1
0
mirror of https://github.com/trezor/trezor-firmware.git synced 2025-01-22 13:21:03 +00:00

New fast variant of point_multiply.

Use a similar algorithm for `point_multiply` as for
`scalar_multiply` but with less precomputation.
Added double for points in Jacobian coordinates.
Simplified `point_jacobian_add` a little.
This commit is contained in:
Jochen Hoenicke 2015-03-21 20:59:23 +01:00
parent 1700caf2ad
commit edf0fc4902

246
ecdsa.c
View File

@ -131,31 +131,6 @@ void point_double(curve_point *cp)
bn_mod(&(cp->y), &prime256k1);
}
// res = k * p
void point_multiply(const bignum256 *k, const curve_point *p, curve_point *res)
{
int i, j;
// result is zero
int is_zero = 1;
curve_point curr;
// initial res
memcpy(&curr, p, sizeof(curve_point));
for (i = 0; i < 9; i++) {
for (j = 0; j < 30; j++) {
if (i == 8 && (k->val[i] >> j) == 0) break;
if (k->val[i] & (1u << j)) {
if (is_zero) {
memcpy(res, &curr, sizeof(curve_point));
is_zero = 0;
} else {
point_add(&curr, res);
}
}
point_double(&curr);
}
}
}
// set point to internal representation of point at infinity
void point_set_infinity(curve_point *p)
{
@ -193,8 +168,6 @@ int point_is_negative_of(const curve_point *p, const curve_point *q)
return !bn_is_equal(&(p->y), &(q->y));
}
#if USE_PRECOMPUTED_CP
// Negate a (modulo prime) if cond is 0xffffffff, keep it if cond is 0.
// The timing of this function does not depend on cond.
static void conditional_negate(uint32_t cond, bignum256 *a, const bignum256 *prime)
@ -257,13 +230,13 @@ static void point_jacobian_add(const curve_point *p1, jacobian_curve_point *p2)
bignum256 r, h;
bignum256 rsq, hcb, hcby2, hsqx2;
int j;
uint64_t tmp1, tmp2;
uint64_t tmp1;
/* usual algorithm:
*
* lambda = (y1 - y2/z2^3) / (x1 - x2/z2^2)
* x3/z3^2 = lambda^2 - x1 - x2/z2^2
* y3/z3^3 = lambda * (x3/z3 - x2/z2) - y2/z2^3
* y3/z3^3 = lambda * (x2/z2^2 - x3/z3^2) - y2/z2^3
*
* to get rid of fraction we set
* r = (y1 * z2^3 - y2) (the numerator of lambda * z2^3)
@ -325,35 +298,208 @@ static void point_jacobian_add(const curve_point *p1, jacobian_curve_point *p2)
// z3 = h*z2
bn_multiply(&h, &p2->z, &prime256k1);
bn_mod(&p2->z, &prime256k1);
// x3 = r^2 - h^3 - 2h^2x2
// y3 = r*(h^2x2 - x3) - h^3y2
// compute h^2x2 - x3 = h^3 + 3h^2x2 - r^2 first.
tmp1 = 0;
tmp2 = 0;
for (j = 0; j < 9; j++) {
tmp1 += (uint64_t) rsq.val[j] + 4*prime256k1.val[j] - hcb.val[j] - 2*hsqx2.val[j];
tmp2 += (uint64_t) hcb.val[j] + 3*hsqx2.val[j] + 2*prime256k1.val[j] - rsq.val[j];
assert(tmp1 < 5 * 0x40000000ull);
assert(tmp2 < 6 * 0x40000000ull);
p2->x.val[j] = tmp1 & 0x3fffffff;
p2->y.val[j] = tmp2 & 0x3fffffff;
tmp1 >>= 30;
tmp2 >>= 30;
}
// y3 = r*(h^2x2 - x3) - y2*h^3
bn_multiply(&r, &p2->y, &prime256k1);
bn_subtractmod(&p2->y, &hcby2, &p2->y, &prime256k1);
// normalize the numbers
bn_fast_mod(&p2->x, &prime256k1);
bn_mod(&p2->x, &prime256k1);
// y3 = r*(h^2x2 - x3) - y2*h^3
bn_subtractmod(&hsqx2, &p2->x, &p2->y, &prime256k1);
bn_multiply(&r, &p2->y, &prime256k1);
bn_subtractmod(&p2->y, &hcby2, &p2->y, &prime256k1);
bn_fast_mod(&p2->y, &prime256k1);
bn_mod(&p2->y, &prime256k1);
bn_mod(&p2->z, &prime256k1);
}
static void point_jacobian_double(jacobian_curve_point *p) {
bignum256 m, msq, ysq, xysq;
int j;
uint32_t tmp1, tmp2;
uint32_t modd;
/* usual algorithm:
*
* lambda = (3(x/z^2)^2 / 2y/z^3) = 3x^2/2yz
* x3/z3^2 = lambda^2 - 2x/z^2
* y3/z3^3 = lambda * (x/z^2 - x3/z3^2) - y/z^3
*
* to get rid of fraction we set
* m = 3/2 x^2
* Hence,
* lambda = m / yz
*
* With z3 = 2yz (the denominator of lambda)
* we get x3 = lambda^2*z3^2 - 2*x/z^2*z3^2
* = m^2 - 2*xy^2
* and y3 = (lambda * (x/z^2 - x3/z3^2) - y/z^3) * z3^3
* = m * (xy^2 - x3) - y^4
*/
/* m = 3/2*x*x
* x3 = m^2 - 2*xy^2
* y3 = m*(xy^2 - x3) - 8y^4
* z3 = y*z
*/
m = p->x;
bn_multiply(&m, &m, &prime256k1);
modd = -(m.val[0] & 1);
// compute m = 3*m/2 mod prime
// if m is odd compute (3*m+prime)/2
tmp1 = (3*m.val[0] + (prime256k1.val[0] & modd)) >> 1;
for (j = 0; j < 8; j++) {
tmp2 = (3*m.val[j+1] + (prime256k1.val[j+1] & modd));
tmp1 += (tmp2 & 1) << 29;
m.val[j] = tmp1 & 0x3fffffff;
tmp1 >>= 30;
tmp1 += tmp2 >> 1;
}
m.val[8] = tmp1;
// msq = m^2
msq = m;
bn_multiply(&msq, &msq, &prime256k1);
// ysq = y^2
ysq = p->y;
bn_multiply(&ysq, &ysq, &prime256k1);
// xysq = xy^2
xysq = p->x;
bn_multiply(&ysq, &xysq, &prime256k1);
bn_multiply(&p->y, &p->z, &prime256k1);
bn_mod(&p->z, &prime256k1);
// x3 = m^2 - 2*xy^2
tmp1 = 0;
for (j = 0; j < 9; j++) {
tmp1 += msq.val[j] + 3*prime256k1.val[j] - 2*xysq.val[j];
p->x.val[j] = tmp1 & 0x3fffffff;
tmp1 >>= 30;
}
bn_fast_mod(&p->x, &prime256k1);
bn_mod(&p->x, &prime256k1);
// y = m*(xy^2 - x3) - y^4
bn_subtractmod(&xysq, &p->x, &p->y, &prime256k1);
bn_multiply(&m, &p->y, &prime256k1);
bn_multiply(&ysq, &ysq, &prime256k1);
bn_subtractmod(&p->y, &ysq, &p->y, &prime256k1);
bn_fast_mod(&p->y, &prime256k1);
bn_mod(&p->y, &prime256k1);
}
// res = k * p
void point_multiply(const bignum256 *k, const curve_point *p, curve_point *res)
{
// this algorithm is loosely based on
// Katsuyuki Okeya and Tsuyoshi Takagi, The Width-w NAF Method Provides
// Small Memory and Fast Elliptic Scalar Multiplications Secure against
// Side Channel Attacks.
assert (bn_is_less(k, &order256k1));
int i, j;
int pos, shift;
bignum256 a;
uint32_t is_even = (k->val[0] & 1) - 1;
uint32_t bits, sign, nsign;
jacobian_curve_point jres;
curve_point pmult[8];
// is_even = 0xffffffff if k is even, 0 otherwise.
// add 2^256.
// make number odd: subtract order256k1 if even
uint32_t tmp = 1;
uint32_t is_non_zero = 0;
for (j = 0; j < 8; j++) {
is_non_zero |= k->val[j];
tmp += 0x3fffffff + k->val[j] - (order256k1.val[j] & is_even);
a.val[j] = tmp & 0x3fffffff;
tmp >>= 30;
}
is_non_zero |= k->val[j];
a.val[j] = tmp + 0xffff + k->val[j] - (order256k1.val[j] & is_even);
assert((a.val[0] & 1) != 0);
// special case 0*p: just return zero. We don't care about constant time.
if (!is_non_zero) {
point_set_infinity(res);
return;
}
// Now a = k + 2^256 (mod order256k1) and a is odd.
//
// The idea is to bring the new a into the form.
// sum_{i=0..64} a[i] 16^i, where |a[i]| < 16 and a[i] is odd.
// a[0] is odd, since a is odd. If a[i] would be even, we can
// add 1 to it and subtract 16 from a[i-1]. Afterwards,
// a[64] = 1, which is the 2^256 that we added before.
//
// Since k = a - 2^256 (mod order256k1), we can compute
// k*p = sum_{i=0..63} a[i] 16^i * p
//
// We compute |a[i]| * p in advance for all possible
// values of |a[i]| * p. pmult[i] = (2*i+1) * p
// We compute p, 3*p, ..., 15*p and store it in the table pmult.
// store p^2 temporarily in pmult[7]
pmult[7] = *p;
point_double(&pmult[7]);
// compute 3*p, etc by repeatedly adding p^2.
pmult[0] = *p;
for (i = 1; i < 8; i++) {
pmult[i] = pmult[7];
point_add(&pmult[i-1], &pmult[i]);
}
// now compute res = sum_{i=0..63} a[i] * 16^i * p step by step,
// starting with i = 63.
// initialize jres = |a[63]| * p.
// Note that a[i] = a>>(4*i) & 0xf if (a&0x10) != 0
// and - (16 - (a>>(4*i) & 0xf)) otherwise. We can compute this as
// ((a ^ (((a >> 4) & 1) - 1)) & 0xf) >> 1
// since a is odd.
bits = a.val[8] >> 12;
sign = (bits >> 4) - 1;
bits ^= sign;
bits &= 15;
curve_to_jacobian(&pmult[bits>>1], &jres);
for (i = 62; i >= 0; i--) {
// sign = sign(a[i+1]) (0xffffffff for negative, 0 for positive)
// invariant jres = (-1)^sign sum_{j=i+1..63} (a[j] * 16^{j-i-1} * p)
point_jacobian_double(&jres);
point_jacobian_double(&jres);
point_jacobian_double(&jres);
point_jacobian_double(&jres);
// get lowest 5 bits of a >> (i*4).
pos = i*4/30; shift = i*4 % 30;
bits = (a.val[pos+1]<<(30-shift) | a.val[pos] >> shift) & 31;
nsign = (bits >> 4) - 1;
bits ^= nsign;
bits &= 15;
// negate last result to make signs of this round and the
// last round equal.
conditional_negate(sign ^ nsign, &jres.z, &prime256k1);
// add odd factor
point_jacobian_add(&pmult[bits >> 1], &jres);
sign = nsign;
}
conditional_negate(sign, &jres.z, &prime256k1);
jacobian_to_curve(&jres, res);
}
#if USE_PRECOMPUTED_CP
// res = k * G
// k must be a normalized number with 0 <= k < order256k1
@ -415,7 +561,6 @@ void scalar_multiply(const bignum256 *k, curve_point *res)
curve_to_jacobian(&secp256k1_cp[0][lowbits >> 1], &jres);
for (i = 1; i < 64; i ++) {
// invariant res = sign(a[i-1]) sum_{j=0..i-1} (a[j] * 16^j * G)
// Note that sign(a[i-1]
// shift a by 4 places.
for (j = 0; j < 8; j++) {
@ -745,7 +890,6 @@ int ecdsa_verify_double(const uint8_t *pub_key, const uint8_t *sig, const uint8_
// returns 0 if verification succeeded
int ecdsa_verify_digest(const uint8_t *pub_key, const uint8_t *sig, const uint8_t *digest)
{
int i, j;
curve_point pub, res;
bignum256 r, s, z;
@ -776,16 +920,8 @@ int ecdsa_verify_digest(const uint8_t *pub_key, const uint8_t *sig, const uint8_
}
// both pub and res can be infinity, can have y = 0 OR can be equal -> false negative
for (i = 0; i < 9; i++) {
for (j = 0; j < 30; j++) {
if (i == 8 && (s.val[i] >> j) == 0) break;
if (s.val[i] & (1u << j)) {
point_add(&pub, &res);
}
point_double(&pub);
}
}
point_multiply(&s, &pub, &pub);
point_add(&pub, &res);
bn_mod(&(res.x), &order256k1);
// signature does not match