1
0
mirror of https://github.com/trezor/trezor-firmware.git synced 2025-01-08 22:40:59 +00:00

Optimized the bn_inverse method.

The new method needs about 30 % less time for prime256k1 and is about
twice as fast for other moduli.  The base algorithm is the same.
The code is also a bit smaller and doesn't need the 8 kb precomputed
table.

Important canges:
1. even/odd distinction so that we need to test only one of the numbers
   for being even.  This also leads to less duplicated code.
2. Allow for shifting by 32 bits at a time in the even test.
3. Pack u,s and v,r into the same array, which saves a bit of stack memory.
4. Don't divide by two after subtraction; this simplifies code.
5. Abort as soon as u,v are equal, instead of subtracting them.
6. Use s instead of r after the loop; no negation needed.
7. New code that divides by 2^k fast without any precomputed values.
This commit is contained in:
Jochen Hoenicke 2015-03-12 10:40:49 +01:00
parent e37ba822e6
commit 7d4cf5cedd
4 changed files with 238 additions and 523 deletions

497
bignum.c
View File

@ -23,6 +23,7 @@
#include <stdio.h> #include <stdio.h>
#include <string.h> #include <string.h>
#include <assert.h>
#include "bignum.h" #include "bignum.h"
#include "secp256k1.h" #include "secp256k1.h"
@ -283,10 +284,6 @@ void bn_sqrt(bignum256 *x, const bignum256 *prime)
#if ! USE_INVERSE_FAST #if ! USE_INVERSE_FAST
#if USE_PRECOMPUTED_IV
#warning USE_PRECOMPUTED_IV will not be used
#endif
// in field G_prime, small but slow // in field G_prime, small but slow
void bn_inverse(bignum256 *x, const bignum256 *prime) void bn_inverse(bignum256 *x, const bignum256 *prime)
{ {
@ -322,285 +319,273 @@ void bn_inverse(bignum256 *x, const bignum256 *prime)
#else #else
// in field G_prime, big but fast // in field G_prime, big and complicated but fast
// this algorithm is based on the Euklidean algorithm // the input must not be 0 mod prime.
// the result is smaller than 2*prime // the result is smaller than prime
void bn_inverse(bignum256 *x, const bignum256 *prime) void bn_inverse(bignum256 *x, const bignum256 *prime)
{ {
int i, j, k, len1, len2, mask; int i, j, k, cmp;
uint8_t buf[32]; struct combo {
uint32_t u[8], v[8], s[9], r[10], temp32; uint32_t a[9];
uint64_t temp, temp2; int len1;
// reduce x modulo prime } us, vr, *odd, *even;
uint32_t pp[8];
uint32_t temp32;
uint64_t temp;
// The algorithm is based on Schroeppel et. al. "Almost Modular Inverse"
// algorithm. We keep four values u,v,r,s in the combo registers
// us and vr. us stores u in the first len1 limbs (little endian)
// and v in the last 9-len1 limbs (big endian). vr stores v and s.
// This is because both u*s and v*r are guaranteed to fit in 8 limbs, so
// their components are guaranteed to fit in 9. During the algorithm,
// the length of u and v shrinks while r and s grow.
// u,v,r,s correspond to F,G,B,C in Schroeppel's algorithm.
// reduce x modulo prime. This is necessary as it has to fit in 8 limbs.
bn_fast_mod(x, prime); bn_fast_mod(x, prime);
bn_mod(x, prime); bn_mod(x, prime);
// convert x and prime it to 8x32 bit limb form // convert x and prime to 8x32 bit limb form
bn_write_be(prime, buf); temp32 = prime->val[0];
for (i = 0; i < 8; i++) { for (i = 0; i < 8; i++) {
u[i] = read_be(buf + 28 - i * 4); temp32 |= prime->val[i + 1] << (30-2*i);
us.a[i] = pp[i] = temp32;
temp32 = prime->val[i + 1] >> (2+2*i);
} }
bn_write_be(x, buf); temp32 = x->val[0];
for (i = 0; i < 8; i++) { for (i = 0; i < 8; i++) {
v[i] = read_be(buf + 28 - i * 4); temp32 |= x->val[i + 1] << (30-2*i);
vr.a[i] = temp32;
temp32 = x->val[i + 1] >> (2+2*i);
} }
len1 = 8; us.len1 = 8;
s[0] = 1; vr.len1 = 8;
r[0] = 0; // set s = 1 and r = 0
len2 = 1; us.a[8] = 1;
vr.a[8] = 0;
// set k = 0.
k = 0; k = 0;
// u = prime, v = x len1 = numlimbs(u,v)
// r = 0 , s = 1 len2 = numlimbs(r,s) // only one of the numbers u,v can be even at any time. We
// let even point to that number and odd to the other.
// Initially the prime u is guaranteed to be odd.
odd = &us;
even = &vr;
// u = prime, v = x
// r = 0 , s = 1
// k = 0 // k = 0
for (;;) { for (;;) {
// invariants: // invariants:
// r,s,u,v >= 0 // let u = limbs us.a[0..u.len1-1] in little endian,
// let s = limbs us.a[u.len..8] in big endian,
// let v = limbs vr.a[0..u.len1-1] in little endian,
// let r = limbs vr.a[u.len..8] in big endian,
// r,s >= 0 ; u,v >= 1
// x*-r = u*2^k mod prime // x*-r = u*2^k mod prime
// x*s = v*2^k mod prime // x*s = v*2^k mod prime
// u*s + v*r = prime // u*s + v*r = prime
// floor(log2(u)) + floor(log2(v)) + k <= 510 // floor(log2(u)) + floor(log2(v)) + k <= 510
// max(u,v) <= 2^k // max(u,v) <= 2^k (*) see comment at end of loop
// gcd(u,v) = 1 // gcd(u,v) = 1
// len1 = numlimbs(u,v) // {odd,even} = {&us, &vr}
// len2 = numlimbs(r,s) // odd->a[0] and odd->a[8] are odd
// even->a[0] or even->a[8] is even
// //
// first u,v are large and s,r small // first u/v are large and r/s small
// later u,v are small and s,r large // later u/v are small and r/s large
assert(odd->a[0] & 1);
assert(odd->a[8] & 1);
// if (is_zero(v)) break; // adjust length of even.
for (i = 0; i < len1; i++) { while (even->a[even->len1 - 1] == 0) {
if (v[i]) break; even->len1--;
} // if input was 0, return.
if (i == len1) break; // This simple check prevents crashing with stack underflow
// or worse undesired behaviour for illegal input.
// reduce u while it is even if (even->len1 < 0)
for (;;) { return;
// count up to 30 zero bits of u.
for (i = 0; i < 30; i++) {
if (u[0] & (1 << i)) break;
}
// if u was odd break
if (i == 0) break;
// shift u right by i bits.
mask = (1 << i) - 1;
for (j = 0; j + 1 < len1; j++) {
u[j] = (u[j] >> i) | ((u[j + 1] & mask) << (32 - i));
}
u[j] = (u[j] >> i);
// shift s left by i bits.
mask = (1 << (32 - i)) - 1;
s[len2] = s[len2 - 1] >> (32 - i);
for (j = len2 - 1; j > 0; j--) {
s[j] = (s[j - 1] >> (32 - i)) | ((s[j] & mask) << i);
}
s[0] = (s[0] & mask) << i;
// update len2 if necessary
if (s[len2]) {
r[len2] = 0;
len2++;
}
// add i bits to k.
k += i;
}
// reduce v while it is even
for (;;) {
// count up to 30 zero bits of v.
for (i = 0; i < 30; i++) {
if (v[0] & (1 << i)) break;
}
// if v was odd break
if (i == 0) break;
// shift v right by i bits.
mask = (1 << i) - 1;
for (j = 0; j + 1 < len1; j++) {
v[j] = (v[j] >> i) | ((v[j + 1] & mask) << (32 - i));
}
v[j] = (v[j] >> i);
mask = (1 << (32 - i)) - 1;
// shift r left by i bits.
r[len2] = r[len2 - 1] >> (32 - i);
for (j = len2 - 1; j > 0; j--) {
r[j] = (r[j - 1] >> (32 - i)) | ((r[j] & mask) << i);
}
r[0] = (r[0] & mask) << i;
// update len2 if necessary
if (r[len2]) {
s[len2] = 0;
len2++;
}
// add i bits to k.
k += i;
} }
// invariant is reestablished. // reduce even->a while it is even
i = len1 - 1; while (even->a[0] == 0) {
while (i > 0 && u[i] == v[i]) i--; // shift right first part of even by a limb
if (u[i] > v[i]) { // and shift left second part of even by a limb.
// u > v:
// u = (u - v)/2;
temp = 0x100000000ull + u[0] - v[0];
u[0] = (temp >> 1) & 0x7FFFFFFF;
temp >>= 32;
for (i = 1; i < len1; i++) {
temp += 0xFFFFFFFFull + u[i] - v[i];
u[i - 1] += (temp & 1) << 31;
u[i] = (temp >> 1) & 0x7FFFFFFF;
temp >>= 32;
}
temp = temp2 = 0;
// r += s;
// s += s;
for (i = 0; i < len2; i++) {
temp += s[i];
temp += r[i];
temp2 += s[i];
temp2 += s[i];
r[i] = temp;
s[i] = temp2;
temp >>= 32;
temp2 >>= 32;
}
// expand if necessary.
if (temp != 0 || temp2 != 0) {
r[len2] = temp;
s[len2] = temp2;
len2++;
}
// note that
// u'2^(k+1) = (u - v) 2^k = x -(r + s) = x -r' mod prime
// v'2^(k+1) = 2*v 2^k = x (s + s) = x s' mod prime
// u's' + v'r' = (u-v)/2(2s) + v(r+s) = us + vr
} else {
// v >= u:
// v = v - u;
temp = 0x100000000ull + v[0] - u[0];
v[0] = (temp >> 1) & 0x7FFFFFFF;
temp >>= 32;
for (i = 1; i < len1; i++) {
temp += 0xFFFFFFFFull + v[i] - u[i];
v[i - 1] += (temp & 1) << 31;
v[i] = (temp >> 1) & 0x7FFFFFFF;
temp >>= 32;
}
// s = s + r
// r = r + r
temp = temp2 = 0;
for (i = 0; i < len2; i++) {
temp += s[i];
temp += r[i];
temp2 += r[i];
temp2 += r[i];
s[i] = temp;
r[i] = temp2;
temp >>= 32;
temp2 >>= 32;
}
if (temp != 0 || temp2 != 0) {
s[len2] = temp;
r[len2] = temp2;
len2++;
}
// note that
// u'2^(k+1) = 2*u 2^k = x -(r + r) = x -r' mod prime
// v'2^(k+1) = (v - u) 2^k = x (s + r) = x s' mod prime
// u's' + v'r' = u(r+s) + (v-u)/2(2r) = us + vr
}
// adjust len1 if possible.
if (u[len1 - 1] == 0 && v[len1 - 1] == 0) len1--;
// increase k
k++;
}
// In the last iteration just before the comparison and subtraction
// we had u=1, v=1, s+r = prime, k <= 510, 2^k > max(s,r) >= prime/2
// hence 0 <= r < prime and 255 <= k <= 510.
//
// Afterwards r is doubled, k is incremented by 1.
// Hence 0 <= r < 2*prime and 256 <= k < 512.
//
// The invariants give us x*-r = 2^k mod prime,
// hence r = -2^k * x^-1 mod prime.
// We need to compute -r/2^k mod prime.
// convert r to bignum style
j = r[0] >> 30;
r[0] = r[0] & 0x3FFFFFFFu;
for (i = 1; i < len2; i++) {
uint32_t q = r[i] >> (30 - 2 * i);
r[i] = ((r[i] << (2 * i)) & 0x3FFFFFFFu) + j;
j=q;
}
r[i] = j;
i++;
for (; i < 9; i++) r[i] = 0;
// r = r mod prime, note that r<2*prime.
i = 8;
while (i > 0 && r[i] == prime->val[i]) i--;
if (r[i] >= prime->val[i]) {
temp32 = 1;
for (i = 0; i < 9; i++) {
temp32 += 0x3FFFFFFF + r[i] - prime->val[i];
r[i] = temp32 & 0x3FFFFFFF;
temp32 >>= 30;
}
}
// negate r: r = prime - r
temp32 = 1;
for (i = 0; i < 9; i++) {
temp32 += 0x3FFFFFFF + prime->val[i] - r[i];
r[i] = temp32 & 0x3FFFFFFF;
temp32 >>= 30;
}
// now: r = 2^k * x^-1 mod prime
// compute r/2^k, 256 <= k < 511
int done = 0;
#if USE_PRECOMPUTED_IV
if (prime == &prime256k1) {
for (j = 0; j < 9; j++) {
x->val[j] = r[j];
}
// secp256k1_iv[k-256] = 2^-k mod prime
bn_multiply(secp256k1_iv + k - 256, x, prime);
// bn_fast_mod is unnecessary as bn_multiply already
// guarantees x < 2*prime
bn_fast_mod(x, prime);
// We don't guarantee x < prime!
// the slow variant and the slow case below guarantee
// this.
done = 1;
}
#endif
if (!done) {
// compute r = r/2^k mod prime
for (j = 0; j < k; j++) {
// invariant: r = 2^(k-j) * x^-1 mod prime
// in each iteration divide r by 2 modulo prime.
if (r[0] & 1) {
// r is odd; compute r = (prime + r)/2
temp32 = r[0] + prime->val[0];
r[0] = (temp32 >> 1) & 0x1FFFFFFF;
temp32 >>= 30;
for (i = 1; i < 9; i++) {
temp32 += r[i] + prime->val[i];
r[i - 1] += (temp32 & 1) << 29;
r[i] = (temp32 >> 1) & 0x1FFFFFFF;
temp32 >>= 30;
}
} else {
// r = r / 2
for (i = 0; i < 8; i++) { for (i = 0; i < 8; i++) {
r[i] = (r[i] >> 1) | ((r[i + 1] & 1) << 29); even->a[i] = even->a[i+1];
} }
r[8] = r[8] >> 1; even->a[i] = 0;
even->len1--;
k += 32;
} }
// count up to 32 zero bits of even->a.
j = 0;
while ((even->a[0] & (1 << j)) == 0) {
j++;
} }
// r = x^-1 mod prime, since j = k if (j > 0) {
for (j = 0; j < 9; j++) { // shift first part of even right by j bits.
x->val[j] = r[j]; for (i = 0; i + 1 < even->len1; i++) {
even->a[i] = (even->a[i] >> j) | (even->a[i + 1] << (32 - j));
} }
even->a[i] = (even->a[i] >> j);
if (even->a[i] == 0) {
even->len1--;
} else {
i++;
} }
// shift second part of even left by j bits.
for (; i < 8; i++) {
even->a[i] = (even->a[i] << j) | (even->a[i + 1] >> (32 - j));
}
even->a[i] = (even->a[i] << j);
// add j bits to k.
k += j;
}
// invariant is reestablished.
// now both a[0] are odd.
assert(odd->a[0] & 1);
assert(odd->a[8] & 1);
assert(even->a[0] & 1);
assert((even->a[8] & 1) == 0);
// cmp > 0 if us.a[0..len1-1] > vr.a[0..len1-1],
// cmp = 0 if equal, < 0 if less.
cmp = us.len1 - vr.len1;
if (cmp == 0) {
i = us.len1 - 1;
while (i >= 0 && us.a[i] == vr.a[i]) i--;
// both are equal to 1 and we are done.
if (i == -1)
break;
cmp = us.a[i] > vr.a[i] ? 1 : -1;
}
if (cmp > 0) {
even = &us;
odd = &vr;
} else {
even = &vr;
odd = &us;
}
// now even > odd.
// even->a[0..len1-1] = (even->a[0..len1-1] - odd->a[0..len1-1]);
temp = 1;
for (i = 0; i < odd->len1; i++) {
temp += 0xFFFFFFFFull + even->a[i] - odd->a[i];
even->a[i] = temp & 0xFFFFFFFF;
temp >>= 32;
}
for (; i < even->len1; i++) {
temp += 0xFFFFFFFFull + even->a[i];
even->a[i] = temp & 0xFFFFFFFF;
temp >>= 32;
}
// odd->a[len1..8] = (odd->b[len1..8] + even->b[len1..8]);
temp = 0;
for (i = 8; i >= even->len1; i--) {
temp += (uint64_t) odd->a[i] + even->a[i];
odd->a[i] = temp & 0xFFFFFFFF;
temp >>= 32;
}
for (; i >= odd->len1; i--) {
temp += (uint64_t) odd->a[i];
odd->a[i] = temp & 0xFFFFFFFF;
temp >>= 32;
}
// note that
// if u > v:
// u'2^k = (u - v) 2^k = x(-r) - xs = x(-(r+s)) = x(-r') mod prime
// u's' + v'r' = (u-v)s + v(r+s) = us + vr
// if u < v:
// v'2^k = (v - u) 2^k = xs - x(-r) = x(s+r) = xs' mod prime
// u's' + v'r' = u(s+r) + (v-u)r = us + vr
// even->a[0] is difference between two odd numbers, hence even.
// odd->a[8] is sum of even and odd number, hence odd.
assert(odd->a[0] & 1);
assert(odd->a[8] & 1);
assert((even->a[0] & 1) == 0);
// The invariants are (almost) reestablished.
// The invariant max(u,v) <= 2^k can be invalidated at this point,
// because odd->a[len1..8] was changed. We only have
//
// odd->a[len1..8] <= 2^{k+1}
//
// Since even->a[0] is even, k will be incremented at the beginning
// of the next loop while odd->a[len1..8] remains unchanged.
// So after that, odd->a[len1..8] <= 2^k will hold again.
}
// In the last iteration we had u = v and gcd(u,v) = 1.
// Hence, u=1, v=1, s+r = prime, k <= 510, 2^k > max(s,r) >= prime/2
// This implies 0 <= s < prime and 255 <= k <= 510.
//
// The invariants also give us x*s = 2^k mod prime,
// hence s = -2^k * x^-1 mod prime.
// We need to compute -s/2^k mod prime.
// First we compute inverse = -prime^-1 mod 2^32, which we need later.
// We use the Explicit Quadratic Modular inverse algorithm.
// http://arxiv.org/pdf/1209.6626.pdf
// a^-1 = (2-a) * PROD_i (1 + (a - 1)^(2^i)) mod 2^32
// the product will converge quickly, because (a-1)^(2^i) will be
// zero mod 2^32 after at most five iterations.
// We want to compute -prime^-1 so we start with (pp[0]-2).
assert(pp[0] & 1);
uint32_t amone = pp[0]-1;
uint32_t inverse = pp[0] - 2;
while (amone) {
amone *= amone;
inverse *= (amone + 1);
}
while (k >= 32) {
// compute s / 2^32 modulo prime.
// Idea: compute factor, such that
// s + factor*prime mod 2^32 == 0
// i.e. factor = s * -1/prime mod 2^32.
// Then compute s + factor*prime and shift right by 32 bits.
uint32_t factor = (inverse * us.a[8]) & 0xffffffff;
temp = us.a[8] + (uint64_t) pp[0] * factor;
// printf("%lx %x %x %x\n", temp, us.b[0], inverse, factor);
assert((temp & 0xffffffff) == 0);
temp >>= 32;
for (i = 0; i < 7; i++) {
temp += us.a[8-(i+1)] + (uint64_t) pp[i+1] * factor;
us.a[8-i] = temp & 0xffffffff;
temp >>= 32;
}
us.a[8-i] = temp & 0xffffffff;
k -= 32;
}
if (k > 0) {
// compute s / 2^k modulo prime.
// Same idea: compute factor, such that
// s + factor*prime mod 2^k == 0
// i.e. factor = s * -1/prime mod 2^k.
// Then compute s + factor*prime and shift right by k bits.
uint32_t mask = (1 << k) - 1;
uint32_t factor = (inverse * us.a[8]) & mask;
temp = (us.a[8] + (uint64_t) pp[0] * factor) >> k;
assert(((us.a[8] + pp[0] * factor) & mask) == 0);
for (i = 0; i < 7; i++) {
temp += (us.a[8-(i+1)] + (uint64_t) pp[i+1] * factor) << (32 - k);
us.a[8-i] = temp & 0xffffffff;
temp >>= 32;
}
us.a[8-i] = temp & 0xffffffff;
}
// convert s to bignum style
temp32 = 0;
for (i = 0; i < 8; i++) {
x->val[i] = ((us.a[8-i] << (2 * i)) & 0x3FFFFFFFu) | temp32;
temp32 = us.a[8-i] >> (30 - 2 * i);
}
x->val[i] = temp32;
} }
#endif #endif

View File

@ -23,11 +23,6 @@
#ifndef __OPTIONS_H__ #ifndef __OPTIONS_H__
#define __OPTIONS_H__ #define __OPTIONS_H__
// use precomputed Inverse Values of powers of two
#ifndef USE_PRECOMPUTED_IV
#define USE_PRECOMPUTED_IV 1
#endif
// use precomputed Curve Points (some scalar multiples of curve base point G) // use precomputed Curve Points (some scalar multiples of curve base point G)
#ifndef USE_PRECOMPUTED_CP #ifndef USE_PRECOMPUTED_CP
#define USE_PRECOMPUTED_CP 1 #define USE_PRECOMPUTED_CP 1

View File

@ -39,267 +39,6 @@ const bignum256 order256k1_half = {
const bignum256 three_over_two256k1 = { const bignum256 three_over_two256k1 = {
/*.val =*/{0x3ffffe19, 0x3ffffffd, 0x3fffffff, 0x3fffffff, 0x3fffffff, 0x3fffffff, 0x3fffffff, 0x3fffffff, 0x7fff}}; /*.val =*/{0x3ffffe19, 0x3ffffffd, 0x3fffffff, 0x3fffffff, 0x3fffffff, 0x3fffffff, 0x3fffffff, 0x3fffffff, 0x7fff}};
#if USE_PRECOMPUTED_IV
const bignum256 secp256k1_iv[256] = {
{/*.val =*/{0x868192a, 0x20e02474, 0x24a059d, 0x2c88ffb7, 0x32b761bc, 0x1b0b0a57, 0x383999c4, 0x6414554, 0xc9bd}},
{/*.val =*/{0x4340c95, 0x3070123a, 0x212502ce, 0x16447fdb, 0x395bb0de, 0xd85852b, 0x1c1ccce2, 0x2320a2aa, 0x64de}},
{/*.val =*/{0x21a0462, 0x1838091b, 0x30928167, 0xb223fed, 0x3cadd86f, 0x6c2c295, 0xe0e6671, 0x11905155, 0xb26f}},
{/*.val =*/{0x210d0231, 0x2c1c048d, 0x384940b3, 0x25911ff6, 0x3e56ec37, 0x2361614a, 0x27073338, 0x28c828aa, 0x5937}},
{/*.val =*/{0x30867f30, 0x360e0244, 0x1c24a059, 0x32c88ffb, 0x1f2b761b, 0x11b0b0a5, 0x1383999c, 0x34641455, 0xac9b}},
{/*.val =*/{0x18433f98, 0x3b070122, 0x2e12502c, 0x396447fd, 0x2f95bb0d, 0x8d85852, 0x29c1ccce, 0x3a320a2a, 0x564d}},
{/*.val =*/{0xc219fcc, 0x1d838091, 0x37092816, 0x3cb223fe, 0x17cadd86, 0x46c2c29, 0x14e0e667, 0x3d190515, 0x2b26}},
{/*.val =*/{0x2610cfe6, 0xec1c048, 0x1b84940b, 0x1e5911ff, 0x2be56ec3, 0x22361614, 0x2a707333, 0x1e8c828a, 0x1593}},
{/*.val =*/{0x130867f3, 0x2760e024, 0x2dc24a05, 0x2f2c88ff, 0x15f2b761, 0x311b0b0a, 0x15383999, 0x2f464145, 0xac9}},
{/*.val =*/{0x9843211, 0x33b07010, 0x36e12502, 0x3796447f, 0xaf95bb0, 0x388d8585, 0x2a9c1ccc, 0x37a320a2, 0x8564}},
{/*.val =*/{0x4c21720, 0x19d83806, 0x3b709281, 0x1bcb223f, 0x257cadd8, 0x1c46c2c2, 0x154e0e66, 0x1bd19051, 0xc2b2}},
{/*.val =*/{0x2610b90, 0x2cec1c03, 0x3db84940, 0xde5911f, 0x12be56ec, 0xe236161, 0x2aa70733, 0xde8c828, 0x6159}},
{/*.val =*/{0x213085c8, 0x16760e01, 0x3edc24a0, 0x6f2c88f, 0x295f2b76, 0x2711b0b0, 0x15538399, 0x26f46414, 0x30ac}},
{/*.val =*/{0x309842e4, 0xb3b0700, 0x3f6e1250, 0x3796447, 0x14af95bb, 0x3388d858, 0xaa9c1cc, 0x137a320a, 0x1856}},
{/*.val =*/{0x184c2172, 0x59d8380, 0x3fb70928, 0x21bcb223, 0xa57cadd, 0x19c46c2c, 0x554e0e6, 0x9bd1905, 0xc2b}},
{/*.val =*/{0xc2610b9, 0x2cec1c0, 0x3fdb8494, 0x30de5911, 0x52be56e, 0xce23616, 0x22aa7073, 0x24de8c82, 0x615}},
{/*.val =*/{0x6130674, 0x16760de, 0x3fedc24a, 0x186f2c88, 0x295f2b7, 0x26711b0b, 0x11553839, 0x326f4641, 0x830a}},
{/*.val =*/{0x309833a, 0xb3b06f, 0x1ff6e125, 0x2c379644, 0x214af95b, 0x33388d85, 0x28aa9c1c, 0x1937a320, 0x4185}},
{/*.val =*/{0x2184c19d, 0x2059d837, 0xffb7092, 0x361bcb22, 0x30a57cad, 0x199c46c2, 0x14554e0e, 0x2c9bd190, 0x20c2}},
{/*.val =*/{0x30c25ee6, 0x102cec19, 0x7fdb849, 0x3b0de591, 0x1852be56, 0xcce2361, 0xa2aa707, 0x164de8c8, 0x9061}},
{/*.val =*/{0x38612f73, 0x2816760c, 0x23fedc24, 0x1d86f2c8, 0x2c295f2b, 0x266711b0, 0x5155383, 0x2b26f464, 0x4830}},
{/*.val =*/{0x1c3095d1, 0x140b3b04, 0x11ff6e12, 0x2ec37964, 0x1614af95, 0x333388d8, 0x28aa9c1, 0x15937a32, 0xa418}},
{/*.val =*/{0xe184900, 0xa059d80, 0x8ffb709, 0x3761bcb2, 0xb0a57ca, 0x3999c46c, 0x14554e0, 0xac9bd19, 0xd20c}},
{/*.val =*/{0x70c2480, 0x2502cec0, 0x47fdb84, 0x1bb0de59, 0x5852be5, 0x1ccce236, 0x20a2aa70, 0x564de8c, 0x6906}},
{/*.val =*/{0x3861240, 0x12816760, 0x223fedc2, 0x2dd86f2c, 0x2c295f2, 0xe66711b, 0x10515538, 0x2b26f46, 0x3483}},
{/*.val =*/{0x1c30920, 0x940b3b0, 0x111ff6e1, 0x16ec3796, 0x21614af9, 0x733388d, 0x828aa9c, 0x215937a3, 0x1a41}},
{/*.val =*/{0xe18490, 0x24a059d8, 0x88ffb70, 0x2b761bcb, 0x30b0a57c, 0x3999c46, 0x2414554e, 0x30ac9bd1, 0xd20}},
{/*.val =*/{0x70c248, 0x12502cec, 0x2447fdb8, 0x15bb0de5, 0x185852be, 0x1ccce23, 0x320a2aa7, 0x18564de8, 0x690}},
{/*.val =*/{0x386124, 0x9281676, 0x3223fedc, 0xadd86f2, 0x2c2c295f, 0x20e66711, 0x19051553, 0xc2b26f4, 0x348}},
{/*.val =*/{0x1c3092, 0x4940b3b, 0x1911ff6e, 0x256ec379, 0x361614af, 0x30733388, 0xc828aa9, 0x615937a, 0x1a4}},
{/*.val =*/{0x200e1849, 0x24a059d, 0x2c88ffb7, 0x32b761bc, 0x1b0b0a57, 0x383999c4, 0x6414554, 0x30ac9bd, 0xd2}},
{/*.val =*/{0x30070a3c, 0x212502cc, 0x16447fdb, 0x395bb0de, 0xd85852b, 0x1c1ccce2, 0x2320a2aa, 0x18564de, 0x8069}},
{/*.val =*/{0x1803851e, 0x30928166, 0xb223fed, 0x3cadd86f, 0x6c2c295, 0xe0e6671, 0x11905155, 0x20c2b26f, 0x4034}},
{/*.val =*/{0xc01c28f, 0x384940b3, 0x25911ff6, 0x3e56ec37, 0x2361614a, 0x27073338, 0x28c828aa, 0x10615937, 0x201a}},
{/*.val =*/{0x2600df5f, 0x1c24a057, 0x32c88ffb, 0x1f2b761b, 0x11b0b0a5, 0x1383999c, 0x34641455, 0x830ac9b, 0x900d}},
{/*.val =*/{0x33006dc7, 0x2e125029, 0x396447fd, 0x2f95bb0d, 0x8d85852, 0x29c1ccce, 0x3a320a2a, 0x2418564d, 0xc806}},
{/*.val =*/{0x398034fb, 0x37092812, 0x3cb223fe, 0x17cadd86, 0x46c2c29, 0x14e0e667, 0x3d190515, 0x120c2b26, 0xe403}},
{/*.val =*/{0x1cc01895, 0x1b849407, 0x1e5911ff, 0x2be56ec3, 0x22361614, 0x2a707333, 0x1e8c828a, 0x29061593, 0xf201}},
{/*.val =*/{0x2e600a62, 0x2dc24a01, 0x2f2c88ff, 0x15f2b761, 0x311b0b0a, 0x15383999, 0x2f464145, 0x34830ac9, 0xf900}},
{/*.val =*/{0x37300531, 0x36e12500, 0x3796447f, 0xaf95bb0, 0x388d8585, 0x2a9c1ccc, 0x37a320a2, 0x1a418564, 0x7c80}},
{/*.val =*/{0x1b9800b0, 0x3b70927e, 0x1bcb223f, 0x257cadd8, 0x1c46c2c2, 0x154e0e66, 0x1bd19051, 0xd20c2b2, 0xbe40}},
{/*.val =*/{0xdcc0058, 0x3db8493f, 0xde5911f, 0x12be56ec, 0xe236161, 0x2aa70733, 0xde8c828, 0x6906159, 0x5f20}},
{/*.val =*/{0x26e6002c, 0x3edc249f, 0x6f2c88f, 0x295f2b76, 0x2711b0b0, 0x15538399, 0x26f46414, 0x34830ac, 0x2f90}},
{/*.val =*/{0x33730016, 0x3f6e124f, 0x3796447, 0x14af95bb, 0x3388d858, 0xaa9c1cc, 0x137a320a, 0x1a41856, 0x17c8}},
{/*.val =*/{0x39b9800b, 0x3fb70927, 0x21bcb223, 0xa57cadd, 0x19c46c2c, 0x554e0e6, 0x9bd1905, 0xd20c2b, 0xbe4}},
{/*.val =*/{0x3cdcbe1d, 0x3fdb8491, 0x30de5911, 0x52be56e, 0xce23616, 0x22aa7073, 0x24de8c82, 0x690615, 0x85f2}},
{/*.val =*/{0x3e6e5d26, 0x3fedc246, 0x186f2c88, 0x295f2b7, 0x26711b0b, 0x11553839, 0x326f4641, 0x34830a, 0xc2f9}},
{/*.val =*/{0x1f372e93, 0x1ff6e123, 0x2c379644, 0x214af95b, 0x33388d85, 0x28aa9c1c, 0x1937a320, 0x201a4185, 0x617c}},
{/*.val =*/{0x2f9b9561, 0xffb708f, 0x361bcb22, 0x30a57cad, 0x199c46c2, 0x14554e0e, 0x2c9bd190, 0x100d20c2, 0xb0be}},
{/*.val =*/{0x37cdc8c8, 0x7fdb845, 0x3b0de591, 0x1852be56, 0xcce2361, 0xa2aa707, 0x164de8c8, 0x8069061, 0xd85f}},
{/*.val =*/{0x3be6e464, 0x23fedc22, 0x1d86f2c8, 0x2c295f2b, 0x266711b0, 0x5155383, 0x2b26f464, 0x24034830, 0x6c2f}},
{/*.val =*/{0x1df37232, 0x11ff6e11, 0x2ec37964, 0x1614af95, 0x333388d8, 0x28aa9c1, 0x15937a32, 0x3201a418, 0x3617}},
{/*.val =*/{0x2ef9b919, 0x8ffb708, 0x3761bcb2, 0xb0a57ca, 0x3999c46c, 0x14554e0, 0xac9bd19, 0x3900d20c, 0x1b0b}},
{/*.val =*/{0x177cdaa4, 0x47fdb82, 0x1bb0de59, 0x5852be5, 0x1ccce236, 0x20a2aa70, 0x564de8c, 0x3c806906, 0x8d85}},
{/*.val =*/{0xbbe6d52, 0x223fedc1, 0x2dd86f2c, 0x2c295f2, 0xe66711b, 0x10515538, 0x2b26f46, 0x3e403483, 0x46c2}},
{/*.val =*/{0x25df36a9, 0x111ff6e0, 0x16ec3796, 0x21614af9, 0x733388d, 0x828aa9c, 0x215937a3, 0x1f201a41, 0x2361}},
{/*.val =*/{0x12ef996c, 0x88ffb6e, 0x2b761bcb, 0x30b0a57c, 0x3999c46, 0x2414554e, 0x30ac9bd1, 0x2f900d20, 0x91b0}},
{/*.val =*/{0x977ccb6, 0x2447fdb7, 0x15bb0de5, 0x185852be, 0x1ccce23, 0x320a2aa7, 0x18564de8, 0x17c80690, 0x48d8}},
{/*.val =*/{0x24bbe65b, 0x3223fedb, 0xadd86f2, 0x2c2c295f, 0x20e66711, 0x19051553, 0xc2b26f4, 0xbe40348, 0x246c}},
{/*.val =*/{0x325df145, 0x1911ff6b, 0x256ec379, 0x361614af, 0x30733388, 0xc828aa9, 0x615937a, 0x5f201a4, 0x9236}},
{/*.val =*/{0x392ef6ba, 0x2c88ffb3, 0x32b761bc, 0x1b0b0a57, 0x383999c4, 0x6414554, 0x30ac9bd, 0x2f900d2, 0xc91b}},
{/*.val =*/{0x3c977b5d, 0x16447fd9, 0x395bb0de, 0xd85852b, 0x1c1ccce2, 0x2320a2aa, 0x18564de, 0x217c8069, 0x648d}},
{/*.val =*/{0x3e4bbbc6, 0xb223fea, 0x3cadd86f, 0x6c2c295, 0xe0e6671, 0x11905155, 0x20c2b26f, 0x30be4034, 0xb246}},
{/*.val =*/{0x1f25dde3, 0x25911ff5, 0x3e56ec37, 0x2361614a, 0x27073338, 0x28c828aa, 0x10615937, 0x185f201a, 0x5923}},
{/*.val =*/{0x2f92ed09, 0x32c88ff8, 0x1f2b761b, 0x11b0b0a5, 0x1383999c, 0x34641455, 0x830ac9b, 0x2c2f900d, 0xac91}},
{/*.val =*/{0x17c9749c, 0x396447fa, 0x2f95bb0d, 0x8d85852, 0x29c1ccce, 0x3a320a2a, 0x2418564d, 0x3617c806, 0xd648}},
{/*.val =*/{0xbe4ba4e, 0x3cb223fd, 0x17cadd86, 0x46c2c29, 0x14e0e667, 0x3d190515, 0x120c2b26, 0x1b0be403, 0x6b24}},
{/*.val =*/{0x25f25d27, 0x1e5911fe, 0x2be56ec3, 0x22361614, 0x2a707333, 0x1e8c828a, 0x29061593, 0xd85f201, 0x3592}},
{/*.val =*/{0x12f92cab, 0x2f2c88fd, 0x15f2b761, 0x311b0b0a, 0x15383999, 0x2f464145, 0x34830ac9, 0x6c2f900, 0x9ac9}},
{/*.val =*/{0x297c946d, 0x3796447c, 0xaf95bb0, 0x388d8585, 0x2a9c1ccc, 0x37a320a2, 0x1a418564, 0x23617c80, 0xcd64}},
{/*.val =*/{0x14be484e, 0x1bcb223c, 0x257cadd8, 0x1c46c2c2, 0x154e0e66, 0x1bd19051, 0xd20c2b2, 0x11b0be40, 0xe6b2}},
{/*.val =*/{0xa5f2427, 0xde5911e, 0x12be56ec, 0xe236161, 0x2aa70733, 0xde8c828, 0x6906159, 0x8d85f20, 0x7359}},
{/*.val =*/{0x52f902b, 0x6f2c88d, 0x295f2b76, 0x2711b0b0, 0x15538399, 0x26f46414, 0x34830ac, 0x246c2f90, 0xb9ac}},
{/*.val =*/{0x2297c62d, 0x3796444, 0x14af95bb, 0x3388d858, 0xaa9c1cc, 0x137a320a, 0x1a41856, 0x123617c8, 0xdcd6}},
{/*.val =*/{0x114be12e, 0x21bcb220, 0xa57cadd, 0x19c46c2c, 0x554e0e6, 0x9bd1905, 0xd20c2b, 0x91b0be4, 0xee6b}},
{/*.val =*/{0x8a5f097, 0x30de5910, 0x52be56e, 0xce23616, 0x22aa7073, 0x24de8c82, 0x690615, 0x248d85f2, 0x7735}},
{/*.val =*/{0x452f663, 0x186f2c86, 0x295f2b7, 0x26711b0b, 0x11553839, 0x326f4641, 0x34830a, 0x3246c2f9, 0xbb9a}},
{/*.val =*/{0x2297949, 0x2c379641, 0x214af95b, 0x33388d85, 0x28aa9c1c, 0x1937a320, 0x201a4185, 0x1923617c, 0xddcd}},
{/*.val =*/{0x2114babc, 0x361bcb1e, 0x30a57cad, 0x199c46c2, 0x14554e0e, 0x2c9bd190, 0x100d20c2, 0x2c91b0be, 0xeee6}},
{/*.val =*/{0x108a5d5e, 0x3b0de58f, 0x1852be56, 0xcce2361, 0xa2aa707, 0x164de8c8, 0x8069061, 0x1648d85f, 0x7773}},
{/*.val =*/{0x28452eaf, 0x1d86f2c7, 0x2c295f2b, 0x266711b0, 0x5155383, 0x2b26f464, 0x24034830, 0x2b246c2f, 0x3bb9}},
{/*.val =*/{0x3422956f, 0x2ec37961, 0x1614af95, 0x333388d8, 0x28aa9c1, 0x15937a32, 0x3201a418, 0x35923617, 0x9ddc}},
{/*.val =*/{0x3a1148cf, 0x3761bcae, 0xb0a57ca, 0x3999c46c, 0x14554e0, 0xac9bd19, 0x3900d20c, 0x1ac91b0b, 0xceee}},
{/*.val =*/{0x1d08a27f, 0x1bb0de55, 0x5852be5, 0x1ccce236, 0x20a2aa70, 0x564de8c, 0x3c806906, 0xd648d85, 0xe777}},
{/*.val =*/{0x2e844f57, 0x2dd86f28, 0x2c295f2, 0xe66711b, 0x10515538, 0x2b26f46, 0x3e403483, 0x26b246c2, 0xf3bb}},
{/*.val =*/{0x174225c3, 0x16ec3792, 0x21614af9, 0x733388d, 0x828aa9c, 0x215937a3, 0x1f201a41, 0x33592361, 0xf9dd}},
{/*.val =*/{0xba110f9, 0x2b761bc7, 0x30b0a57c, 0x3999c46, 0x2414554e, 0x30ac9bd1, 0x2f900d20, 0x39ac91b0, 0xfcee}},
{/*.val =*/{0x25d08694, 0x15bb0de1, 0x185852be, 0x1ccce23, 0x320a2aa7, 0x18564de8, 0x17c80690, 0x1cd648d8, 0xfe77}},
{/*.val =*/{0x32e8434a, 0xadd86f0, 0x2c2c295f, 0x20e66711, 0x19051553, 0xc2b26f4, 0xbe40348, 0x2e6b246c, 0x7f3b}},
{/*.val =*/{0x197421a5, 0x256ec378, 0x361614af, 0x30733388, 0xc828aa9, 0x615937a, 0x5f201a4, 0x37359236, 0x3f9d}},
{/*.val =*/{0xcba0eea, 0x32b761ba, 0x1b0b0a57, 0x383999c4, 0x6414554, 0x30ac9bd, 0x2f900d2, 0x3b9ac91b, 0x9fce}},
{/*.val =*/{0x65d0775, 0x395bb0dd, 0xd85852b, 0x1c1ccce2, 0x2320a2aa, 0x18564de, 0x217c8069, 0x1dcd648d, 0x4fe7}},
{/*.val =*/{0x232e81d2, 0x3cadd86c, 0x6c2c295, 0xe0e6671, 0x11905155, 0x20c2b26f, 0x30be4034, 0x2ee6b246, 0xa7f3}},
{/*.val =*/{0x119740e9, 0x3e56ec36, 0x2361614a, 0x27073338, 0x28c828aa, 0x10615937, 0x185f201a, 0x37735923, 0x53f9}},
{/*.val =*/{0x8cb9e8c, 0x1f2b7619, 0x11b0b0a5, 0x1383999c, 0x34641455, 0x830ac9b, 0x2c2f900d, 0x3bb9ac91, 0xa9fc}},
{/*.val =*/{0x2465cf46, 0x2f95bb0c, 0x8d85852, 0x29c1ccce, 0x3a320a2a, 0x2418564d, 0x3617c806, 0x1ddcd648, 0x54fe}},
{/*.val =*/{0x1232e7a3, 0x17cadd86, 0x46c2c29, 0x14e0e667, 0x3d190515, 0x120c2b26, 0x1b0be403, 0xeee6b24, 0x2a7f}},
{/*.val =*/{0x91971e9, 0x2be56ec1, 0x22361614, 0x2a707333, 0x1e8c828a, 0x29061593, 0xd85f201, 0x27773592, 0x953f}},
{/*.val =*/{0x248cb70c, 0x15f2b75e, 0x311b0b0a, 0x15383999, 0x2f464145, 0x34830ac9, 0x6c2f900, 0x33bb9ac9, 0xca9f}},
{/*.val =*/{0x12465b86, 0xaf95baf, 0x388d8585, 0x2a9c1ccc, 0x37a320a2, 0x1a418564, 0x23617c80, 0x39ddcd64, 0x654f}},
{/*.val =*/{0x29232dc3, 0x257cadd7, 0x1c46c2c2, 0x154e0e66, 0x1bd19051, 0xd20c2b2, 0x11b0be40, 0x3ceee6b2, 0x32a7}},
{/*.val =*/{0x349194f9, 0x12be56e9, 0xe236161, 0x2aa70733, 0xde8c828, 0x6906159, 0x8d85f20, 0x3e777359, 0x9953}},
{/*.val =*/{0x3a48c894, 0x295f2b72, 0x2711b0b0, 0x15538399, 0x26f46414, 0x34830ac, 0x246c2f90, 0x3f3bb9ac, 0xcca9}},
{/*.val =*/{0x1d24644a, 0x14af95b9, 0x3388d858, 0xaa9c1cc, 0x137a320a, 0x1a41856, 0x123617c8, 0x3f9ddcd6, 0x6654}},
{/*.val =*/{0x2e923225, 0xa57cadc, 0x19c46c2c, 0x554e0e6, 0x9bd1905, 0xd20c2b, 0x91b0be4, 0x1fceee6b, 0x332a}},
{/*.val =*/{0x1749172a, 0x52be56c, 0xce23616, 0x22aa7073, 0x24de8c82, 0x690615, 0x248d85f2, 0xfe77735, 0x9995}},
{/*.val =*/{0xba48b95, 0x295f2b6, 0x26711b0b, 0x11553839, 0x326f4641, 0x34830a, 0x3246c2f9, 0x27f3bb9a, 0x4cca}},
{/*.val =*/{0x5d243e2, 0x214af959, 0x33388d85, 0x28aa9c1c, 0x1937a320, 0x201a4185, 0x1923617c, 0x13f9ddcd, 0xa665}},
{/*.val =*/{0x22e921f1, 0x30a57cac, 0x199c46c2, 0x14554e0e, 0x2c9bd190, 0x100d20c2, 0x2c91b0be, 0x29fceee6, 0x5332}},
{/*.val =*/{0x11748f10, 0x1852be54, 0xcce2361, 0xa2aa707, 0x164de8c8, 0x8069061, 0x1648d85f, 0x14fe7773, 0xa999}},
{/*.val =*/{0x8ba4788, 0x2c295f2a, 0x266711b0, 0x5155383, 0x2b26f464, 0x24034830, 0x2b246c2f, 0x2a7f3bb9, 0x54cc}},
{/*.val =*/{0x45d23c4, 0x1614af95, 0x333388d8, 0x28aa9c1, 0x15937a32, 0x3201a418, 0x35923617, 0x153f9ddc, 0x2a66}},
{/*.val =*/{0x222e91e2, 0xb0a57ca, 0x3999c46c, 0x14554e0, 0xac9bd19, 0x3900d20c, 0x1ac91b0b, 0xa9fceee, 0x1533}},
{/*.val =*/{0x111748f1, 0x5852be5, 0x1ccce236, 0x20a2aa70, 0x564de8c, 0x3c806906, 0xd648d85, 0x254fe777, 0xa99}},
{/*.val =*/{0x288ba290, 0x2c295f0, 0xe66711b, 0x10515538, 0x2b26f46, 0x3e403483, 0x26b246c2, 0x32a7f3bb, 0x854c}},
{/*.val =*/{0x1445d148, 0x21614af8, 0x733388d, 0x828aa9c, 0x215937a3, 0x1f201a41, 0x33592361, 0x1953f9dd, 0x42a6}},
{/*.val =*/{0xa22e8a4, 0x30b0a57c, 0x3999c46, 0x2414554e, 0x30ac9bd1, 0x2f900d20, 0x39ac91b0, 0xca9fcee, 0x2153}},
{/*.val =*/{0x5117452, 0x185852be, 0x1ccce23, 0x320a2aa7, 0x18564de8, 0x17c80690, 0x1cd648d8, 0x2654fe77, 0x10a9}},
{/*.val =*/{0x288ba29, 0x2c2c295f, 0x20e66711, 0x19051553, 0xc2b26f4, 0xbe40348, 0x2e6b246c, 0x332a7f3b, 0x854}},
{/*.val =*/{0x21445b2c, 0x361614ad, 0x30733388, 0xc828aa9, 0x615937a, 0x5f201a4, 0x37359236, 0x19953f9d, 0x842a}},
{/*.val =*/{0x30a22d96, 0x1b0b0a56, 0x383999c4, 0x6414554, 0x30ac9bd, 0x2f900d2, 0x3b9ac91b, 0xcca9fce, 0x4215}},
{/*.val =*/{0x185116cb, 0xd85852b, 0x1c1ccce2, 0x2320a2aa, 0x18564de, 0x217c8069, 0x1dcd648d, 0x26654fe7, 0x210a}},
{/*.val =*/{0x2c28897d, 0x6c2c293, 0xe0e6671, 0x11905155, 0x20c2b26f, 0x30be4034, 0x2ee6b246, 0x1332a7f3, 0x9085}},
{/*.val =*/{0x361442d6, 0x23616147, 0x27073338, 0x28c828aa, 0x10615937, 0x185f201a, 0x37735923, 0x299953f9, 0xc842}},
{/*.val =*/{0x3b0a216b, 0x11b0b0a3, 0x1383999c, 0x34641455, 0x830ac9b, 0x2c2f900d, 0x3bb9ac91, 0x14cca9fc, 0x6421}},
{/*.val =*/{0x3d850ecd, 0x8d8584f, 0x29c1ccce, 0x3a320a2a, 0x2418564d, 0x3617c806, 0x1ddcd648, 0x2a6654fe, 0xb210}},
{/*.val =*/{0x3ec2857e, 0x46c2c25, 0x14e0e667, 0x3d190515, 0x120c2b26, 0x1b0be403, 0xeee6b24, 0x15332a7f, 0xd908}},
{/*.val =*/{0x3f6142bf, 0x22361612, 0x2a707333, 0x1e8c828a, 0x29061593, 0xd85f201, 0x27773592, 0xa99953f, 0x6c84}},
{/*.val =*/{0x1fb09f77, 0x311b0b07, 0x15383999, 0x2f464145, 0x34830ac9, 0x6c2f900, 0x33bb9ac9, 0x54cca9f, 0xb642}},
{/*.val =*/{0x2fd84dd3, 0x388d8581, 0x2a9c1ccc, 0x37a320a2, 0x1a418564, 0x23617c80, 0x39ddcd64, 0x2a6654f, 0xdb21}},
{/*.val =*/{0x37ec2501, 0x1c46c2be, 0x154e0e66, 0x1bd19051, 0xd20c2b2, 0x11b0be40, 0x3ceee6b2, 0x215332a7, 0xed90}},
{/*.val =*/{0x1bf61098, 0xe23615d, 0x2aa70733, 0xde8c828, 0x6906159, 0x8d85f20, 0x3e777359, 0x10a99953, 0xf6c8}},
{/*.val =*/{0x2dfb084c, 0x2711b0ae, 0x15538399, 0x26f46414, 0x34830ac, 0x246c2f90, 0x3f3bb9ac, 0x854cca9, 0x7b64}},
{/*.val =*/{0x16fd8426, 0x3388d857, 0xaa9c1cc, 0x137a320a, 0x1a41856, 0x123617c8, 0x3f9ddcd6, 0x42a6654, 0x3db2}},
{/*.val =*/{0x2b7ec213, 0x19c46c2b, 0x554e0e6, 0x9bd1905, 0xd20c2b, 0x91b0be4, 0x1fceee6b, 0x215332a, 0x1ed9}},
{/*.val =*/{0x35bf5f21, 0xce23613, 0x22aa7073, 0x24de8c82, 0x690615, 0x248d85f2, 0xfe77735, 0x210a9995, 0x8f6c}},
{/*.val =*/{0x3adfada8, 0x26711b07, 0x11553839, 0x326f4641, 0x34830a, 0x3246c2f9, 0x27f3bb9a, 0x10854cca, 0xc7b6}},
{/*.val =*/{0x3d6fd6d4, 0x33388d83, 0x28aa9c1c, 0x1937a320, 0x201a4185, 0x1923617c, 0x13f9ddcd, 0x842a665, 0x63db}},
{/*.val =*/{0x3eb7eb6a, 0x199c46c1, 0x14554e0e, 0x2c9bd190, 0x100d20c2, 0x2c91b0be, 0x29fceee6, 0x24215332, 0x31ed}},
{/*.val =*/{0x3f5bf5b5, 0xcce2360, 0xa2aa707, 0x164de8c8, 0x8069061, 0x1648d85f, 0x14fe7773, 0x3210a999, 0x18f6}},
{/*.val =*/{0x1fadf8f2, 0x266711ae, 0x5155383, 0x2b26f464, 0x24034830, 0x2b246c2f, 0x2a7f3bb9, 0x190854cc, 0x8c7b}},
{/*.val =*/{0xfd6fc79, 0x333388d7, 0x28aa9c1, 0x15937a32, 0x3201a418, 0x35923617, 0x153f9ddc, 0x2c842a66, 0x463d}},
{/*.val =*/{0x27eb7c54, 0x3999c469, 0x14554e0, 0xac9bd19, 0x3900d20c, 0x1ac91b0b, 0xa9fceee, 0x36421533, 0xa31e}},
{/*.val =*/{0x33f5be2a, 0x1ccce234, 0x20a2aa70, 0x564de8c, 0x3c806906, 0xd648d85, 0x254fe777, 0x1b210a99, 0x518f}},
{/*.val =*/{0x19fadf15, 0xe66711a, 0x10515538, 0x2b26f46, 0x3e403483, 0x26b246c2, 0x32a7f3bb, 0x2d90854c, 0x28c7}},
{/*.val =*/{0xcfd6da2, 0x733388b, 0x828aa9c, 0x215937a3, 0x1f201a41, 0x33592361, 0x1953f9dd, 0x36c842a6, 0x9463}},
{/*.val =*/{0x267eb6d1, 0x3999c45, 0x2414554e, 0x30ac9bd1, 0x2f900d20, 0x39ac91b0, 0xca9fcee, 0x3b642153, 0x4a31}},
{/*.val =*/{0x333f5980, 0x1ccce20, 0x320a2aa7, 0x18564de8, 0x17c80690, 0x1cd648d8, 0x2654fe77, 0x3db210a9, 0xa518}},
{/*.val =*/{0x199facc0, 0x20e66710, 0x19051553, 0xc2b26f4, 0xbe40348, 0x2e6b246c, 0x332a7f3b, 0x1ed90854, 0x528c}},
{/*.val =*/{0xccfd660, 0x30733388, 0xc828aa9, 0x615937a, 0x5f201a4, 0x37359236, 0x19953f9d, 0xf6c842a, 0x2946}},
{/*.val =*/{0x667eb30, 0x383999c4, 0x6414554, 0x30ac9bd, 0x2f900d2, 0x3b9ac91b, 0xcca9fce, 0x7b64215, 0x14a3}},
{/*.val =*/{0x333f598, 0x1c1ccce2, 0x2320a2aa, 0x18564de, 0x217c8069, 0x1dcd648d, 0x26654fe7, 0x23db210a, 0xa51}},
{/*.val =*/{0x199facc, 0xe0e6671, 0x11905155, 0x20c2b26f, 0x30be4034, 0x2ee6b246, 0x1332a7f3, 0x31ed9085, 0x528}},
{/*.val =*/{0x20ccfd66, 0x27073338, 0x28c828aa, 0x10615937, 0x185f201a, 0x37735923, 0x299953f9, 0x18f6c842, 0x294}},
{/*.val =*/{0x10667eb3, 0x1383999c, 0x34641455, 0x830ac9b, 0x2c2f900d, 0x3bb9ac91, 0x14cca9fc, 0xc7b6421, 0x14a}},
{/*.val =*/{0x8333d71, 0x29c1cccc, 0x3a320a2a, 0x2418564d, 0x3617c806, 0x1ddcd648, 0x2a6654fe, 0x63db210, 0x80a5}},
{/*.val =*/{0x4199cd0, 0x14e0e664, 0x3d190515, 0x120c2b26, 0x1b0be403, 0xeee6b24, 0x15332a7f, 0x231ed908, 0xc052}},
{/*.val =*/{0x20cce68, 0x2a707332, 0x1e8c828a, 0x29061593, 0xd85f201, 0x27773592, 0xa99953f, 0x118f6c84, 0x6029}},
{/*.val =*/{0x1066734, 0x15383999, 0x2f464145, 0x34830ac9, 0x6c2f900, 0x33bb9ac9, 0x54cca9f, 0x28c7b642, 0x3014}},
{/*.val =*/{0x2083339a, 0x2a9c1ccc, 0x37a320a2, 0x1a418564, 0x23617c80, 0x39ddcd64, 0x2a6654f, 0x1463db21, 0x180a}},
{/*.val =*/{0x104199cd, 0x154e0e66, 0x1bd19051, 0xd20c2b2, 0x11b0be40, 0x3ceee6b2, 0x215332a7, 0xa31ed90, 0xc05}},
{/*.val =*/{0x820cafe, 0x2aa70731, 0xde8c828, 0x6906159, 0x8d85f20, 0x3e777359, 0x10a99953, 0x2518f6c8, 0x8602}},
{/*.val =*/{0x2410657f, 0x15538398, 0x26f46414, 0x34830ac, 0x246c2f90, 0x3f3bb9ac, 0x854cca9, 0x128c7b64, 0x4301}},
{/*.val =*/{0x120830d7, 0xaa9c1ca, 0x137a320a, 0x1a41856, 0x123617c8, 0x3f9ddcd6, 0x42a6654, 0x29463db2, 0xa180}},
{/*.val =*/{0x9041683, 0x554e0e3, 0x9bd1905, 0xd20c2b, 0x91b0be4, 0x1fceee6b, 0x215332a, 0x14a31ed9, 0xd0c0}},
{/*.val =*/{0x24820959, 0x22aa706f, 0x24de8c82, 0x690615, 0x248d85f2, 0xfe77735, 0x210a9995, 0xa518f6c, 0xe860}},
{/*.val =*/{0x324102c4, 0x11553835, 0x326f4641, 0x34830a, 0x3246c2f9, 0x27f3bb9a, 0x10854cca, 0x528c7b6, 0xf430}},
{/*.val =*/{0x39208162, 0x28aa9c1a, 0x1937a320, 0x201a4185, 0x1923617c, 0x13f9ddcd, 0x842a665, 0x29463db, 0x7a18}},
{/*.val =*/{0x1c9040b1, 0x14554e0d, 0x2c9bd190, 0x100d20c2, 0x2c91b0be, 0x29fceee6, 0x24215332, 0x14a31ed, 0x3d0c}},
{/*.val =*/{0x2e481e70, 0xa2aa704, 0x164de8c8, 0x8069061, 0x1648d85f, 0x14fe7773, 0x3210a999, 0xa518f6, 0x9e86}},
{/*.val =*/{0x17240f38, 0x5155382, 0x2b26f464, 0x24034830, 0x2b246c2f, 0x2a7f3bb9, 0x190854cc, 0x528c7b, 0x4f43}},
{/*.val =*/{0xb92079c, 0x28aa9c1, 0x15937a32, 0x3201a418, 0x35923617, 0x153f9ddc, 0x2c842a66, 0x2029463d, 0x27a1}},
{/*.val =*/{0x25c903ce, 0x14554e0, 0xac9bd19, 0x3900d20c, 0x1ac91b0b, 0xa9fceee, 0x36421533, 0x3014a31e, 0x13d0}},
{/*.val =*/{0x12e481e7, 0x20a2aa70, 0x564de8c, 0x3c806906, 0xd648d85, 0x254fe777, 0x1b210a99, 0x180a518f, 0x9e8}},
{/*.val =*/{0x9723f0b, 0x10515536, 0x2b26f46, 0x3e403483, 0x26b246c2, 0x32a7f3bb, 0x2d90854c, 0xc0528c7, 0x84f4}},
{/*.val =*/{0x4b91d9d, 0x828aa99, 0x215937a3, 0x1f201a41, 0x33592361, 0x1953f9dd, 0x36c842a6, 0x6029463, 0xc27a}},
{/*.val =*/{0x225c8ce6, 0x2414554a, 0x30ac9bd1, 0x2f900d20, 0x39ac91b0, 0xca9fcee, 0x3b642153, 0x3014a31, 0xe13d}},
{/*.val =*/{0x112e4673, 0x320a2aa5, 0x18564de8, 0x17c80690, 0x1cd648d8, 0x2654fe77, 0x3db210a9, 0x2180a518, 0x709e}},
{/*.val =*/{0x28972151, 0x19051550, 0xc2b26f4, 0xbe40348, 0x2e6b246c, 0x332a7f3b, 0x1ed90854, 0x10c0528c, 0xb84f}},
{/*.val =*/{0x144b8ec0, 0xc828aa6, 0x615937a, 0x5f201a4, 0x37359236, 0x19953f9d, 0xf6c842a, 0x28602946, 0xdc27}},
{/*.val =*/{0xa25c760, 0x6414553, 0x30ac9bd, 0x2f900d2, 0x3b9ac91b, 0xcca9fce, 0x7b64215, 0x343014a3, 0x6e13}},
{/*.val =*/{0x2512e3b0, 0x2320a2a9, 0x18564de, 0x217c8069, 0x1dcd648d, 0x26654fe7, 0x23db210a, 0x3a180a51, 0x3709}},
{/*.val =*/{0x328971d8, 0x11905154, 0x20c2b26f, 0x30be4034, 0x2ee6b246, 0x1332a7f3, 0x31ed9085, 0x3d0c0528, 0x1b84}},
{/*.val =*/{0x1944b8ec, 0x28c828aa, 0x10615937, 0x185f201a, 0x37735923, 0x299953f9, 0x18f6c842, 0x1e860294, 0xdc2}},
{/*.val =*/{0xca25c76, 0x34641455, 0x830ac9b, 0x2c2f900d, 0x3bb9ac91, 0x14cca9fc, 0xc7b6421, 0xf43014a, 0x6e1}},
{/*.val =*/{0x26512e3b, 0x3a320a2a, 0x2418564d, 0x3617c806, 0x1ddcd648, 0x2a6654fe, 0x63db210, 0x27a180a5, 0x370}},
{/*.val =*/{0x13289535, 0x3d190513, 0x120c2b26, 0x1b0be403, 0xeee6b24, 0x15332a7f, 0x231ed908, 0x13d0c052, 0x81b8}},
{/*.val =*/{0x299448b2, 0x1e8c8287, 0x29061593, 0xd85f201, 0x27773592, 0xa99953f, 0x118f6c84, 0x9e86029, 0xc0dc}},
{/*.val =*/{0x34ca2459, 0x2f464143, 0x34830ac9, 0x6c2f900, 0x33bb9ac9, 0x54cca9f, 0x28c7b642, 0x4f43014, 0x606e}},
{/*.val =*/{0x3a651044, 0x37a3209f, 0x1a418564, 0x23617c80, 0x39ddcd64, 0x2a6654f, 0x1463db21, 0x27a180a, 0xb037}},
{/*.val =*/{0x3d328822, 0x1bd1904f, 0xd20c2b2, 0x11b0be40, 0x3ceee6b2, 0x215332a7, 0xa31ed90, 0x213d0c05, 0x581b}},
{/*.val =*/{0x3e994411, 0xde8c827, 0x6906159, 0x8d85f20, 0x3e777359, 0x10a99953, 0x2518f6c8, 0x309e8602, 0x2c0d}},
{/*.val =*/{0x3f4ca020, 0x26f46411, 0x34830ac, 0x246c2f90, 0x3f3bb9ac, 0x854cca9, 0x128c7b64, 0x384f4301, 0x9606}},
{/*.val =*/{0x3fa65010, 0x137a3208, 0x1a41856, 0x123617c8, 0x3f9ddcd6, 0x42a6654, 0x29463db2, 0x1c27a180, 0x4b03}},
{/*.val =*/{0x1fd32808, 0x9bd1904, 0xd20c2b, 0x91b0be4, 0x1fceee6b, 0x215332a, 0x14a31ed9, 0x2e13d0c0, 0x2581}},
{/*.val =*/{0xfe99404, 0x24de8c82, 0x690615, 0x248d85f2, 0xfe77735, 0x210a9995, 0xa518f6c, 0x3709e860, 0x12c0}},
{/*.val =*/{0x7f4ca02, 0x326f4641, 0x34830a, 0x3246c2f9, 0x27f3bb9a, 0x10854cca, 0x528c7b6, 0x1b84f430, 0x960}},
{/*.val =*/{0x23fa6501, 0x1937a320, 0x201a4185, 0x1923617c, 0x13f9ddcd, 0x842a665, 0x29463db, 0xdc27a18, 0x4b0}},
{/*.val =*/{0x11fd3098, 0x2c9bd18e, 0x100d20c2, 0x2c91b0be, 0x29fceee6, 0x24215332, 0x14a31ed, 0x6e13d0c, 0x8258}},
{/*.val =*/{0x8fe984c, 0x164de8c7, 0x8069061, 0x1648d85f, 0x14fe7773, 0x3210a999, 0xa518f6, 0x3709e86, 0x412c}},
{/*.val =*/{0x247f4c26, 0x2b26f463, 0x24034830, 0x2b246c2f, 0x2a7f3bb9, 0x190854cc, 0x528c7b, 0x1b84f43, 0x2096}},
{/*.val =*/{0x323fa613, 0x15937a31, 0x3201a418, 0x35923617, 0x153f9ddc, 0x2c842a66, 0x2029463d, 0xdc27a1, 0x104b}},
{/*.val =*/{0x391fd121, 0xac9bd16, 0x3900d20c, 0x1ac91b0b, 0xa9fceee, 0x36421533, 0x3014a31e, 0x206e13d0, 0x8825}},
{/*.val =*/{0x1c8fe6a8, 0x564de89, 0x3c806906, 0xd648d85, 0x254fe777, 0x1b210a99, 0x180a518f, 0x303709e8, 0xc412}},
{/*.val =*/{0x2e47f354, 0x2b26f44, 0x3e403483, 0x26b246c2, 0x32a7f3bb, 0x2d90854c, 0xc0528c7, 0x181b84f4, 0x6209}},
{/*.val =*/{0x1723f9aa, 0x215937a2, 0x1f201a41, 0x33592361, 0x1953f9dd, 0x36c842a6, 0x6029463, 0x2c0dc27a, 0x3104}},
{/*.val =*/{0xb91fcd5, 0x30ac9bd1, 0x2f900d20, 0x39ac91b0, 0xca9fcee, 0x3b642153, 0x3014a31, 0x1606e13d, 0x1882}},
{/*.val =*/{0x25c8fc82, 0x18564de6, 0x17c80690, 0x1cd648d8, 0x2654fe77, 0x3db210a9, 0x2180a518, 0xb03709e, 0x8c41}},
{/*.val =*/{0x12e47e41, 0xc2b26f3, 0xbe40348, 0x2e6b246c, 0x332a7f3b, 0x1ed90854, 0x10c0528c, 0x2581b84f, 0x4620}},
{/*.val =*/{0x29723d38, 0x6159377, 0x5f201a4, 0x37359236, 0x19953f9d, 0xf6c842a, 0x28602946, 0x12c0dc27, 0xa310}},
{/*.val =*/{0x34b91e9c, 0x30ac9bb, 0x2f900d2, 0x3b9ac91b, 0xcca9fce, 0x7b64215, 0x343014a3, 0x9606e13, 0x5188}},
{/*.val =*/{0x3a5c8f4e, 0x18564dd, 0x217c8069, 0x1dcd648d, 0x26654fe7, 0x23db210a, 0x3a180a51, 0x4b03709, 0x28c4}},
{/*.val =*/{0x3d2e47a7, 0x20c2b26e, 0x30be4034, 0x2ee6b246, 0x1332a7f3, 0x31ed9085, 0x3d0c0528, 0x2581b84, 0x1462}},
{/*.val =*/{0x1e9721eb, 0x10615935, 0x185f201a, 0x37735923, 0x299953f9, 0x18f6c842, 0x1e860294, 0x12c0dc2, 0x8a31}},
{/*.val =*/{0x2f4b8f0d, 0x830ac98, 0x2c2f900d, 0x3bb9ac91, 0x14cca9fc, 0xc7b6421, 0xf43014a, 0x209606e1, 0xc518}},
{/*.val =*/{0x17a5c59e, 0x2418564a, 0x3617c806, 0x1ddcd648, 0x2a6654fe, 0x63db210, 0x27a180a5, 0x104b0370, 0xe28c}},
{/*.val =*/{0xbd2e2cf, 0x120c2b25, 0x1b0be403, 0xeee6b24, 0x15332a7f, 0x231ed908, 0x13d0c052, 0x82581b8, 0x7146}},
{/*.val =*/{0x25e96f7f, 0x29061590, 0xd85f201, 0x27773592, 0xa99953f, 0x118f6c84, 0x9e86029, 0x412c0dc, 0xb8a3}},
{/*.val =*/{0x12f4b5d7, 0x34830ac6, 0x6c2f900, 0x33bb9ac9, 0x54cca9f, 0x28c7b642, 0x4f43014, 0x2209606e, 0xdc51}},
{/*.val =*/{0x97a5903, 0x1a418561, 0x23617c80, 0x39ddcd64, 0x2a6654f, 0x1463db21, 0x27a180a, 0x3104b037, 0xee28}},
{/*.val =*/{0x24bd2a99, 0xd20c2ae, 0x11b0be40, 0x3ceee6b2, 0x215332a7, 0xa31ed90, 0x213d0c05, 0x1882581b, 0xf714}},
{/*.val =*/{0x125e9364, 0x6906155, 0x8d85f20, 0x3e777359, 0x10a99953, 0x2518f6c8, 0x309e8602, 0xc412c0d, 0xfb8a}},
{/*.val =*/{0x292f49b2, 0x34830aa, 0x246c2f90, 0x3f3bb9ac, 0x854cca9, 0x128c7b64, 0x384f4301, 0x6209606, 0x7dc5}},
{/*.val =*/{0x1497a4d9, 0x1a41855, 0x123617c8, 0x3f9ddcd6, 0x42a6654, 0x29463db2, 0x1c27a180, 0x23104b03, 0x3ee2}},
{/*.val =*/{0x2a4bd084, 0xd20c28, 0x91b0be4, 0x1fceee6b, 0x215332a, 0x14a31ed9, 0x2e13d0c0, 0x11882581, 0x9f71}},
{/*.val =*/{0x1525e842, 0x690614, 0x248d85f2, 0xfe77735, 0x210a9995, 0xa518f6c, 0x3709e860, 0x28c412c0, 0x4fb8}},
{/*.val =*/{0xa92f421, 0x34830a, 0x3246c2f9, 0x27f3bb9a, 0x10854cca, 0x528c7b6, 0x1b84f430, 0x14620960, 0x27dc}},
{/*.val =*/{0x5497828, 0x201a4183, 0x1923617c, 0x13f9ddcd, 0x842a665, 0x29463db, 0xdc27a18, 0xa3104b0, 0x93ee}},
{/*.val =*/{0x22a4bc14, 0x100d20c1, 0x2c91b0be, 0x29fceee6, 0x24215332, 0x14a31ed, 0x6e13d0c, 0x5188258, 0x49f7}},
{/*.val =*/{0x31525e0a, 0x8069060, 0x1648d85f, 0x14fe7773, 0x3210a999, 0xa518f6, 0x3709e86, 0x228c412c, 0x24fb}},
{/*.val =*/{0x18a92f05, 0x24034830, 0x2b246c2f, 0x2a7f3bb9, 0x190854cc, 0x528c7b, 0x1b84f43, 0x31462096, 0x127d}},
{/*.val =*/{0xc54959a, 0x3201a416, 0x35923617, 0x153f9ddc, 0x2c842a66, 0x2029463d, 0xdc27a1, 0x38a3104b, 0x893e}},
{/*.val =*/{0x62a4acd, 0x3900d20b, 0x1ac91b0b, 0xa9fceee, 0x36421533, 0x3014a31e, 0x206e13d0, 0x1c518825, 0x449f}},
{/*.val =*/{0x2315237e, 0x3c806903, 0xd648d85, 0x254fe777, 0x1b210a99, 0x180a518f, 0x303709e8, 0x2e28c412, 0xa24f}},
{/*.val =*/{0x318a91bf, 0x3e403481, 0x26b246c2, 0x32a7f3bb, 0x2d90854c, 0xc0528c7, 0x181b84f4, 0x37146209, 0x5127}},
{/*.val =*/{0x38c546f7, 0x1f201a3e, 0x33592361, 0x1953f9dd, 0x36c842a6, 0x6029463, 0x2c0dc27a, 0x3b8a3104, 0xa893}},
{/*.val =*/{0x1c62a193, 0x2f900d1d, 0x39ac91b0, 0xca9fcee, 0x3b642153, 0x3014a31, 0x1606e13d, 0x3dc51882, 0xd449}},
{/*.val =*/{0x2e314ee1, 0x17c8068c, 0x1cd648d8, 0x2654fe77, 0x3db210a9, 0x2180a518, 0xb03709e, 0x3ee28c41, 0xea24}},
{/*.val =*/{0x1718a588, 0xbe40344, 0x2e6b246c, 0x332a7f3b, 0x1ed90854, 0x10c0528c, 0x2581b84f, 0x1f714620, 0xf512}},
{/*.val =*/{0xb8c52c4, 0x5f201a2, 0x37359236, 0x19953f9d, 0xf6c842a, 0x28602946, 0x12c0dc27, 0xfb8a310, 0x7a89}},
{/*.val =*/{0x5c62962, 0x2f900d1, 0x3b9ac91b, 0xcca9fce, 0x7b64215, 0x343014a3, 0x9606e13, 0x27dc5188, 0x3d44}},
{/*.val =*/{0x22e314b1, 0x217c8068, 0x1dcd648d, 0x26654fe7, 0x23db210a, 0x3a180a51, 0x4b03709, 0x13ee28c4, 0x1ea2}},
{/*.val =*/{0x11718870, 0x30be4032, 0x2ee6b246, 0x1332a7f3, 0x31ed9085, 0x3d0c0528, 0x2581b84, 0x9f71462, 0x8f51}},
{/*.val =*/{0x8b8c438, 0x185f2019, 0x37735923, 0x299953f9, 0x18f6c842, 0x1e860294, 0x12c0dc2, 0x24fb8a31, 0x47a8}},
{/*.val =*/{0x245c621c, 0x2c2f900c, 0x3bb9ac91, 0x14cca9fc, 0xc7b6421, 0xf43014a, 0x209606e1, 0x127dc518, 0x23d4}},
{/*.val =*/{0x122e310e, 0x3617c806, 0x1ddcd648, 0x2a6654fe, 0x63db210, 0x27a180a5, 0x104b0370, 0x93ee28c, 0x11ea}},
{/*.val =*/{0x9171887, 0x1b0be403, 0xeee6b24, 0x15332a7f, 0x231ed908, 0x13d0c052, 0x82581b8, 0x49f7146, 0x8f5}},
{/*.val =*/{0x248b8a5b, 0xd85f1ff, 0x27773592, 0xa99953f, 0x118f6c84, 0x9e86029, 0x412c0dc, 0x224fb8a3, 0x847a}},
{/*.val =*/{0x3245c345, 0x6c2f8fd, 0x33bb9ac9, 0x54cca9f, 0x28c7b642, 0x4f43014, 0x2209606e, 0x1127dc51, 0xc23d}},
{/*.val =*/{0x3922dfba, 0x23617c7c, 0x39ddcd64, 0x2a6654f, 0x1463db21, 0x27a180a, 0x3104b037, 0x2893ee28, 0xe11e}},
{/*.val =*/{0x1c916fdd, 0x11b0be3e, 0x3ceee6b2, 0x215332a7, 0xa31ed90, 0x213d0c05, 0x1882581b, 0x1449f714, 0x708f}},
{/*.val =*/{0xe48b606, 0x8d85f1d, 0x3e777359, 0x10a99953, 0x2518f6c8, 0x309e8602, 0xc412c0d, 0x2a24fb8a, 0xb847}},
{/*.val =*/{0x27245b03, 0x246c2f8e, 0x3f3bb9ac, 0x854cca9, 0x128c7b64, 0x384f4301, 0x6209606, 0x35127dc5, 0x5c23}},
{/*.val =*/{0x13922b99, 0x123617c5, 0x3f9ddcd6, 0x42a6654, 0x29463db2, 0x1c27a180, 0x23104b03, 0x3a893ee2, 0xae11}},
{/*.val =*/{0x29c913e4, 0x91b0be0, 0x1fceee6b, 0x215332a, 0x14a31ed9, 0x2e13d0c0, 0x11882581, 0x3d449f71, 0xd708}},
{/*.val =*/{0x14e489f2, 0x248d85f0, 0xfe77735, 0x210a9995, 0xa518f6c, 0x3709e860, 0x28c412c0, 0x1ea24fb8, 0x6b84}},
};
#endif
#if USE_PRECOMPUTED_CP #if USE_PRECOMPUTED_CP
const curve_point secp256k1_cp[256] = { const curve_point secp256k1_cp[256] = {
{/*.x =*/{/*.val =*/{0x16f81798, 0x27ca056c, 0x1ce28d95, 0x26ff36cb, 0x70b0702, 0x18a573a, 0xbbac55a, 0x199fbe77, 0x79be}}, {/*.x =*/{/*.val =*/{0x16f81798, 0x27ca056c, 0x1ce28d95, 0x26ff36cb, 0x70b0702, 0x18a573a, 0xbbac55a, 0x199fbe77, 0x79be}},

View File

@ -48,10 +48,6 @@ extern const bignum256 order256k1_half;
// 3/2 in G_p // 3/2 in G_p
extern const bignum256 three_over_two256k1; extern const bignum256 three_over_two256k1;
#if USE_PRECOMPUTED_IV
extern const bignum256 secp256k1_iv[256];
#endif
#if USE_PRECOMPUTED_CP #if USE_PRECOMPUTED_CP
extern const curve_point secp256k1_cp[256]; extern const curve_point secp256k1_cp[256];
extern const curve_point secp256k1_cp2[255]; extern const curve_point secp256k1_cp2[255];