1
0
mirror of https://github.com/trezor/trezor-firmware.git synced 2024-12-22 22:38:08 +00:00

slip39: cstyle and documentation.

This commit is contained in:
Andrew Kozlik 2019-04-14 21:07:25 +02:00
parent cd08c6937b
commit f06416eeff
3 changed files with 239 additions and 270 deletions

View File

@ -18,7 +18,6 @@
*/
#include "py/obj.h"
#include "py/objstr.h"
#include "embed/extmod/trezorobj.h"
@ -30,8 +29,9 @@
/// '''
/// Returns f(x) given the Shamir shares (x_1, f(x_1)), ... , (x_k, f(x_k)).
/// :param shares: The Shamir shares.
/// :type shares: A list of pairs (x_i, y_i), where x_i is an integer and y_i is an array of
/// bytes representing the evaluations of the polynomials in x_i.
/// :type shares: A list of pairs (x_i, y_i), where x_i is an integer and
/// y_i is an array of bytes representing the evaluations of the
/// polynomials in x_i.
/// :param int x: The x coordinate of the result.
/// :return: Evaluations of the polynomials in x.
/// :rtype: Array of bytes.
@ -39,10 +39,7 @@
mp_obj_t mod_trezorcrypto_shamir_interpolate(mp_obj_t shares, mp_obj_t x) {
size_t share_count;
mp_obj_t *share_items;
if (!MP_OBJ_IS_TYPE(shares, &mp_type_list)) {
mp_raise_TypeError("Expected a list.");
}
mp_obj_list_get(shares, &share_count, &share_items);
mp_obj_get_array(shares, &share_count, &share_items);
if (share_count < 1 || share_count > MAX_SHARE_COUNT) {
mp_raise_ValueError("Invalid number of shares.");
}
@ -51,15 +48,8 @@ mp_obj_t mod_trezorcrypto_shamir_interpolate(mp_obj_t shares, mp_obj_t x) {
const uint8_t *share_values[MAX_SHARE_COUNT];
size_t value_len = 0;
for (int i = 0; i < share_count; ++i) {
if (!MP_OBJ_IS_TYPE(share_items[i], &mp_type_tuple)) {
mp_raise_TypeError("Expected a tuple.");
}
size_t tuple_len;
mp_obj_t *share;
mp_obj_tuple_get(share_items[i], &tuple_len, &share);
if (tuple_len != 2) {
mp_raise_ValueError("Expected a tuple of length 2.");
}
mp_obj_get_array_fixed_n(share_items[i], 2, &share);
share_indices[i] = trezor_obj_get_uint8(share[0]);
mp_buffer_info_t value;
mp_get_buffer_raise(share[1], &value, MP_BUFFER_READ);
@ -76,7 +66,8 @@ mp_obj_t mod_trezorcrypto_shamir_interpolate(mp_obj_t shares, mp_obj_t x) {
}
vstr_t vstr;
vstr_init_len(&vstr, value_len);
shamir_interpolate((uint8_t*) vstr.buf, x_uint8, share_indices, share_values, share_count, value_len);
shamir_interpolate((uint8_t *)vstr.buf, x_uint8, share_indices, share_values,
share_count, value_len);
vstr_cut_tail_bytes(&vstr, vstr_len(&vstr) - value_len);
return mp_obj_new_str_from_vstr(&mp_type_bytes, &vstr);
}
@ -85,7 +76,8 @@ STATIC MP_DEFINE_CONST_FUN_OBJ_2(mod_trezorcrypto_shamir_interpolate_obj,
STATIC const mp_rom_map_elem_t mod_trezorcrypto_shamir_globals_table[] = {
{MP_ROM_QSTR(MP_QSTR___name__), MP_ROM_QSTR(MP_QSTR_shamir)},
{MP_ROM_QSTR(MP_QSTR_interpolate), MP_ROM_PTR(&mod_trezorcrypto_shamir_interpolate_obj)},
{MP_ROM_QSTR(MP_QSTR_interpolate),
MP_ROM_PTR(&mod_trezorcrypto_shamir_interpolate_obj)},
};
STATIC MP_DEFINE_CONST_DICT(mod_trezorcrypto_shamir_globals,
mod_trezorcrypto_shamir_globals_table);

View File

@ -35,292 +35,265 @@
* lookup operations, as all proper crypto code must be.
*/
#include "shamir.h"
#include <string.h>
#include <stdio.h>
#include <string.h>
static void
bitslice(uint32_t r[8], const uint8_t *x, size_t len)
{
size_t bit_idx, arr_idx;
uint32_t cur;
static void bitslice(uint32_t r[8], const uint8_t *x, size_t len) {
size_t bit_idx, arr_idx;
uint32_t cur;
memset(r, 0, sizeof(uint32_t[8]));
for (arr_idx = 0; arr_idx < len; arr_idx++) {
cur = (uint32_t) x[arr_idx];
for (bit_idx = 0; bit_idx < 8; bit_idx++) {
r[bit_idx] |= ((cur & (1 << bit_idx)) >> bit_idx) << arr_idx;
}
}
memset(r, 0, sizeof(uint32_t[8]));
for (arr_idx = 0; arr_idx < len; arr_idx++) {
cur = (uint32_t)x[arr_idx];
for (bit_idx = 0; bit_idx < 8; bit_idx++) {
r[bit_idx] |= ((cur & (1 << bit_idx)) >> bit_idx) << arr_idx;
}
}
}
static void unbitslice(uint8_t *r, const uint32_t x[8], size_t len) {
size_t bit_idx, arr_idx;
uint32_t cur;
static void
unbitslice(uint8_t *r, const uint32_t x[8], size_t len)
{
size_t bit_idx, arr_idx;
uint32_t cur;
memset(r, 0, sizeof(uint8_t) * len);
for (bit_idx = 0; bit_idx < 8; bit_idx++) {
cur = (uint32_t) x[bit_idx];
for (arr_idx = 0; arr_idx < len; arr_idx++) {
r[arr_idx] |= ((cur & (1 << arr_idx)) >> arr_idx) << bit_idx;
}
}
memset(r, 0, sizeof(uint8_t) * len);
for (bit_idx = 0; bit_idx < 8; bit_idx++) {
cur = (uint32_t)x[bit_idx];
for (arr_idx = 0; arr_idx < len; arr_idx++) {
r[arr_idx] |= ((cur & (1 << arr_idx)) >> arr_idx) << bit_idx;
}
}
}
static void
bitslice_setall(uint32_t r[8], const uint8_t x)
{
size_t idx;
for (idx = 0; idx < 8; idx++) {
r[idx] = ((int32_t) ((x & (1 << idx)) << (31 - idx))) >> 31;
}
static void bitslice_setall(uint32_t r[8], const uint8_t x) {
size_t idx;
for (idx = 0; idx < 8; idx++) {
r[idx] = ((int32_t)((x & (1 << idx)) << (31 - idx))) >> 31;
}
}
/*
* Add (XOR) `r` with `x` and store the result in `r`.
*/
static void
gf256_add(uint32_t r[8], const uint32_t x[8])
{
size_t idx;
for (idx = 0; idx < 8; idx++) r[idx] ^= x[idx];
static void gf256_add(uint32_t r[8], const uint32_t x[8]) {
size_t idx;
for (idx = 0; idx < 8; idx++) r[idx] ^= x[idx];
}
/*
* Safely multiply two bitsliced polynomials in GF(2^8) reduced by
* x^8 + x^4 + x^3 + x + 1. `r` and `a` may overlap, but overlapping of `r`
* and `b` will produce an incorrect result! If you need to square a polynomial
* use `gf256_square` instead.
*/
static void
gf256_mul(uint32_t r[8], const uint32_t a[8], const uint32_t b[8])
{
/* This function implements Russian Peasant multiplication on two
* bitsliced polynomials.
*
* I personally think that these kinds of long lists of operations
* are often a bit ugly. A double for loop would be nicer and would
* take up a lot less lines of code.
* However, some compilers seem to fail in optimizing these kinds of
* loops. So we will just have to do this by hand.
*/
uint32_t a2[8];
memcpy(a2, a, sizeof(uint32_t[8]));
static void gf256_mul(uint32_t r[8], const uint32_t a[8], const uint32_t b[8]) {
/* This function implements Russian Peasant multiplication on two
* bitsliced polynomials.
*
* I personally think that these kinds of long lists of operations
* are often a bit ugly. A double for loop would be nicer and would
* take up a lot less lines of code.
* However, some compilers seem to fail in optimizing these kinds of
* loops. So we will just have to do this by hand.
*/
uint32_t a2[8];
memcpy(a2, a, sizeof(uint32_t[8]));
r[0] = a2[0] & b[0]; /* add (assignment, because r is 0) */
r[1] = a2[1] & b[0];
r[2] = a2[2] & b[0];
r[3] = a2[3] & b[0];
r[4] = a2[4] & b[0];
r[5] = a2[5] & b[0];
r[6] = a2[6] & b[0];
r[7] = a2[7] & b[0];
a2[0] ^= a2[7]; /* reduce */
a2[2] ^= a2[7];
a2[3] ^= a2[7];
r[0] = a2[0] & b[0]; /* add (assignment, because r is 0) */
r[1] = a2[1] & b[0];
r[2] = a2[2] & b[0];
r[3] = a2[3] & b[0];
r[4] = a2[4] & b[0];
r[5] = a2[5] & b[0];
r[6] = a2[6] & b[0];
r[7] = a2[7] & b[0];
a2[0] ^= a2[7]; /* reduce */
a2[2] ^= a2[7];
a2[3] ^= a2[7];
r[0] ^= a2[7] & b[1]; /* add */
r[1] ^= a2[0] & b[1];
r[2] ^= a2[1] & b[1];
r[3] ^= a2[2] & b[1];
r[4] ^= a2[3] & b[1];
r[5] ^= a2[4] & b[1];
r[6] ^= a2[5] & b[1];
r[7] ^= a2[6] & b[1];
a2[7] ^= a2[6]; /* reduce */
a2[1] ^= a2[6];
a2[2] ^= a2[6];
r[0] ^= a2[7] & b[1]; /* add */
r[1] ^= a2[0] & b[1];
r[2] ^= a2[1] & b[1];
r[3] ^= a2[2] & b[1];
r[4] ^= a2[3] & b[1];
r[5] ^= a2[4] & b[1];
r[6] ^= a2[5] & b[1];
r[7] ^= a2[6] & b[1];
a2[7] ^= a2[6]; /* reduce */
a2[1] ^= a2[6];
a2[2] ^= a2[6];
r[0] ^= a2[6] & b[2]; /* add */
r[1] ^= a2[7] & b[2];
r[2] ^= a2[0] & b[2];
r[3] ^= a2[1] & b[2];
r[4] ^= a2[2] & b[2];
r[5] ^= a2[3] & b[2];
r[6] ^= a2[4] & b[2];
r[7] ^= a2[5] & b[2];
a2[6] ^= a2[5]; /* reduce */
a2[0] ^= a2[5];
a2[1] ^= a2[5];
r[0] ^= a2[6] & b[2]; /* add */
r[1] ^= a2[7] & b[2];
r[2] ^= a2[0] & b[2];
r[3] ^= a2[1] & b[2];
r[4] ^= a2[2] & b[2];
r[5] ^= a2[3] & b[2];
r[6] ^= a2[4] & b[2];
r[7] ^= a2[5] & b[2];
a2[6] ^= a2[5]; /* reduce */
a2[0] ^= a2[5];
a2[1] ^= a2[5];
r[0] ^= a2[5] & b[3]; /* add */
r[1] ^= a2[6] & b[3];
r[2] ^= a2[7] & b[3];
r[3] ^= a2[0] & b[3];
r[4] ^= a2[1] & b[3];
r[5] ^= a2[2] & b[3];
r[6] ^= a2[3] & b[3];
r[7] ^= a2[4] & b[3];
a2[5] ^= a2[4]; /* reduce */
a2[7] ^= a2[4];
a2[0] ^= a2[4];
r[0] ^= a2[5] & b[3]; /* add */
r[1] ^= a2[6] & b[3];
r[2] ^= a2[7] & b[3];
r[3] ^= a2[0] & b[3];
r[4] ^= a2[1] & b[3];
r[5] ^= a2[2] & b[3];
r[6] ^= a2[3] & b[3];
r[7] ^= a2[4] & b[3];
a2[5] ^= a2[4]; /* reduce */
a2[7] ^= a2[4];
a2[0] ^= a2[4];
r[0] ^= a2[4] & b[4]; /* add */
r[1] ^= a2[5] & b[4];
r[2] ^= a2[6] & b[4];
r[3] ^= a2[7] & b[4];
r[4] ^= a2[0] & b[4];
r[5] ^= a2[1] & b[4];
r[6] ^= a2[2] & b[4];
r[7] ^= a2[3] & b[4];
a2[4] ^= a2[3]; /* reduce */
a2[6] ^= a2[3];
a2[7] ^= a2[3];
r[0] ^= a2[4] & b[4]; /* add */
r[1] ^= a2[5] & b[4];
r[2] ^= a2[6] & b[4];
r[3] ^= a2[7] & b[4];
r[4] ^= a2[0] & b[4];
r[5] ^= a2[1] & b[4];
r[6] ^= a2[2] & b[4];
r[7] ^= a2[3] & b[4];
a2[4] ^= a2[3]; /* reduce */
a2[6] ^= a2[3];
a2[7] ^= a2[3];
r[0] ^= a2[3] & b[5]; /* add */
r[1] ^= a2[4] & b[5];
r[2] ^= a2[5] & b[5];
r[3] ^= a2[6] & b[5];
r[4] ^= a2[7] & b[5];
r[5] ^= a2[0] & b[5];
r[6] ^= a2[1] & b[5];
r[7] ^= a2[2] & b[5];
a2[3] ^= a2[2]; /* reduce */
a2[5] ^= a2[2];
a2[6] ^= a2[2];
r[0] ^= a2[3] & b[5]; /* add */
r[1] ^= a2[4] & b[5];
r[2] ^= a2[5] & b[5];
r[3] ^= a2[6] & b[5];
r[4] ^= a2[7] & b[5];
r[5] ^= a2[0] & b[5];
r[6] ^= a2[1] & b[5];
r[7] ^= a2[2] & b[5];
a2[3] ^= a2[2]; /* reduce */
a2[5] ^= a2[2];
a2[6] ^= a2[2];
r[0] ^= a2[2] & b[6]; /* add */
r[1] ^= a2[3] & b[6];
r[2] ^= a2[4] & b[6];
r[3] ^= a2[5] & b[6];
r[4] ^= a2[6] & b[6];
r[5] ^= a2[7] & b[6];
r[6] ^= a2[0] & b[6];
r[7] ^= a2[1] & b[6];
a2[2] ^= a2[1]; /* reduce */
a2[4] ^= a2[1];
a2[5] ^= a2[1];
r[0] ^= a2[2] & b[6]; /* add */
r[1] ^= a2[3] & b[6];
r[2] ^= a2[4] & b[6];
r[3] ^= a2[5] & b[6];
r[4] ^= a2[6] & b[6];
r[5] ^= a2[7] & b[6];
r[6] ^= a2[0] & b[6];
r[7] ^= a2[1] & b[6];
a2[2] ^= a2[1]; /* reduce */
a2[4] ^= a2[1];
a2[5] ^= a2[1];
r[0] ^= a2[1] & b[7]; /* add */
r[1] ^= a2[2] & b[7];
r[2] ^= a2[3] & b[7];
r[3] ^= a2[4] & b[7];
r[4] ^= a2[5] & b[7];
r[5] ^= a2[6] & b[7];
r[6] ^= a2[7] & b[7];
r[7] ^= a2[0] & b[7];
r[0] ^= a2[1] & b[7]; /* add */
r[1] ^= a2[2] & b[7];
r[2] ^= a2[3] & b[7];
r[3] ^= a2[4] & b[7];
r[4] ^= a2[5] & b[7];
r[5] ^= a2[6] & b[7];
r[6] ^= a2[7] & b[7];
r[7] ^= a2[0] & b[7];
}
/*
* Square `x` in GF(2^8) and write the result to `r`. `r` and `x` may overlap.
*/
static void
gf256_square(uint32_t r[8], const uint32_t x[8])
{
uint32_t r8, r10, r12, r14;
/* Use the Freshman's Dream rule to square the polynomial
* Assignments are done from 7 downto 0, because this allows the user
* to execute this function in-place (e.g. `gf256_square(r, r);`).
*/
r14 = x[7];
r12 = x[6];
r10 = x[5];
r8 = x[4];
r[6] = x[3];
r[4] = x[2];
r[2] = x[1];
r[0] = x[0];
static void gf256_square(uint32_t r[8], const uint32_t x[8]) {
uint32_t r8, r10, r12, r14;
/* Use the Freshman's Dream rule to square the polynomial
* Assignments are done from 7 downto 0, because this allows the user
* to execute this function in-place (e.g. `gf256_square(r, r);`).
*/
r14 = x[7];
r12 = x[6];
r10 = x[5];
r8 = x[4];
r[6] = x[3];
r[4] = x[2];
r[2] = x[1];
r[0] = x[0];
/* Reduce with x^8 + x^4 + x^3 + x + 1 until order is less than 8 */
r[7] = r14; /* r[7] was 0 */
r[6] ^= r14;
r10 ^= r14;
/* Skip, because r13 is always 0 */
r[4] ^= r12;
r[5] = r12; /* r[5] was 0 */
r[7] ^= r12;
r8 ^= r12;
/* Skip, because r11 is always 0 */
r[2] ^= r10;
r[3] = r10; /* r[3] was 0 */
r[5] ^= r10;
r[6] ^= r10;
r[1] = r14; /* r[1] was 0 */
r[2] ^= r14; /* Substitute r9 by r14 because they will always be equal*/
r[4] ^= r14;
r[5] ^= r14;
r[0] ^= r8;
r[1] ^= r8;
r[3] ^= r8;
r[4] ^= r8;
/* Reduce with x^8 + x^4 + x^3 + x + 1 until order is less than 8 */
r[7] = r14; /* r[7] was 0 */
r[6] ^= r14;
r10 ^= r14;
/* Skip, because r13 is always 0 */
r[4] ^= r12;
r[5] = r12; /* r[5] was 0 */
r[7] ^= r12;
r8 ^= r12;
/* Skip, because r11 is always 0 */
r[2] ^= r10;
r[3] = r10; /* r[3] was 0 */
r[5] ^= r10;
r[6] ^= r10;
r[1] = r14; /* r[1] was 0 */
r[2] ^= r14; /* Substitute r9 by r14 because they will always be equal*/
r[4] ^= r14;
r[5] ^= r14;
r[0] ^= r8;
r[1] ^= r8;
r[3] ^= r8;
r[4] ^= r8;
}
/*
* Invert `x` in GF(2^8) and write the result to `r`
*/
static void
gf256_inv(uint32_t r[8], uint32_t x[8])
{
uint32_t y[8], z[8];
static void gf256_inv(uint32_t r[8], uint32_t x[8]) {
uint32_t y[8], z[8];
gf256_square(y, x); // y = x^2
gf256_square(y, y); // y = x^4
gf256_square(r, y); // r = x^8
gf256_mul(z, r, x); // z = x^9
gf256_square(r, r); // r = x^16
gf256_mul(r, r, z); // r = x^25
gf256_square(r, r); // r = x^50
gf256_square(z, r); // z = x^100
gf256_square(z, z); // z = x^200
gf256_mul(r, r, z); // r = x^250
gf256_mul(r, r, y); // r = x^254
gf256_square(y, x); // y = x^2
gf256_square(y, y); // y = x^4
gf256_square(r, y); // r = x^8
gf256_mul(z, r, x); // z = x^9
gf256_square(r, r); // r = x^16
gf256_mul(r, r, z); // r = x^25
gf256_square(r, r); // r = x^50
gf256_square(z, r); // z = x^100
gf256_square(z, z); // z = x^200
gf256_mul(r, r, z); // r = x^250
gf256_mul(r, r, y); // r = x^254
}
void shamir_interpolate(uint8_t *result,
uint8_t result_index,
void shamir_interpolate(uint8_t *result, uint8_t result_index,
const uint8_t *share_indices,
const uint8_t **share_values,
uint8_t share_count,
size_t len)
{
size_t i, j;
uint32_t xs[share_count][8], ys[share_count][8];
uint32_t x[8];
uint32_t denom[8], tmp[8];
uint32_t num[8] = {~0}; /* num is the numerator (=1) */
uint32_t secret[8] = {0};
const uint8_t **share_values, uint8_t share_count,
size_t len) {
size_t i, j;
uint32_t xs[share_count][8], ys[share_count][8];
uint32_t x[8];
uint32_t denom[8], tmp[8];
uint32_t num[8] = {~0}; /* num is the numerator (=1) */
uint32_t secret[8] = {0};
if (len > SHAMIR_MAX_LEN)
return;
if (len > SHAMIR_MAX_LEN) return;
/* Collect the x and y values */
for (i = 0; i < share_count; i++) {
bitslice_setall(xs[i], share_indices[i]);
bitslice(ys[i], share_values[i], len);
/* Collect the x and y values */
for (i = 0; i < share_count; i++) {
bitslice_setall(xs[i], share_indices[i]);
bitslice(ys[i], share_values[i], len);
}
bitslice_setall(x, result_index);
for (i = 0; i < share_count; i++) {
memcpy(tmp, x, sizeof(uint32_t[8]));
gf256_add(tmp, xs[i]);
gf256_mul(num, num, tmp);
}
/* Use Lagrange basis polynomials to calculate the secret coefficient */
for (i = 0; i < share_count; i++) {
memcpy(denom, x, sizeof(denom));
gf256_add(denom, xs[i]);
for (j = 0; j < share_count; j++) {
if (i == j) continue;
memcpy(tmp, xs[i], sizeof(uint32_t[8]));
gf256_add(tmp, xs[j]);
gf256_mul(denom, denom, tmp);
}
bitslice_setall(x, result_index);
for (i = 0; i < share_count; i++) {
memcpy(tmp, x, sizeof(uint32_t[8]));
gf256_add(tmp, xs[i]);
gf256_mul(num, num, tmp);
}
/* Use Lagrange basis polynomials to calculate the secret coefficient */
for (i = 0; i < share_count; i++) {
memcpy(denom, x, sizeof(denom));
gf256_add(denom, xs[i]);
for (j = 0; j < share_count; j++) {
if (i == j) continue;
memcpy(tmp, xs[i], sizeof(uint32_t[8]));
gf256_add(tmp, xs[j]);
gf256_mul(denom, denom, tmp);
}
gf256_inv(tmp, denom); /* inverted denominator */
gf256_mul(tmp, tmp, num); /* basis polynomial */
gf256_mul(tmp, tmp, ys[i]); /* scaled coefficient */
gf256_add(secret, tmp);
}
unbitslice(result, secret, len);
gf256_inv(tmp, denom); /* inverted denominator */
gf256_mul(tmp, tmp, num); /* basis polynomial */
gf256_mul(tmp, tmp, ys[i]); /* scaled coefficient */
gf256_add(secret, tmp);
}
unbitslice(result, secret, len);
}

View File

@ -26,7 +26,6 @@
* intermediate level API. You have been warned!
*/
#ifndef __SHAMIR_H__
#define __SHAMIR_H__
@ -36,12 +35,19 @@
#define SHAMIR_MAX_LEN 32
/*
A list of pairs (x_i, y_i), where x_i is an integer and y_i is an array of bytes representing the evaluations of the polynomials in x_i.
The x coordinate of the result.
Evaluations of the polynomials in x.
* Interpolate the `m` shares provided in `shares` and write the evaluation at
* point `x` to `result`. The number of shares used to compute the result may
* be larger than the threshold needed to .
* Computes f(x) given the Shamir shares (x_1, f(x_1)), ... , (x_m, f(x_m)).
* result: Array of length len where the evaluations of the polynomials in x
* will be written.
* result_index: The x coordinate of the result.
* share_indices: Points to an array of integers x_1, ... , x_m.
* share_values: Points to an array of y_1, ... , y_m, where each y_i is an
* array of bytes of length len representing the evaluations of the
* polynomials in x_i.
* share_count: The number of shares m.
* len: The length of the result array and each of the y_1, ... , y_m arrays.
* The number of shares used to compute the result may be larger than the
* required threshold.
*
* This function does *not* do *any* checking for integrity. If any of the
* shares are not original, this will result in an invalid restored value.
@ -49,14 +55,12 @@ Evaluations of the polynomials in x.
* the shares that were provided as input were incorrect, the result *still*
* allows an attacker to gain information about the correct result.
*
* This function treats `shares` and `result` as secret values. `m` is treated as
* a public value (for performance reasons).
* This function treats `shares_values`, `share_indices` and `result` as secret
* values. `share_count` is treated as a public value (for performance reasons).
*/
void shamir_interpolate(uint8_t *result,
uint8_t result_index,
void shamir_interpolate(uint8_t *result, uint8_t result_index,
const uint8_t *share_indices,
const uint8_t **share_values,
uint8_t share_count,
const uint8_t **share_values, uint8_t share_count,
size_t len);
#endif /* __SHAMIR_H__ */