1
0
mirror of https://github.com/trezor/trezor-firmware.git synced 2025-01-21 21:00:58 +00:00

Protect signing against side-channel attack (#81)

Signing uses the bn_inverse function that is prone to side-channel
attacks.  We randomize its argument by multiplying it with a random
non-zero number.  At the end we multiply again by the same number to
cancel it out.

Changed get_k_random to take the prime range as a second argument and
to return a non-zero number.  This function was previously only used
for (non-rfc6979) signing and is now used for side-channel protection.
This commit is contained in:
Jochen Hoenicke 2016-11-06 15:19:14 +01:00 committed by Pavol Rusnak
parent e68267e04b
commit 949220ac0b
No known key found for this signature in database
GPG Key ID: 91F3B339B9A02A3D
2 changed files with 30 additions and 25 deletions

53
ecdsa.c
View File

@ -191,13 +191,21 @@ typedef struct jacobian_curve_point {
bignum256 x, y, z;
} jacobian_curve_point;
// generate random K for signing/side-channel noise
void generate_k_random(bignum256 *k, const bignum256 *prime) {
do {
int i;
for (i = 0; i < 8; i++) {
k->val[i] = random32() & 0x3FFFFFFF;
}
k->val[8] = random32() & 0xFFFF;
// check that k is in range and not zero.
} while (bn_is_zero(k) || !bn_is_less(k, prime));
}
void curve_to_jacobian(const curve_point *p, jacobian_curve_point *jp, const bignum256 *prime) {
int i;
// randomize z coordinate
for (i = 0; i < 8; i++) {
jp->z.val[i] = random32() & 0x3FFFFFFF;
}
jp->z.val[8] = (random32() & 0x7fff) + 1;
generate_k_random(&jp->z, prime);
jp->x = jp->z;
bn_multiply(&jp->z, &jp->x, prime);
@ -649,15 +657,6 @@ int ecdh_multiply(const ecdsa_curve *curve, const uint8_t *priv_key, const uint8
return 0;
}
// generate random K for signing
void generate_k_random(bignum256 *k) {
int i;
for (i = 0; i < 8; i++) {
k->val[i] = random32() & 0x3FFFFFFF;
}
k->val[8] = random32() & 0xFFFF;
}
void init_k_rfc6979(const uint8_t *priv_key, const uint8_t *hash, rfc6979_state *state) {
uint8_t bx[2*32];
uint8_t buf[32 + 1 + 2*32];
@ -733,7 +732,7 @@ int ecdsa_sign_digest(const ecdsa_curve *curve, const uint8_t *priv_key, const u
{
int i;
curve_point R;
bignum256 k, z;
bignum256 k, z, randk;
bignum256 *s = &R.y;
uint8_t by; // signature recovery byte
@ -749,14 +748,14 @@ int ecdsa_sign_digest(const ecdsa_curve *curve, const uint8_t *priv_key, const u
#if USE_RFC6979
// generate K deterministically
generate_k_rfc6979(&k, &rng);
#else
// generate random number k
generate_k_random(&k);
#endif
// if k is too big or too small, we don't like it
if (bn_is_zero(&k) || !bn_is_less(&k, &curve->order)) {
continue;
}
#else
// generate random number k
generate_k_random(&k, &curve->order);
#endif
// compute k*G
scalar_multiply(curve, &k, &R);
@ -771,11 +770,15 @@ int ecdsa_sign_digest(const ecdsa_curve *curve, const uint8_t *priv_key, const u
continue;
}
bn_inverse(&k, &curve->order);
bn_read_be(priv_key, s);
bn_multiply(&R.x, s, &curve->order);
bn_add(s, &z);
bn_multiply(&k, s, &curve->order);
// randomize operations to counter side-channel attacks
generate_k_random(&randk, &curve->order);
bn_multiply(&randk, &k, &curve->order); // k*rand
bn_inverse(&k, &curve->order); // (k*rand)^-1
bn_read_be(priv_key, s); // priv
bn_multiply(&R.x, s, &curve->order); // R.x*priv
bn_add(s, &z); // R.x*priv + z
bn_multiply(&k, s, &curve->order); // (k*rand)^-1 (R.x*priv + z)
bn_multiply(&randk, s, &curve->order); // k^-1 (R.x*priv + z)
bn_mod(s, &curve->order);
// if s is zero, we retry
if (bn_is_zero(s)) {
@ -801,6 +804,7 @@ int ecdsa_sign_digest(const ecdsa_curve *curve, const uint8_t *priv_key, const u
}
MEMSET_BZERO(&k, sizeof(k));
MEMSET_BZERO(&randk, sizeof(randk));
#if USE_RFC6979
MEMSET_BZERO(&rng, sizeof(rng));
#endif
@ -810,6 +814,7 @@ int ecdsa_sign_digest(const ecdsa_curve *curve, const uint8_t *priv_key, const u
// Too many retries without a valid signature
// -> fail with an error
MEMSET_BZERO(&k, sizeof(k));
MEMSET_BZERO(&randk, sizeof(randk));
#if USE_RFC6979
MEMSET_BZERO(&rng, sizeof(rng));
#endif

View File

@ -93,6 +93,6 @@ int ecdsa_sig_to_der(const uint8_t *sig, uint8_t *der);
// Private
void init_k_rfc6979(const uint8_t *priv_key, const uint8_t *hash, rfc6979_state *rng);
void generate_k_rfc6979(bignum256 *k, rfc6979_state *rng);
void generate_k_random(bignum256 *k);
void generate_k_random(bignum256 *k, const bignum256 *prime);
#endif