
22 KiB
C

/*
Public domain by Andrew M. <liquidsun@gmail.com>
*/
#include "ed25519-donna.h"
/*
Arithmetic modulo the group order n = 2^252 + 27742317777372353535851937790883648493 = 7237005577332262213973186563042994240857116359379907606001950938285454250989
k = 32
b = 1 << 8 = 256
m = 2^252 + 27742317777372353535851937790883648493 = 0x1000000000000000000000000000000014def9dea2f79cd65812631a5cf5d3ed
mu = floor( b^(k*2) / m ) = 0xfffffffffffffffffffffffffffffffeb2106215d086329a7ed9ce5a30a2c131b
*/
static const bignum256modm modm_m = {
0x1cf5d3ed, 0x20498c69, 0x2f79cd65, 0x37be77a8,
0x00000014, 0x00000000, 0x00000000, 0x00000000,
0x00001000
};
static const bignum256modm modm_mu = {
0x0a2c131b, 0x3673968c, 0x06329a7e, 0x01885742,
0x3fffeb21, 0x3fffffff, 0x3fffffff, 0x3fffffff,
0x000fffff
};
static bignum256modm_element_t
lt_modm(bignum256modm_element_t a, bignum256modm_element_t b) {
return (a - b) >> 31;
}
/* see HAC, Alg. 14.42 Step 4 */
void reduce256_modm(bignum256modm r) {
bignum256modm t = {0};
bignum256modm_element_t b = 0, pb = 0, mask = 0;
/* t = r - m */
pb = 0;
pb += modm_m[0]; b = lt_modm(r[0], pb); t[0] = (r[0] - pb + (b << 30)); pb = b;
pb += modm_m[1]; b = lt_modm(r[1], pb); t[1] = (r[1] - pb + (b << 30)); pb = b;
pb += modm_m[2]; b = lt_modm(r[2], pb); t[2] = (r[2] - pb + (b << 30)); pb = b;
pb += modm_m[3]; b = lt_modm(r[3], pb); t[3] = (r[3] - pb + (b << 30)); pb = b;
pb += modm_m[4]; b = lt_modm(r[4], pb); t[4] = (r[4] - pb + (b << 30)); pb = b;
pb += modm_m[5]; b = lt_modm(r[5], pb); t[5] = (r[5] - pb + (b << 30)); pb = b;
pb += modm_m[6]; b = lt_modm(r[6], pb); t[6] = (r[6] - pb + (b << 30)); pb = b;
pb += modm_m[7]; b = lt_modm(r[7], pb); t[7] = (r[7] - pb + (b << 30)); pb = b;
pb += modm_m[8]; b = lt_modm(r[8], pb); t[8] = (r[8] - pb + (b << 16));
/* keep r if r was smaller than m */
mask = b - 1;
r[0] ^= mask & (r[0] ^ t[0]);
r[1] ^= mask & (r[1] ^ t[1]);
r[2] ^= mask & (r[2] ^ t[2]);
r[3] ^= mask & (r[3] ^ t[3]);
r[4] ^= mask & (r[4] ^ t[4]);
r[5] ^= mask & (r[5] ^ t[5]);
r[6] ^= mask & (r[6] ^ t[6]);
r[7] ^= mask & (r[7] ^ t[7]);
r[8] ^= mask & (r[8] ^ t[8]);
}
/*
Barrett reduction, see HAC, Alg. 14.42
Instead of passing in x, pre-process in to q1 and r1 for efficiency
*/
void barrett_reduce256_modm(bignum256modm r, const bignum256modm q1, const bignum256modm r1) {
bignum256modm q3 = {0}, r2 = {0};
uint64_t c = 0;
bignum256modm_element_t f = 0, b = 0, pb = 0;
/* q1 = x >> 248 = 264 bits = 9 30 bit elements
q2 = mu * q1
q3 = (q2 / 256(32+1)) = q2 / (2^8)^(32+1) = q2 >> 264 */
c = mul32x32_64(modm_mu[0], q1[7]) + mul32x32_64(modm_mu[1], q1[6]) + mul32x32_64(modm_mu[2], q1[5]) + mul32x32_64(modm_mu[3], q1[4]) + mul32x32_64(modm_mu[4], q1[3]) + mul32x32_64(modm_mu[5], q1[2]) + mul32x32_64(modm_mu[6], q1[1]) + mul32x32_64(modm_mu[7], q1[0]);
c >>= 30;
c += mul32x32_64(modm_mu[0], q1[8]) + mul32x32_64(modm_mu[1], q1[7]) + mul32x32_64(modm_mu[2], q1[6]) + mul32x32_64(modm_mu[3], q1[5]) + mul32x32_64(modm_mu[4], q1[4]) + mul32x32_64(modm_mu[5], q1[3]) + mul32x32_64(modm_mu[6], q1[2]) + mul32x32_64(modm_mu[7], q1[1]) + mul32x32_64(modm_mu[8], q1[0]);
f = (bignum256modm_element_t)c; q3[0] = (f >> 24) & 0x3f; c >>= 30;
c += mul32x32_64(modm_mu[1], q1[8]) + mul32x32_64(modm_mu[2], q1[7]) + mul32x32_64(modm_mu[3], q1[6]) + mul32x32_64(modm_mu[4], q1[5]) + mul32x32_64(modm_mu[5], q1[4]) + mul32x32_64(modm_mu[6], q1[3]) + mul32x32_64(modm_mu[7], q1[2]) + mul32x32_64(modm_mu[8], q1[1]);
f = (bignum256modm_element_t)c; q3[0] |= (f << 6) & 0x3fffffff; q3[1] = (f >> 24) & 0x3f; c >>= 30;
c += mul32x32_64(modm_mu[2], q1[8]) + mul32x32_64(modm_mu[3], q1[7]) + mul32x32_64(modm_mu[4], q1[6]) + mul32x32_64(modm_mu[5], q1[5]) + mul32x32_64(modm_mu[6], q1[4]) + mul32x32_64(modm_mu[7], q1[3]) + mul32x32_64(modm_mu[8], q1[2]);
f = (bignum256modm_element_t)c; q3[1] |= (f << 6) & 0x3fffffff; q3[2] = (f >> 24) & 0x3f; c >>= 30;
c += mul32x32_64(modm_mu[3], q1[8]) + mul32x32_64(modm_mu[4], q1[7]) + mul32x32_64(modm_mu[5], q1[6]) + mul32x32_64(modm_mu[6], q1[5]) + mul32x32_64(modm_mu[7], q1[4]) + mul32x32_64(modm_mu[8], q1[3]);
f = (bignum256modm_element_t)c; q3[2] |= (f << 6) & 0x3fffffff; q3[3] = (f >> 24) & 0x3f; c >>= 30;
c += mul32x32_64(modm_mu[4], q1[8]) + mul32x32_64(modm_mu[5], q1[7]) + mul32x32_64(modm_mu[6], q1[6]) + mul32x32_64(modm_mu[7], q1[5]) + mul32x32_64(modm_mu[8], q1[4]);
f = (bignum256modm_element_t)c; q3[3] |= (f << 6) & 0x3fffffff; q3[4] = (f >> 24) & 0x3f; c >>= 30;
c += mul32x32_64(modm_mu[5], q1[8]) + mul32x32_64(modm_mu[6], q1[7]) + mul32x32_64(modm_mu[7], q1[6]) + mul32x32_64(modm_mu[8], q1[5]);
f = (bignum256modm_element_t)c; q3[4] |= (f << 6) & 0x3fffffff; q3[5] = (f >> 24) & 0x3f; c >>= 30;
c += mul32x32_64(modm_mu[6], q1[8]) + mul32x32_64(modm_mu[7], q1[7]) + mul32x32_64(modm_mu[8], q1[6]);
f = (bignum256modm_element_t)c; q3[5] |= (f << 6) & 0x3fffffff; q3[6] = (f >> 24) & 0x3f; c >>= 30;
c += mul32x32_64(modm_mu[7], q1[8]) + mul32x32_64(modm_mu[8], q1[7]);
f = (bignum256modm_element_t)c; q3[6] |= (f << 6) & 0x3fffffff; q3[7] = (f >> 24) & 0x3f; c >>= 30;
c += mul32x32_64(modm_mu[8], q1[8]);
f = (bignum256modm_element_t)c; q3[7] |= (f << 6) & 0x3fffffff; q3[8] = (bignum256modm_element_t)(c >> 24);
/* r1 = (x mod 256^(32+1)) = x mod (2^8)(32+1) = x & ((1 << 264) - 1)
r2 = (q3 * m) mod (256^(32+1)) = (q3 * m) & ((1 << 264) - 1) */
c = mul32x32_64(modm_m[0], q3[0]);
r2[0] = (bignum256modm_element_t)(c & 0x3fffffff); c >>= 30;
c += mul32x32_64(modm_m[0], q3[1]) + mul32x32_64(modm_m[1], q3[0]);
r2[1] = (bignum256modm_element_t)(c & 0x3fffffff); c >>= 30;
c += mul32x32_64(modm_m[0], q3[2]) + mul32x32_64(modm_m[1], q3[1]) + mul32x32_64(modm_m[2], q3[0]);
r2[2] = (bignum256modm_element_t)(c & 0x3fffffff); c >>= 30;
c += mul32x32_64(modm_m[0], q3[3]) + mul32x32_64(modm_m[1], q3[2]) + mul32x32_64(modm_m[2], q3[1]) + mul32x32_64(modm_m[3], q3[0]);
r2[3] = (bignum256modm_element_t)(c & 0x3fffffff); c >>= 30;
c += mul32x32_64(modm_m[0], q3[4]) + mul32x32_64(modm_m[1], q3[3]) + mul32x32_64(modm_m[2], q3[2]) + mul32x32_64(modm_m[3], q3[1]) + mul32x32_64(modm_m[4], q3[0]);
r2[4] = (bignum256modm_element_t)(c & 0x3fffffff); c >>= 30;
c += mul32x32_64(modm_m[0], q3[5]) + mul32x32_64(modm_m[1], q3[4]) + mul32x32_64(modm_m[2], q3[3]) + mul32x32_64(modm_m[3], q3[2]) + mul32x32_64(modm_m[4], q3[1]) + mul32x32_64(modm_m[5], q3[0]);
r2[5] = (bignum256modm_element_t)(c & 0x3fffffff); c >>= 30;
c += mul32x32_64(modm_m[0], q3[6]) + mul32x32_64(modm_m[1], q3[5]) + mul32x32_64(modm_m[2], q3[4]) + mul32x32_64(modm_m[3], q3[3]) + mul32x32_64(modm_m[4], q3[2]) + mul32x32_64(modm_m[5], q3[1]) + mul32x32_64(modm_m[6], q3[0]);
r2[6] = (bignum256modm_element_t)(c & 0x3fffffff); c >>= 30;
c += mul32x32_64(modm_m[0], q3[7]) + mul32x32_64(modm_m[1], q3[6]) + mul32x32_64(modm_m[2], q3[5]) + mul32x32_64(modm_m[3], q3[4]) + mul32x32_64(modm_m[4], q3[3]) + mul32x32_64(modm_m[5], q3[2]) + mul32x32_64(modm_m[6], q3[1]) + mul32x32_64(modm_m[7], q3[0]);
r2[7] = (bignum256modm_element_t)(c & 0x3fffffff); c >>= 30;
c += mul32x32_64(modm_m[0], q3[8]) + mul32x32_64(modm_m[1], q3[7]) + mul32x32_64(modm_m[2], q3[6]) + mul32x32_64(modm_m[3], q3[5]) + mul32x32_64(modm_m[4], q3[4]) + mul32x32_64(modm_m[5], q3[3]) + mul32x32_64(modm_m[6], q3[2]) + mul32x32_64(modm_m[7], q3[1]) + mul32x32_64(modm_m[8], q3[0]);
r2[8] = (bignum256modm_element_t)(c & 0xffffff);
/* r = r1 - r2
if (r < 0) r += (1 << 264) */
pb = 0;
pb += r2[0]; b = lt_modm(r1[0], pb); r[0] = (r1[0] - pb + (b << 30)); pb = b;
pb += r2[1]; b = lt_modm(r1[1], pb); r[1] = (r1[1] - pb + (b << 30)); pb = b;
pb += r2[2]; b = lt_modm(r1[2], pb); r[2] = (r1[2] - pb + (b << 30)); pb = b;
pb += r2[3]; b = lt_modm(r1[3], pb); r[3] = (r1[3] - pb + (b << 30)); pb = b;
pb += r2[4]; b = lt_modm(r1[4], pb); r[4] = (r1[4] - pb + (b << 30)); pb = b;
pb += r2[5]; b = lt_modm(r1[5], pb); r[5] = (r1[5] - pb + (b << 30)); pb = b;
pb += r2[6]; b = lt_modm(r1[6], pb); r[6] = (r1[6] - pb + (b << 30)); pb = b;
pb += r2[7]; b = lt_modm(r1[7], pb); r[7] = (r1[7] - pb + (b << 30)); pb = b;
pb += r2[8]; b = lt_modm(r1[8], pb); r[8] = (r1[8] - pb + (b << 24));
reduce256_modm(r);
reduce256_modm(r);
}
/* addition modulo m */
void add256_modm(bignum256modm r, const bignum256modm x, const bignum256modm y) {
bignum256modm_element_t c = 0;
c = x[0] + y[0]; r[0] = c & 0x3fffffff; c >>= 30;
c += x[1] + y[1]; r[1] = c & 0x3fffffff; c >>= 30;
c += x[2] + y[2]; r[2] = c & 0x3fffffff; c >>= 30;
c += x[3] + y[3]; r[3] = c & 0x3fffffff; c >>= 30;
c += x[4] + y[4]; r[4] = c & 0x3fffffff; c >>= 30;
c += x[5] + y[5]; r[5] = c & 0x3fffffff; c >>= 30;
c += x[6] + y[6]; r[6] = c & 0x3fffffff; c >>= 30;
c += x[7] + y[7]; r[7] = c & 0x3fffffff; c >>= 30;
c += x[8] + y[8]; r[8] = c;
reduce256_modm(r);
}
/* -x modulo m */
void neg256_modm(bignum256modm r, const bignum256modm x) {
bignum256modm_element_t b = 0, pb = 0;
/* r = m - x */
pb = 0;
pb += x[0]; b = lt_modm(modm_m[0], pb); r[0] = (modm_m[0] - pb + (b << 30)); pb = b;
pb += x[1]; b = lt_modm(modm_m[1], pb); r[1] = (modm_m[1] - pb + (b << 30)); pb = b;
pb += x[2]; b = lt_modm(modm_m[2], pb); r[2] = (modm_m[2] - pb + (b << 30)); pb = b;
pb += x[3]; b = lt_modm(modm_m[3], pb); r[3] = (modm_m[3] - pb + (b << 30)); pb = b;
pb += x[4]; b = lt_modm(modm_m[4], pb); r[4] = (modm_m[4] - pb + (b << 30)); pb = b;
pb += x[5]; b = lt_modm(modm_m[5], pb); r[5] = (modm_m[5] - pb + (b << 30)); pb = b;
pb += x[6]; b = lt_modm(modm_m[6], pb); r[6] = (modm_m[6] - pb + (b << 30)); pb = b;
pb += x[7]; b = lt_modm(modm_m[7], pb); r[7] = (modm_m[7] - pb + (b << 30)); pb = b;
pb += x[8]; b = lt_modm(modm_m[8], pb); r[8] = (modm_m[8] - pb + (b << 16));
// if x==0, reduction is required
reduce256_modm(r);
}
/* consts for subtraction, > p */
/* Emilia Kasper trick, https://www.imperialviolet.org/2010/12/04/ecc.html */
static const uint32_t twoP[] = {
0x5cf5d3ed, 0x60498c68, 0x6f79cd64, 0x77be77a7, 0x40000013, 0x3fffffff, 0x3fffffff, 0x3fffffff, 0xfff};
/* subtraction x-y % m */
void sub256_modm(bignum256modm r, const bignum256modm x, const bignum256modm y) {
bignum256modm_element_t c = 0;
c = twoP[0] + x[0] - y[0]; r[0] = c & 0x3fffffff; c >>= 30;
c += twoP[1] + x[1] - y[1]; r[1] = c & 0x3fffffff; c >>= 30;
c += twoP[2] + x[2] - y[2]; r[2] = c & 0x3fffffff; c >>= 30;
c += twoP[3] + x[3] - y[3]; r[3] = c & 0x3fffffff; c >>= 30;
c += twoP[4] + x[4] - y[4]; r[4] = c & 0x3fffffff; c >>= 30;
c += twoP[5] + x[5] - y[5]; r[5] = c & 0x3fffffff; c >>= 30;
c += twoP[6] + x[6] - y[6]; r[6] = c & 0x3fffffff; c >>= 30;
c += twoP[7] + x[7] - y[7]; r[7] = c & 0x3fffffff; c >>= 30;
c += twoP[8] + x[8] - y[8]; r[8] = c;
reduce256_modm(r);
}
/* multiplication modulo m */
void mul256_modm(bignum256modm r, const bignum256modm x, const bignum256modm y) {
bignum256modm r1 = {0}, q1 = {0};
uint64_t c = 0;
bignum256modm_element_t f = 0;
/* r1 = (x mod 256^(32+1)) = x mod (2^8)(31+1) = x & ((1 << 264) - 1)
q1 = x >> 248 = 264 bits = 9 30 bit elements */
c = mul32x32_64(x[0], y[0]);
f = (bignum256modm_element_t)c; r1[0] = (f & 0x3fffffff); c >>= 30;
c += mul32x32_64(x[0], y[1]) + mul32x32_64(x[1], y[0]);
f = (bignum256modm_element_t)c; r1[1] = (f & 0x3fffffff); c >>= 30;
c += mul32x32_64(x[0], y[2]) + mul32x32_64(x[1], y[1]) + mul32x32_64(x[2], y[0]);
f = (bignum256modm_element_t)c; r1[2] = (f & 0x3fffffff); c >>= 30;
c += mul32x32_64(x[0], y[3]) + mul32x32_64(x[1], y[2]) + mul32x32_64(x[2], y[1]) + mul32x32_64(x[3], y[0]);
f = (bignum256modm_element_t)c; r1[3] = (f & 0x3fffffff); c >>= 30;
c += mul32x32_64(x[0], y[4]) + mul32x32_64(x[1], y[3]) + mul32x32_64(x[2], y[2]) + mul32x32_64(x[3], y[1]) + mul32x32_64(x[4], y[0]);
f = (bignum256modm_element_t)c; r1[4] = (f & 0x3fffffff); c >>= 30;
c += mul32x32_64(x[0], y[5]) + mul32x32_64(x[1], y[4]) + mul32x32_64(x[2], y[3]) + mul32x32_64(x[3], y[2]) + mul32x32_64(x[4], y[1]) + mul32x32_64(x[5], y[0]);
f = (bignum256modm_element_t)c; r1[5] = (f & 0x3fffffff); c >>= 30;
c += mul32x32_64(x[0], y[6]) + mul32x32_64(x[1], y[5]) + mul32x32_64(x[2], y[4]) + mul32x32_64(x[3], y[3]) + mul32x32_64(x[4], y[2]) + mul32x32_64(x[5], y[1]) + mul32x32_64(x[6], y[0]);
f = (bignum256modm_element_t)c; r1[6] = (f & 0x3fffffff); c >>= 30;
c += mul32x32_64(x[0], y[7]) + mul32x32_64(x[1], y[6]) + mul32x32_64(x[2], y[5]) + mul32x32_64(x[3], y[4]) + mul32x32_64(x[4], y[3]) + mul32x32_64(x[5], y[2]) + mul32x32_64(x[6], y[1]) + mul32x32_64(x[7], y[0]);
f = (bignum256modm_element_t)c; r1[7] = (f & 0x3fffffff); c >>= 30;
c += mul32x32_64(x[0], y[8]) + mul32x32_64(x[1], y[7]) + mul32x32_64(x[2], y[6]) + mul32x32_64(x[3], y[5]) + mul32x32_64(x[4], y[4]) + mul32x32_64(x[5], y[3]) + mul32x32_64(x[6], y[2]) + mul32x32_64(x[7], y[1]) + mul32x32_64(x[8], y[0]);
f = (bignum256modm_element_t)c; r1[8] = (f & 0x00ffffff); q1[0] = (f >> 8) & 0x3fffff; c >>= 30;
c += mul32x32_64(x[1], y[8]) + mul32x32_64(x[2], y[7]) + mul32x32_64(x[3], y[6]) + mul32x32_64(x[4], y[5]) + mul32x32_64(x[5], y[4]) + mul32x32_64(x[6], y[3]) + mul32x32_64(x[7], y[2]) + mul32x32_64(x[8], y[1]);
f = (bignum256modm_element_t)c; q1[0] = (q1[0] | (f << 22)) & 0x3fffffff; q1[1] = (f >> 8) & 0x3fffff; c >>= 30;
c += mul32x32_64(x[2], y[8]) + mul32x32_64(x[3], y[7]) + mul32x32_64(x[4], y[6]) + mul32x32_64(x[5], y[5]) + mul32x32_64(x[6], y[4]) + mul32x32_64(x[7], y[3]) + mul32x32_64(x[8], y[2]);
f = (bignum256modm_element_t)c; q1[1] = (q1[1] | (f << 22)) & 0x3fffffff; q1[2] = (f >> 8) & 0x3fffff; c >>= 30;
c += mul32x32_64(x[3], y[8]) + mul32x32_64(x[4], y[7]) + mul32x32_64(x[5], y[6]) + mul32x32_64(x[6], y[5]) + mul32x32_64(x[7], y[4]) + mul32x32_64(x[8], y[3]);
f = (bignum256modm_element_t)c; q1[2] = (q1[2] | (f << 22)) & 0x3fffffff; q1[3] = (f >> 8) & 0x3fffff; c >>= 30;
c += mul32x32_64(x[4], y[8]) + mul32x32_64(x[5], y[7]) + mul32x32_64(x[6], y[6]) + mul32x32_64(x[7], y[5]) + mul32x32_64(x[8], y[4]);
f = (bignum256modm_element_t)c; q1[3] = (q1[3] | (f << 22)) & 0x3fffffff; q1[4] = (f >> 8) & 0x3fffff; c >>= 30;
c += mul32x32_64(x[5], y[8]) + mul32x32_64(x[6], y[7]) + mul32x32_64(x[7], y[6]) + mul32x32_64(x[8], y[5]);
f = (bignum256modm_element_t)c; q1[4] = (q1[4] | (f << 22)) & 0x3fffffff; q1[5] = (f >> 8) & 0x3fffff; c >>= 30;
c += mul32x32_64(x[6], y[8]) + mul32x32_64(x[7], y[7]) + mul32x32_64(x[8], y[6]);
f = (bignum256modm_element_t)c; q1[5] = (q1[5] | (f << 22)) & 0x3fffffff; q1[6] = (f >> 8) & 0x3fffff; c >>= 30;
c += mul32x32_64(x[7], y[8]) + mul32x32_64(x[8], y[7]);
f = (bignum256modm_element_t)c; q1[6] = (q1[6] | (f << 22)) & 0x3fffffff; q1[7] = (f >> 8) & 0x3fffff; c >>= 30;
c += mul32x32_64(x[8], y[8]);
f = (bignum256modm_element_t)c; q1[7] = (q1[7] | (f << 22)) & 0x3fffffff; q1[8] = (f >> 8) & 0x3fffff;
barrett_reduce256_modm(r, q1, r1);
}
void expand256_modm(bignum256modm out, const unsigned char *in, size_t len) {
unsigned char work[64] = {0};
bignum256modm_element_t x[16] = {0};
bignum256modm q1 = {0};
memcpy(work, in, len);
x[0] = U8TO32_LE(work + 0);
x[1] = U8TO32_LE(work + 4);
x[2] = U8TO32_LE(work + 8);
x[3] = U8TO32_LE(work + 12);
x[4] = U8TO32_LE(work + 16);
x[5] = U8TO32_LE(work + 20);
x[6] = U8TO32_LE(work + 24);
x[7] = U8TO32_LE(work + 28);
x[8] = U8TO32_LE(work + 32);
x[9] = U8TO32_LE(work + 36);
x[10] = U8TO32_LE(work + 40);
x[11] = U8TO32_LE(work + 44);
x[12] = U8TO32_LE(work + 48);
x[13] = U8TO32_LE(work + 52);
x[14] = U8TO32_LE(work + 56);
x[15] = U8TO32_LE(work + 60);
/* r1 = (x mod 256^(32+1)) = x mod (2^8)(31+1) = x & ((1 << 264) - 1) */
out[0] = ( x[0]) & 0x3fffffff;
out[1] = ((x[ 0] >> 30) | (x[ 1] << 2)) & 0x3fffffff;
out[2] = ((x[ 1] >> 28) | (x[ 2] << 4)) & 0x3fffffff;
out[3] = ((x[ 2] >> 26) | (x[ 3] << 6)) & 0x3fffffff;
out[4] = ((x[ 3] >> 24) | (x[ 4] << 8)) & 0x3fffffff;
out[5] = ((x[ 4] >> 22) | (x[ 5] << 10)) & 0x3fffffff;
out[6] = ((x[ 5] >> 20) | (x[ 6] << 12)) & 0x3fffffff;
out[7] = ((x[ 6] >> 18) | (x[ 7] << 14)) & 0x3fffffff;
out[8] = ((x[ 7] >> 16) | (x[ 8] << 16)) & 0x00ffffff;
/* 8*31 = 248 bits, no need to reduce */
if (len < 32)
return;
/* q1 = x >> 248 = 264 bits = 9 30 bit elements */
q1[0] = ((x[ 7] >> 24) | (x[ 8] << 8)) & 0x3fffffff;
q1[1] = ((x[ 8] >> 22) | (x[ 9] << 10)) & 0x3fffffff;
q1[2] = ((x[ 9] >> 20) | (x[10] << 12)) & 0x3fffffff;
q1[3] = ((x[10] >> 18) | (x[11] << 14)) & 0x3fffffff;
q1[4] = ((x[11] >> 16) | (x[12] << 16)) & 0x3fffffff;
q1[5] = ((x[12] >> 14) | (x[13] << 18)) & 0x3fffffff;
q1[6] = ((x[13] >> 12) | (x[14] << 20)) & 0x3fffffff;
q1[7] = ((x[14] >> 10) | (x[15] << 22)) & 0x3fffffff;
q1[8] = ((x[15] >> 8) );
barrett_reduce256_modm(out, q1, out);
}
void expand_raw256_modm(bignum256modm out, const unsigned char in[32]) {
bignum256modm_element_t x[8] = {0};
x[0] = U8TO32_LE(in + 0);
x[1] = U8TO32_LE(in + 4);
x[2] = U8TO32_LE(in + 8);
x[3] = U8TO32_LE(in + 12);
x[4] = U8TO32_LE(in + 16);
x[5] = U8TO32_LE(in + 20);
x[6] = U8TO32_LE(in + 24);
x[7] = U8TO32_LE(in + 28);
out[0] = ( x[0]) & 0x3fffffff;
out[1] = ((x[ 0] >> 30) | (x[ 1] << 2)) & 0x3fffffff;
out[2] = ((x[ 1] >> 28) | (x[ 2] << 4)) & 0x3fffffff;
out[3] = ((x[ 2] >> 26) | (x[ 3] << 6)) & 0x3fffffff;
out[4] = ((x[ 3] >> 24) | (x[ 4] << 8)) & 0x3fffffff;
out[5] = ((x[ 4] >> 22) | (x[ 5] << 10)) & 0x3fffffff;
out[6] = ((x[ 5] >> 20) | (x[ 6] << 12)) & 0x3fffffff;
out[7] = ((x[ 6] >> 18) | (x[ 7] << 14)) & 0x3fffffff;
out[8] = ((x[ 7] >> 16) ) & 0x0000ffff;
}
int is_reduced256_modm(const bignum256modm in)
{
int i = 0;
uint32_t res1 = 0;
uint32_t res2 = 0;
for (i = 8; i >= 0; i--) {
res1 = (res1 << 1) | (in[i] < modm_m[i]);
res2 = (res2 << 1) | (in[i] > modm_m[i]);
}
return res1 > res2;
}
void contract256_modm(unsigned char out[32], const bignum256modm in) {
U32TO8_LE(out + 0, (in[0] ) | (in[1] << 30));
U32TO8_LE(out + 4, (in[1] >> 2) | (in[2] << 28));
U32TO8_LE(out + 8, (in[2] >> 4) | (in[3] << 26));
U32TO8_LE(out + 12, (in[3] >> 6) | (in[4] << 24));
U32TO8_LE(out + 16, (in[4] >> 8) | (in[5] << 22));
U32TO8_LE(out + 20, (in[5] >> 10) | (in[6] << 20));
U32TO8_LE(out + 24, (in[6] >> 12) | (in[7] << 18));
U32TO8_LE(out + 28, (in[7] >> 14) | (in[8] << 16));
}
void contract256_window4_modm(signed char r[64], const bignum256modm in) {
char carry = 0;
signed char *quads = r;
bignum256modm_element_t i = 0, j = 0, v = 0;
for (i = 0; i < 8; i += 2) {
v = in[i];
for (j = 0; j < 7; j++) {
*quads++ = (v & 15);
v >>= 4;
}
v |= (in[i+1] << 2);
for (j = 0; j < 8; j++) {
*quads++ = (v & 15);
v >>= 4;
}
}
v = in[8];
*quads++ = (v & 15); v >>= 4;
*quads++ = (v & 15); v >>= 4;
*quads++ = (v & 15); v >>= 4;
*quads++ = (v & 15); v >>= 4;
/* making it signed */
carry = 0;
for(i = 0; i < 63; i++) {
r[i] += carry;
r[i+1] += (r[i] >> 4);
r[i] &= 15;
carry = (r[i] >> 3);
r[i] -= (carry << 4);
}
r[63] += carry;
}
void contract256_slidingwindow_modm(signed char r[256], const bignum256modm s, int windowsize) {
int i = 0, j = 0, k = 0, b = 0;
int m = (1 << (windowsize - 1)) - 1, soplen = 256;
signed char *bits = r;
bignum256modm_element_t v = 0;
/* first put the binary expansion into r */
for (i = 0; i < 8; i++) {
v = s[i];
for (j = 0; j < 30; j++, v >>= 1)
*bits++ = (v & 1);
}
v = s[8];
for (j = 0; j < 16; j++, v >>= 1)
*bits++ = (v & 1);
/* Making it sliding window */
for (j = 0; j < soplen; j++) {
if (!r[j])
continue;
for (b = 1; (b < (soplen - j)) && (b <= 6); b++) {
if ((r[j] + (r[j + b] << b)) <= m) {
r[j] += r[j + b] << b;
r[j + b] = 0;
} else if ((r[j] - (r[j + b] << b)) >= -m) {
r[j] -= r[j + b] << b;
for (k = j + b; k < soplen; k++) {
if (!r[k]) {
r[k] = 1;
break;
}
r[k] = 0;
}
} else if (r[j + b]) {
break;
}
}
}
}
void set256_modm(bignum256modm r, uint64_t v) {
r[0] = (bignum256modm_element_t) (v & 0x3fffffff); v >>= 30;
r[1] = (bignum256modm_element_t) (v & 0x3fffffff); v >>= 30;
r[2] = (bignum256modm_element_t) (v & 0x3fffffff);
r[3] = 0;
r[4] = 0;
r[5] = 0;
r[6] = 0;
r[7] = 0;
r[8] = 0;
}
int get256_modm(uint64_t * v, const bignum256modm r){
*v = 0;
int con1 = 0;
#define NONZ(x) ((((((int64_t)(x)) - 1) >> 32) + 1) & 1)
bignum256modm_element_t c = 0;
c = r[0]; *v += (uint64_t)c & 0x3fffffff; c >>= 30; // 30
c += r[1]; *v += ((uint64_t)c & 0x3fffffff) << 30; c >>= 30; // 60
c += r[2]; *v += ((uint64_t)c & 0xf) << 60; con1 |= NONZ(c>>4); c >>= 30; // 64 bits
c += r[3]; con1 |= NONZ(c); c >>= 30;
c += r[4]; con1 |= NONZ(c); c >>= 30;
c += r[5]; con1 |= NONZ(c); c >>= 30;
c += r[6]; con1 |= NONZ(c); c >>= 30;
c += r[7]; con1 |= NONZ(c); c >>= 30;
c += r[8]; con1 |= NONZ(c); c >>= 30;
con1 |= NONZ(c);
#undef NONZ
return con1 ^ 1;
}
int eq256_modm(const bignum256modm x, const bignum256modm y){
size_t differentbits = 0;
int len = bignum256modm_limb_size;
while (len--) {
differentbits |= (*x++ ^ *y++);
}
return (int) (1 & ((differentbits - 1) >> bignum256modm_bits_per_limb));
}
int cmp256_modm(const bignum256modm x, const bignum256modm y){
int len = 2*bignum256modm_limb_size;
uint32_t a_gt = 0;
uint32_t b_gt = 0;
// 16B chunks
while (len--) {
const uint32_t ln = (const uint32_t) len;
const uint32_t a = (x[ln>>1] >> 16*(ln & 1)) & 0xffff;
const uint32_t b = (y[ln>>1] >> 16*(ln & 1)) & 0xffff;
const uint32_t limb_a_gt = ((b - a) >> 16) & 1;
const uint32_t limb_b_gt = ((a - b) >> 16) & 1;
a_gt |= limb_a_gt & ~b_gt;
b_gt |= limb_b_gt & ~a_gt;
}
return a_gt - b_gt;
}
int iszero256_modm(const bignum256modm x){
size_t differentbits = 0;
int len = bignum256modm_limb_size;
while (len--) {
differentbits |= (*x++);
}
return (int) (1 & ((differentbits - 1) >> bignum256modm_bits_per_limb));
}
void copy256_modm(bignum256modm r, const bignum256modm x){
r[0] = x[0];
r[1] = x[1];
r[2] = x[2];
r[3] = x[3];
r[4] = x[4];
r[5] = x[5];
r[6] = x[6];
r[7] = x[7];
r[8] = x[8];
}
int check256_modm(const bignum256modm x){
int ok = 1;
bignum256modm t={0}, z={0};
ok &= iszero256_modm(x) ^ 1;
barrett_reduce256_modm(t, z, x);
ok &= eq256_modm(t, x);
return ok;
}
void mulsub256_modm(bignum256modm r, const bignum256modm a, const bignum256modm b, const bignum256modm c){
//(cc - aa * bb) % l
bignum256modm t={0};
mul256_modm(t, a, b);
sub256_modm(r, c, t);
}
void muladd256_modm(bignum256modm r, const bignum256modm a, const bignum256modm b, const bignum256modm c){
//(cc + aa * bb) % l
bignum256modm t={0};
mul256_modm(t, a, b);
add256_modm(r, c, t);
}