fix(crypto): Improve naming and robustness of SLIP39's T9 mask lookup.

poc/andrew-t1-keyboard
Andrew Kozlik 3 years ago committed by Andrew Kozlik
parent d9a8194e14
commit 7fc1851279

@ -54,11 +54,10 @@ STATIC mp_obj_t
mod_trezorcrypto_slip39_button_sequence_to_word(mp_obj_t _prefix) {
uint16_t prefix = mp_obj_get_int(_prefix);
if (prefix < 1 || prefix > 9999) {
mp_raise_ValueError(
"Invalid button prefix (range between 1 and 9999 is allowed)");
}
const char *word = button_sequence_to_word(prefix);
if (word == NULL) {
mp_raise_ValueError("Invalid button prefix");
}
return mp_obj_new_str_copy(&mp_type_str, (const uint8_t *)word, strlen(word));
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(

@ -27,13 +27,21 @@
#include <string.h>
#include "slip39_wordlist.h"
static uint16_t find(uint16_t prefix, bool find_index);
/**
* Returns word on position `index`.
* Returns word at position `index`.
*/
const char* get_word(uint16_t index) { return wordlist[index]; }
const char* get_word(uint16_t index) {
if (index >= WORDS_COUNT) {
return NULL;
}
return wordlist[index];
}
/**
* Finds index of given word, if found.
* Finds the index of a given word.
* Returns true on success and stores result in `index`.
*/
bool word_index(uint16_t* index, const char* word, uint8_t word_length) {
@ -57,80 +65,77 @@ bool word_index(uint16_t* index, const char* word, uint8_t word_length) {
}
/**
* Calculates which buttons still can be pressed after some already were.
* Returns a 9-bit bitmask, where each bit specifies which buttons
* can be further pressed (there are still words in this combination).
* LSB denotes first button.
* Calculates which buttons on the T9 keyboard can still be pressed after the
* prefix was entered. Returns a 9-bit bitmask, where each bit specifies which
* buttons can be pressed (there are still words in this combination). The least
* significant bit corresponds to the first button.
*
* Example: 110000110 - second, third, eighth and ninth button still can be
* pressed.
*/
uint16_t compute_mask(uint16_t prefix) { return find(prefix, false); }
uint16_t slip39_word_completion_mask(uint16_t prefix) {
return find(prefix, false);
}
/**
* Converts sequence to word index.
* Returns the first word matching the button sequence prefix or NULL if no
* match is found.
*/
const char* button_sequence_to_word(uint16_t prefix) {
return wordlist[find(prefix, true)];
return get_word(find(prefix, true));
}
/**
* Computes mask if find_index is false.
* Finds the first word index that suits the prefix otherwise.
* Otherwise finds the first word index that matches the prefix. Returns
* WORDS_COUNT if no match is found.
*/
uint16_t find(uint16_t prefix, bool find_index) {
uint16_t min = prefix;
uint16_t max = 0;
uint16_t for_max = 0;
uint8_t multiplier = 0;
uint8_t divider = 0;
uint16_t bitmap = 0;
uint8_t digit = 0;
uint16_t i = 0;
static uint16_t find(uint16_t prefix, bool find_index) {
if (prefix == 0) {
return find_index ? 0 : 0x1ff;
}
max = prefix + 1;
while (min < 1000) {
min = min * 10;
max = max * 10;
multiplier++;
// Determine the range of sequences [min, max), which have the given prefix.
uint16_t min = prefix;
uint16_t max = prefix + 1;
uint16_t divider = 1;
while (max <= 1000) {
min *= 10;
max *= 10;
divider *= 10;
}
divider /= 10;
// Four char prefix -> the mask is zero
if (!multiplier && !find_index) {
if (!divider && !find_index) {
return 0;
}
for_max = min - (min % 1000) + 1000;
// We can't use binary search because the numbers are not sorted.
// They are sorted using the words' alphabet (so we can use the index).
// Example: axle (1953), beam (1315)
// The first digit is sorted so we can loop only upto `for_max`.
while (words_button_seq[i] < for_max) {
// The first digit is sorted so we only need to search up to `max_search`.
uint16_t max_search = min - (min % 1000) + 1000;
uint16_t bitmap = 0;
for (uint16_t i = 0; i < WORDS_COUNT; i++) {
if (words_button_seq[i] >= max_search) {
break;
}
if (words_button_seq[i] >= min && words_button_seq[i] < max) {
if (find_index) {
return i;
}
switch (multiplier) {
case 1:
divider = 1;
break;
case 2:
divider = 10;
break;
case 3:
divider = 100;
break;
default:
divider = 1;
break;
}
digit = (words_button_seq[i] / divider) % 10;
uint8_t digit = (words_button_seq[i] / divider) % 10;
bitmap |= 1 << (digit - 1);
}
i++;
}
return bitmap;
if (find_index) {
// Index not found.
return WORDS_COUNT;
} else {
return bitmap;
}
}

@ -22,6 +22,9 @@
* OTHER DEALINGS IN THE SOFTWARE.
*/
#ifndef __SLIP39_H__
#define __SLIP39_H__
#include <stdbool.h>
#include <stdint.h>
@ -29,8 +32,8 @@ const char* get_word(uint16_t index);
bool word_index(uint16_t* index, const char* word, uint8_t word_length);
uint16_t compute_mask(uint16_t prefix);
uint16_t slip39_word_completion_mask(uint16_t prefix);
const char* button_sequence_to_word(uint16_t prefix);
uint16_t find(uint16_t prefix, bool find_index);
#endif

@ -5263,36 +5263,50 @@ START_TEST(test_slip39_word_index) {
}
END_TEST
START_TEST(test_slip39_compute_mask) {
START_TEST(test_slip39_word_completion_mask) {
static const struct {
const uint16_t prefix;
const uint16_t expected_mask;
} vectors[] = {{
12,
0xFD // 011111101
},
{
21,
0xF8 // 011111000
},
{
75,
0xAD // 010101101
},
{
4,
0x1F7 // 111110111
},
{
738,
0x6D // 001101101
},
{
9,
0x6D // 001101101
}};
} vectors[] = {
{
12,
0xFD // 011111101
},
{
21,
0xF8 // 011111000
},
{
75,
0xAD // 010101101
},
{
4,
0x1F7 // 111110111
},
{
738,
0x6D // 001101101
},
{
9,
0x6D // 001101101
},
{
0,
0x1FF // 111111111
},
{
9999,
0x00 // 000000000
},
{
20000,
0x00 // 000000000
},
};
for (size_t i = 0; i < (sizeof(vectors) / sizeof(*vectors)); i++) {
uint16_t mask = compute_mask(vectors[i].prefix);
uint16_t mask = slip39_word_completion_mask(vectors[i].prefix);
ck_assert_int_eq(mask, vectors[i].expected_mask);
}
}
@ -5302,15 +5316,16 @@ START_TEST(test_slip39_sequence_to_word) {
static const struct {
const uint16_t prefix;
const char *expected_word;
} vectors[] = {{7945, "swimming"},
{646, "photo"},
{5, "kernel"},
{34, "either"},
{62, "ocean"}};
} vectors[] = {
{7945, "swimming"}, {646, "photo"}, {5, "kernel"},
{34, "either"}, {62, "ocean"}, {0, "academic"},
};
for (size_t i = 0; i < (sizeof(vectors) / sizeof(*vectors)); i++) {
const char *word = button_sequence_to_word(vectors[i].prefix);
ck_assert_str_eq(word, vectors[i].expected_word);
}
ck_assert_ptr_eq(button_sequence_to_word(9999), NULL);
ck_assert_ptr_eq(button_sequence_to_word(20000), NULL);
}
END_TEST
@ -8904,7 +8919,7 @@ Suite *test_suite(void) {
tc = tcase_create("slip39");
tcase_add_test(tc, test_slip39_get_word);
tcase_add_test(tc, test_slip39_word_index);
tcase_add_test(tc, test_slip39_compute_mask);
tcase_add_test(tc, test_slip39_word_completion_mask);
tcase_add_test(tc, test_slip39_sequence_to_word);
suite_add_tcase(s, tc);

Loading…
Cancel
Save