mirror of
https://github.com/trezor/trezor-firmware.git
synced 2025-01-15 01:40:57 +00:00
Merge pull request #394 from ph4r05/xmr-mg
xmr: MLSAG computation optimized
This commit is contained in:
commit
d919e99255
@ -10,7 +10,7 @@ from .state import State
|
||||
|
||||
from apps.monero.layout import confirms
|
||||
from apps.monero.signing import RctType
|
||||
from apps.monero.xmr import crypto, serialize
|
||||
from apps.monero.xmr import crypto
|
||||
|
||||
if False:
|
||||
from trezor.messages.MoneroTransactionSourceEntry import (
|
||||
@ -40,8 +40,6 @@ async def sign_input(
|
||||
:param spend_enc: one time address spending private key. Encrypted.
|
||||
:return: Generated signature MGs[i]
|
||||
"""
|
||||
from apps.monero.signing import offloading_keys
|
||||
|
||||
await confirms.transaction_step(
|
||||
state.ctx, state.STEP_SIGN, state.current_input_index + 1, state.input_count
|
||||
)
|
||||
@ -57,8 +55,11 @@ async def sign_input(
|
||||
raise ValueError("Two and more inputs must imply SimpleRCT")
|
||||
|
||||
input_position = state.source_permutation[state.current_input_index]
|
||||
mods = utils.unimport_begin()
|
||||
|
||||
# Check input's HMAC
|
||||
from apps.monero.signing import offloading_keys
|
||||
|
||||
vini_hmac_comp = await offloading_keys.gen_hmac_vini(
|
||||
state.key_hmac, src_entr, vini_bin, input_position
|
||||
)
|
||||
@ -66,7 +67,9 @@ async def sign_input(
|
||||
raise ValueError("HMAC is not correct")
|
||||
|
||||
gc.collect()
|
||||
state.mem_trace(1)
|
||||
state.mem_trace(1, True)
|
||||
|
||||
from apps.monero.xmr.crypto import chacha_poly
|
||||
|
||||
if state.rct_type == RctType.Simple:
|
||||
# both pseudo_out and its mask were offloaded so we need to
|
||||
@ -78,10 +81,7 @@ async def sign_input(
|
||||
if not crypto.ct_equals(pseudo_out_hmac_comp, pseudo_out_hmac):
|
||||
raise ValueError("HMAC is not correct")
|
||||
|
||||
gc.collect()
|
||||
state.mem_trace(2)
|
||||
|
||||
from apps.monero.xmr.crypto import chacha_poly
|
||||
state.mem_trace(2, True)
|
||||
|
||||
pseudo_out_alpha = crypto.decodeint(
|
||||
chacha_poly.decrypt_pack(
|
||||
@ -92,9 +92,6 @@ async def sign_input(
|
||||
pseudo_out_c = crypto.decodepoint(pseudo_out)
|
||||
|
||||
# Spending secret
|
||||
from apps.monero.xmr.crypto import chacha_poly
|
||||
from apps.monero.xmr.serialize_messages.ct_keys import CtKey
|
||||
|
||||
spend_key = crypto.decodeint(
|
||||
chacha_poly.decrypt_pack(
|
||||
offloading_keys.enc_key_spend(state.key_enc, input_position),
|
||||
@ -102,8 +99,18 @@ async def sign_input(
|
||||
)
|
||||
)
|
||||
|
||||
gc.collect()
|
||||
state.mem_trace(3)
|
||||
del (
|
||||
offloading_keys,
|
||||
chacha_poly,
|
||||
pseudo_out,
|
||||
pseudo_out_hmac,
|
||||
pseudo_out_alpha_enc,
|
||||
spend_enc,
|
||||
)
|
||||
utils.unimport_end(mods)
|
||||
state.mem_trace(3, True)
|
||||
|
||||
from apps.monero.xmr.serialize_messages.ct_keys import CtKey
|
||||
|
||||
# Basic setup, sanity check
|
||||
index = src_entr.real_output
|
||||
@ -126,14 +133,16 @@ async def sign_input(
|
||||
"Real source entry's mask does not equal spend key's",
|
||||
)
|
||||
|
||||
gc.collect()
|
||||
state.mem_trace(4)
|
||||
state.mem_trace(4, True)
|
||||
|
||||
from apps.monero.xmr import mlsag
|
||||
|
||||
mg_buffer = []
|
||||
ring_pubkeys = [x.key for x in src_entr.outputs]
|
||||
del src_entr
|
||||
|
||||
if state.rct_type == RctType.Simple:
|
||||
ring_pubkeys = [x.key for x in src_entr.outputs]
|
||||
mg = mlsag.generate_mlsag_simple(
|
||||
mlsag.generate_mlsag_simple(
|
||||
state.full_message,
|
||||
ring_pubkeys,
|
||||
input_secret_key,
|
||||
@ -141,52 +150,33 @@ async def sign_input(
|
||||
pseudo_out_c,
|
||||
kLRki,
|
||||
index,
|
||||
mg_buffer,
|
||||
)
|
||||
|
||||
del (input_secret_key, pseudo_out_alpha, pseudo_out_c)
|
||||
|
||||
else:
|
||||
# Full RingCt, only one input
|
||||
txn_fee_key = crypto.scalarmult_h(state.fee)
|
||||
ring_pubkeys = [[x.key] for x in src_entr.outputs]
|
||||
mg = mlsag.generate_mlsag_full(
|
||||
mlsag.generate_mlsag_full(
|
||||
state.full_message,
|
||||
ring_pubkeys,
|
||||
[input_secret_key],
|
||||
input_secret_key,
|
||||
state.output_sk_masks,
|
||||
state.output_pk_commitments,
|
||||
kLRki,
|
||||
index,
|
||||
txn_fee_key,
|
||||
mg_buffer,
|
||||
)
|
||||
|
||||
gc.collect()
|
||||
state.mem_trace(5)
|
||||
del (input_secret_key, txn_fee_key)
|
||||
|
||||
# Encode
|
||||
mgs = _recode_msg([mg])
|
||||
|
||||
gc.collect()
|
||||
state.mem_trace(6)
|
||||
del (mlsag, ring_pubkeys)
|
||||
state.mem_trace(5, True)
|
||||
|
||||
from trezor.messages.MoneroTransactionSignInputAck import (
|
||||
MoneroTransactionSignInputAck,
|
||||
)
|
||||
|
||||
return MoneroTransactionSignInputAck(
|
||||
signature=serialize.dump_msg_gc(mgs[0], preallocate=488)
|
||||
)
|
||||
|
||||
|
||||
def _recode_msg(mgs):
|
||||
"""
|
||||
Recodes MGs signatures from raw forms to bytearrays so it works with serialization
|
||||
"""
|
||||
for idx in range(len(mgs)):
|
||||
mgs[idx].cc = crypto.encodeint(mgs[idx].cc)
|
||||
if hasattr(mgs[idx], "II") and mgs[idx].II:
|
||||
for i in range(len(mgs[idx].II)):
|
||||
mgs[idx].II[i] = crypto.encodepoint(mgs[idx].II[i])
|
||||
|
||||
for i in range(len(mgs[idx].ss)):
|
||||
for j in range(len(mgs[idx].ss[i])):
|
||||
mgs[idx].ss[i][j] = crypto.encodeint(mgs[idx].ss[i][j])
|
||||
return mgs
|
||||
return MoneroTransactionSignInputAck(signature=mg_buffer)
|
||||
|
@ -107,6 +107,7 @@ def sc_init_into(r, x):
|
||||
return tcry.init256_modm(r, x)
|
||||
|
||||
|
||||
sc_copy = tcry.init256_modm
|
||||
sc_get64 = tcry.get256_modm
|
||||
sc_check = tcry.check256_modm
|
||||
check_sc = tcry.check256_modm
|
||||
|
@ -42,63 +42,76 @@ and `sk` is equal to:
|
||||
Mostly ported from official Monero client, but also inspired by Mininero.
|
||||
Author: Dusan Klinec, ph4r05, 2018
|
||||
"""
|
||||
|
||||
import gc
|
||||
|
||||
from apps.monero.xmr import crypto
|
||||
from apps.monero.xmr.serialize import int_serialize
|
||||
|
||||
|
||||
def generate_mlsag_full(
|
||||
message, pubs, in_sk, out_sk_mask, out_pk_commitments, kLRki, index, txn_fee_key
|
||||
message,
|
||||
pubs,
|
||||
in_sk,
|
||||
out_sk_mask,
|
||||
out_pk_commitments,
|
||||
kLRki,
|
||||
index,
|
||||
txn_fee_key,
|
||||
mg_buff,
|
||||
):
|
||||
cols = len(pubs)
|
||||
if cols == 0:
|
||||
raise ValueError("Empty pubs")
|
||||
rows = len(pubs[0])
|
||||
if rows == 0:
|
||||
raise ValueError("Empty pub row")
|
||||
for i in range(cols):
|
||||
if len(pubs[i]) != rows:
|
||||
raise ValueError("pub is not rectangular")
|
||||
|
||||
if len(in_sk) != rows:
|
||||
raise ValueError("Bad inSk size")
|
||||
rows = 1 # Monero uses only one row
|
||||
if len(out_sk_mask) != len(out_pk_commitments):
|
||||
raise ValueError("Bad outsk/putpk size")
|
||||
|
||||
sk = _key_vector(rows + 1)
|
||||
M = _key_matrix(rows + 1, cols)
|
||||
for i in range(rows + 1):
|
||||
sk[i] = crypto.sc_0()
|
||||
|
||||
tmp_mi_rows = crypto.new_point(None)
|
||||
tmp_pt = crypto.new_point(None)
|
||||
|
||||
for i in range(cols):
|
||||
M[i][rows] = crypto.identity()
|
||||
for j in range(rows):
|
||||
M[i][j] = crypto.decodepoint(pubs[i][j].dest)
|
||||
M[i][rows] = crypto.point_add(
|
||||
M[i][rows], crypto.decodepoint(pubs[i][j].commitment)
|
||||
)
|
||||
crypto.identity_into(tmp_mi_rows) # M[i][rows]
|
||||
|
||||
sk[rows] = crypto.sc_0()
|
||||
for j in range(rows):
|
||||
sk[j] = in_sk[j].dest
|
||||
sk[rows] = crypto.sc_add(sk[rows], in_sk[j].mask) # add masks in last row
|
||||
# Should iterate over rows, simplified as rows == 1
|
||||
M[i][0] = pubs[i].dest
|
||||
crypto.point_add_into(
|
||||
tmp_mi_rows,
|
||||
tmp_mi_rows,
|
||||
crypto.decodepoint_into(tmp_pt, pubs[i].commitment),
|
||||
)
|
||||
pubs[i] = None
|
||||
|
||||
for i in range(cols):
|
||||
for j in range(len(out_pk_commitments)):
|
||||
M[i][rows] = crypto.point_sub(
|
||||
M[i][rows], crypto.decodepoint(out_pk_commitments[j])
|
||||
crypto.point_sub_into(
|
||||
tmp_mi_rows,
|
||||
tmp_mi_rows,
|
||||
crypto.decodepoint_into(tmp_pt, out_pk_commitments[j]),
|
||||
) # subtract output Ci's in last row
|
||||
|
||||
# Subtract txn fee output in last row
|
||||
M[i][rows] = crypto.point_sub(M[i][rows], txn_fee_key)
|
||||
crypto.point_sub_into(tmp_mi_rows, tmp_mi_rows, txn_fee_key)
|
||||
M[i][rows] = crypto.encodepoint(tmp_mi_rows)
|
||||
|
||||
# Simplified as rows == 1
|
||||
sk[0] = in_sk.dest
|
||||
sk[rows] = in_sk.mask # originally: sum of all in_sk[0..rows] in sk[rows]
|
||||
|
||||
for j in range(len(out_pk_commitments)):
|
||||
sk[rows] = crypto.sc_sub(
|
||||
sk[rows], out_sk_mask[j]
|
||||
crypto.sc_sub_into(
|
||||
sk[rows], sk[rows], out_sk_mask[j]
|
||||
) # subtract output masks in last row
|
||||
|
||||
return generate_mlsag(message, M, sk, kLRki, index, rows)
|
||||
del (pubs, tmp_mi_rows, tmp_pt)
|
||||
gc.collect()
|
||||
|
||||
return generate_mlsag(message, M, sk, kLRki, index, rows, mg_buff)
|
||||
|
||||
|
||||
def generate_mlsag_simple(message, pubs, in_sk, a, cout, kLRki, index):
|
||||
def generate_mlsag_simple(message, pubs, in_sk, a, cout, kLRki, index, mg_buff):
|
||||
"""
|
||||
MLSAG for RctType.Simple
|
||||
:param message: the full message to be signed (actually its hash)
|
||||
@ -108,7 +121,7 @@ def generate_mlsag_simple(message, pubs, in_sk, a, cout, kLRki, index):
|
||||
:param cout: pseudo output commitment; point, decoded; better name: pseudo_out_c
|
||||
:param kLRki: used only in multisig, currently not implemented
|
||||
:param index: specifies corresponding public key to the `in_sk` in the pubs array
|
||||
:return: MgSig
|
||||
:param mg_buff: buffer to store the signature to
|
||||
"""
|
||||
# Monero signs inputs separately, so `rows` always equals 2 (pubkey, commitment)
|
||||
# and `dsRows` is always 1 (denotes where the pubkeys "end")
|
||||
@ -123,12 +136,21 @@ def generate_mlsag_simple(message, pubs, in_sk, a, cout, kLRki, index):
|
||||
|
||||
sk[0] = in_sk.dest
|
||||
sk[1] = crypto.sc_sub(in_sk.mask, a)
|
||||
tmp_pt = crypto.new_point()
|
||||
|
||||
for i in range(cols):
|
||||
M[i][0] = crypto.decodepoint(pubs[i].dest)
|
||||
M[i][1] = crypto.point_sub(crypto.decodepoint(pubs[i].commitment), cout)
|
||||
crypto.point_sub_into(
|
||||
tmp_pt, crypto.decodepoint_into(tmp_pt, pubs[i].commitment), cout
|
||||
)
|
||||
|
||||
return generate_mlsag(message, M, sk, kLRki, index, dsRows)
|
||||
M[i][0] = pubs[i].dest
|
||||
M[i][1] = crypto.encodepoint(tmp_pt)
|
||||
pubs[i] = None
|
||||
|
||||
del (pubs)
|
||||
gc.collect()
|
||||
|
||||
return generate_mlsag(message, M, sk, kLRki, index, dsRows, mg_buff)
|
||||
|
||||
|
||||
def gen_mlsag_assert(pk, xx, kLRki, index, dsRows):
|
||||
@ -159,13 +181,10 @@ def gen_mlsag_assert(pk, xx, kLRki, index, dsRows):
|
||||
return rows, cols
|
||||
|
||||
|
||||
def generate_first_c_and_key_images(
|
||||
message, rv, pk, xx, kLRki, index, dsRows, rows, cols
|
||||
):
|
||||
def generate_first_c_and_key_images(message, pk, xx, kLRki, index, dsRows, rows, cols):
|
||||
"""
|
||||
MLSAG computation - the part with secret keys
|
||||
:param message: the full message to be signed (actually its hash)
|
||||
:param rv: MgSig
|
||||
:param pk: matrix of public keys and commitments
|
||||
:param xx: input secret array composed of a private key and commitment mask
|
||||
:param kLRki: used only in multisig, currently not implemented
|
||||
@ -174,18 +193,19 @@ def generate_first_c_and_key_images(
|
||||
:param rows: total number of rows
|
||||
:param cols: size of ring
|
||||
"""
|
||||
Ip = _key_vector(dsRows)
|
||||
rv.II = _key_vector(dsRows)
|
||||
II = _key_vector(dsRows)
|
||||
alpha = _key_vector(rows)
|
||||
rv.ss = _key_matrix(rows, cols)
|
||||
|
||||
tmp_buff = bytearray(32)
|
||||
Hi = crypto.new_point()
|
||||
aGi = crypto.new_point()
|
||||
aHPi = crypto.new_point()
|
||||
hasher = _hasher_message(message)
|
||||
|
||||
for i in range(dsRows):
|
||||
# this is somewhat extra as compared to the Ring Confidential Tx paper
|
||||
# see footnote in From Zero to Monero section 3.3
|
||||
hasher.update(crypto.encodepoint(pk[index][i]))
|
||||
hasher.update(pk[index][i])
|
||||
if kLRki:
|
||||
raise NotImplementedError("Multisig not implemented")
|
||||
# alpha[i] = kLRki.k
|
||||
@ -194,36 +214,34 @@ def generate_first_c_and_key_images(
|
||||
# hash_point(hasher, kLRki.R, tmp_buff)
|
||||
|
||||
else:
|
||||
Hi = crypto.hash_to_point(crypto.encodepoint(pk[index][i]))
|
||||
crypto.hash_to_point_into(Hi, pk[index][i])
|
||||
alpha[i] = crypto.random_scalar()
|
||||
# L = alpha_i * G
|
||||
aGi = crypto.scalarmult_base(alpha[i])
|
||||
crypto.scalarmult_base_into(aGi, alpha[i])
|
||||
# Ri = alpha_i * H(P_i)
|
||||
aHPi = crypto.scalarmult(Hi, alpha[i])
|
||||
crypto.scalarmult_into(aHPi, Hi, alpha[i])
|
||||
# key image
|
||||
rv.II[i] = crypto.scalarmult(Hi, xx[i])
|
||||
II[i] = crypto.scalarmult(Hi, xx[i])
|
||||
_hash_point(hasher, aGi, tmp_buff)
|
||||
_hash_point(hasher, aHPi, tmp_buff)
|
||||
|
||||
Ip[i] = rv.II[i]
|
||||
|
||||
for i in range(dsRows, rows):
|
||||
alpha[i] = crypto.random_scalar()
|
||||
# L = alpha_i * G
|
||||
aGi = crypto.scalarmult_base(alpha[i])
|
||||
crypto.scalarmult_base_into(aGi, alpha[i])
|
||||
# for some reasons we omit calculating R here, which seems
|
||||
# contrary to the paper, but it is in the Monero official client
|
||||
# see https://github.com/monero-project/monero/blob/636153b2050aa0642ba86842c69ac55a5d81618d/src/ringct/rctSigs.cpp#L191
|
||||
_hash_point(hasher, pk[index][i], tmp_buff)
|
||||
hasher.update(pk[index][i])
|
||||
_hash_point(hasher, aGi, tmp_buff)
|
||||
|
||||
# the first c
|
||||
c_old = hasher.digest()
|
||||
c_old = crypto.decodeint(c_old)
|
||||
return c_old, Ip, alpha
|
||||
return c_old, II, alpha
|
||||
|
||||
|
||||
def generate_mlsag(message, pk, xx, kLRki, index, dsRows):
|
||||
def generate_mlsag(message, pk, xx, kLRki, index, dsRows, mg_buff):
|
||||
"""
|
||||
Multilayered Spontaneous Anonymous Group Signatures (MLSAG signatures)
|
||||
|
||||
@ -233,56 +251,89 @@ def generate_mlsag(message, pk, xx, kLRki, index, dsRows):
|
||||
:param kLRki: used only in multisig, currently not implemented
|
||||
:param index: specifies corresponding public key to the `xx`'s private key in the `pk` array
|
||||
:param dsRows: separates pubkeys from commitment
|
||||
:return MgSig
|
||||
:param mg_buff: mg signature buffer
|
||||
"""
|
||||
from apps.monero.xmr.serialize_messages.tx_full import MgSig
|
||||
|
||||
rows, cols = gen_mlsag_assert(pk, xx, kLRki, index, dsRows)
|
||||
rows_b_size = int_serialize.uvarint_size(rows)
|
||||
|
||||
rv = MgSig()
|
||||
c, L, R, Hi = 0, None, None, None
|
||||
# Preallocation of the chunked buffer, len + cols + cc
|
||||
for _ in range(1 + cols + 1):
|
||||
mg_buff.append(None)
|
||||
|
||||
mg_buff[0] = int_serialize.dump_uvarint_b(cols)
|
||||
cc = crypto.new_scalar() # rv.cc
|
||||
c = crypto.new_scalar()
|
||||
L = crypto.new_point()
|
||||
R = crypto.new_point()
|
||||
Hi = crypto.new_point()
|
||||
|
||||
# calculates the "first" c, key images and random scalars alpha
|
||||
c_old, Ip, alpha = generate_first_c_and_key_images(
|
||||
message, rv, pk, xx, kLRki, index, dsRows, rows, cols
|
||||
c_old, II, alpha = generate_first_c_and_key_images(
|
||||
message, pk, xx, kLRki, index, dsRows, rows, cols
|
||||
)
|
||||
|
||||
i = (index + 1) % cols
|
||||
if i == 0:
|
||||
rv.cc = c_old
|
||||
crypto.sc_copy(cc, c_old)
|
||||
|
||||
ss = [crypto.new_scalar() for _ in range(rows)]
|
||||
tmp_buff = bytearray(32)
|
||||
|
||||
while i != index:
|
||||
rv.ss[i] = _generate_random_vector(rows)
|
||||
hasher = _hasher_message(message)
|
||||
|
||||
# Serialize size of the row
|
||||
mg_buff[i + 1] = bytearray(rows_b_size + 32 * rows)
|
||||
int_serialize.dump_uvarint_b_into(rows, mg_buff[i + 1])
|
||||
|
||||
for x in ss:
|
||||
crypto.random_scalar(x)
|
||||
|
||||
for j in range(dsRows):
|
||||
# L = rv.ss[i][j] * G + c_old * pk[i][j]
|
||||
L = crypto.add_keys2(rv.ss[i][j], c_old, pk[i][j])
|
||||
Hi = crypto.hash_to_point(crypto.encodepoint(pk[i][j]))
|
||||
crypto.add_keys2_into(
|
||||
L, ss[j], c_old, crypto.decodepoint_into(Hi, pk[i][j])
|
||||
)
|
||||
crypto.hash_to_point_into(Hi, pk[i][j])
|
||||
|
||||
# R = rv.ss[i][j] * H(pk[i][j]) + c_old * Ip[j]
|
||||
R = crypto.add_keys3(rv.ss[i][j], Hi, c_old, rv.II[j])
|
||||
_hash_point(hasher, pk[i][j], tmp_buff)
|
||||
crypto.add_keys3_into(R, ss[j], Hi, c_old, II[j])
|
||||
|
||||
hasher.update(pk[i][j])
|
||||
_hash_point(hasher, L, tmp_buff)
|
||||
_hash_point(hasher, R, tmp_buff)
|
||||
|
||||
for j in range(dsRows, rows):
|
||||
# again, omitting R here as discussed above
|
||||
L = crypto.add_keys2(rv.ss[i][j], c_old, pk[i][j])
|
||||
_hash_point(hasher, pk[i][j], tmp_buff)
|
||||
crypto.add_keys2_into(
|
||||
L, ss[j], c_old, crypto.decodepoint_into(Hi, pk[i][j])
|
||||
)
|
||||
hasher.update(pk[i][j])
|
||||
_hash_point(hasher, L, tmp_buff)
|
||||
|
||||
c = crypto.decodeint(hasher.digest())
|
||||
c_old = c
|
||||
for si in range(rows):
|
||||
crypto.encodeint_into(mg_buff[i + 1], ss[si], rows_b_size + 32 * si)
|
||||
|
||||
crypto.decodeint_into(c, hasher.digest())
|
||||
crypto.sc_copy(c_old, c)
|
||||
pk[i] = None
|
||||
i = (i + 1) % cols
|
||||
|
||||
if i == 0:
|
||||
rv.cc = c_old
|
||||
crypto.sc_copy(cc, c_old)
|
||||
gc.collect()
|
||||
|
||||
del II
|
||||
|
||||
# Finalizing rv.ss by processing rv.ss[index]
|
||||
mg_buff[index + 1] = bytearray(rows_b_size + 32 * rows)
|
||||
int_serialize.dump_uvarint_b_into(rows, mg_buff[index + 1])
|
||||
for j in range(rows):
|
||||
rv.ss[index][j] = crypto.sc_mulsub(c, xx[j], alpha[j])
|
||||
crypto.sc_mulsub_into(ss[j], c, xx[j], alpha[j])
|
||||
crypto.encodeint_into(mg_buff[index + 1], ss[j], rows_b_size + 32 * j)
|
||||
|
||||
return rv
|
||||
# rv.cc
|
||||
mg_buff[-1] = crypto.encodeint(cc)
|
||||
|
||||
|
||||
def _key_vector(rows):
|
||||
|
@ -1,11 +0,0 @@
|
||||
from apps.monero.xmr.serialize.message_types import MessageType
|
||||
from apps.monero.xmr.serialize_messages.base import ECKey
|
||||
from apps.monero.xmr.serialize_messages.ct_keys import KeyM
|
||||
|
||||
|
||||
class MgSig(MessageType):
|
||||
__slots__ = ("ss", "cc", "II")
|
||||
|
||||
@classmethod
|
||||
def f_specs(cls):
|
||||
return (("ss", KeyM), ("cc", ECKey))
|
@ -275,6 +275,11 @@ async def dump_message(writer, msg, fields=None):
|
||||
elif ftype is BoolType:
|
||||
await dump_uvarint(writer, int(svalue))
|
||||
|
||||
elif ftype is BytesType and is_chunked(svalue):
|
||||
await dump_uvarint(writer, len_list_bytes(svalue))
|
||||
for sub_svalue in svalue:
|
||||
await writer.awrite(sub_svalue)
|
||||
|
||||
elif ftype is BytesType:
|
||||
await dump_uvarint(writer, len(svalue))
|
||||
await writer.awrite(svalue)
|
||||
@ -329,7 +334,9 @@ def count_message(msg, fields=None):
|
||||
|
||||
elif ftype is BytesType:
|
||||
for svalue in fvalue:
|
||||
svalue = len(svalue)
|
||||
svalue = (
|
||||
len(svalue) if not is_chunked(svalue) else len_list_bytes(svalue)
|
||||
)
|
||||
nbytes += count_uvarint(svalue)
|
||||
nbytes += svalue
|
||||
|
||||
@ -351,3 +358,18 @@ def count_message(msg, fields=None):
|
||||
raise TypeError
|
||||
|
||||
return nbytes
|
||||
|
||||
|
||||
def is_chunked(svalue):
|
||||
return (
|
||||
isinstance(svalue, list)
|
||||
and len(svalue) > 0
|
||||
and not isinstance(svalue[0], (int, bool))
|
||||
)
|
||||
|
||||
|
||||
def len_list_bytes(svalue):
|
||||
res = 0
|
||||
for x in svalue:
|
||||
res += len(x)
|
||||
return res
|
||||
|
Loading…
Reference in New Issue
Block a user