mirror of
https://github.com/trezor/trezor-firmware.git
synced 2025-01-12 08:20:56 +00:00
Add support for NIST256P1 elliptic curve
This enables SSH ECDSA public key authentication.
This commit is contained in:
parent
c58d4e03c5
commit
7c58fc11a4
5
.gitignore
vendored
5
.gitignore
vendored
@ -8,3 +8,8 @@ build/
|
||||
dist/
|
||||
MANIFEST
|
||||
TrezorCrypto.c
|
||||
SConstruct
|
||||
.sconsign.dblite
|
||||
*.os
|
||||
*.so
|
||||
*.pyc
|
||||
|
2
Makefile
2
Makefile
@ -30,7 +30,7 @@ ifdef SMALL
|
||||
CFLAGS += -DUSE_PRECOMPUTED_IV=0 -DUSE_PRECOMPUTED_CP=0
|
||||
endif
|
||||
|
||||
OBJS = bignum.o ecdsa.o secp256k1.o rand.o hmac.o bip32.o bip39.o pbkdf2.o base58.o
|
||||
OBJS = bignum.o ecdsa.o secp256k1.o nist256p1.o rand.o hmac.o bip32.o bip39.o pbkdf2.o base58.o
|
||||
OBJS += ripemd160.o
|
||||
OBJS += sha2.o
|
||||
OBJS += aescrypt.o aeskey.o aestab.o aes_modes.o
|
||||
|
120
bignum.c
120
bignum.c
@ -140,18 +140,18 @@ void bn_rshift(bignum256 *a)
|
||||
a->val[8] >>= 1;
|
||||
}
|
||||
|
||||
// multiply x by 3/2 modulo prime.
|
||||
// multiply x by 1/2 modulo prime.
|
||||
// assumes x < 2*prime,
|
||||
// guarantees x < 4*prime on exit.
|
||||
void bn_mult_3_2(bignum256 * x, const bignum256 *prime)
|
||||
void bn_mult_half(bignum256 * x, const bignum256 *prime)
|
||||
{
|
||||
int j;
|
||||
uint32_t xodd = -(x->val[0] & 1);
|
||||
// compute x = 3*x/2 mod prime
|
||||
// if x is odd compute (3*x+prime)/2
|
||||
uint32_t tmp1 = (3*x->val[0] + (prime->val[0] & xodd)) >> 1;
|
||||
// compute x = x/2 mod prime
|
||||
// if x is odd compute (x+prime)/2
|
||||
uint32_t tmp1 = (x->val[0] + (prime->val[0] & xodd)) >> 1;
|
||||
for (j = 0; j < 8; j++) {
|
||||
uint32_t tmp2 = (3*x->val[j+1] + (prime->val[j+1] & xodd));
|
||||
uint32_t tmp2 = (x->val[j+1] + (prime->val[j+1] & xodd));
|
||||
tmp1 += (tmp2 & 1) << 29;
|
||||
x->val[j] = tmp1 & 0x3fffffff;
|
||||
tmp1 >>= 30;
|
||||
@ -160,6 +160,20 @@ void bn_mult_3_2(bignum256 * x, const bignum256 *prime)
|
||||
x->val[8] = tmp1;
|
||||
}
|
||||
|
||||
// multiply x by k modulo prime.
|
||||
// assumes x < prime,
|
||||
// guarantees x < prime on exit.
|
||||
void bn_mult_k(bignum256 *x, uint8_t k, const bignum256 *prime)
|
||||
{
|
||||
int j;
|
||||
for (j = 0; j < 9; j++) {
|
||||
x->val[j] = k * x->val[j];
|
||||
}
|
||||
bn_normalize(x);
|
||||
bn_fast_mod(x, prime);
|
||||
bn_mod(x, prime);
|
||||
}
|
||||
|
||||
// assumes x < 2*prime, result < prime
|
||||
void bn_mod(bignum256 *x, const bignum256 *prime)
|
||||
{
|
||||
@ -186,16 +200,10 @@ void bn_mod(bignum256 *x, const bignum256 *prime)
|
||||
}
|
||||
}
|
||||
|
||||
// Compute x := k * x (mod prime)
|
||||
// both inputs must be smaller than 2 * prime.
|
||||
// result is reduced to 0 <= x < 2 * prime
|
||||
// This only works for primes between 2^256-2^196 and 2^256.
|
||||
// this particular implementation accepts inputs up to 2^263 or 128*prime.
|
||||
void bn_multiply(const bignum256 *k, bignum256 *x, const bignum256 *prime)
|
||||
void bn_multiply_long(const bignum256 *k, const bignum256 *x, uint32_t res[18])
|
||||
{
|
||||
int i, j;
|
||||
uint64_t temp = 0;
|
||||
uint32_t res[18], coef;
|
||||
|
||||
// compute lower half of long multiplication
|
||||
for (i = 0; i < 9; i++)
|
||||
@ -216,43 +224,69 @@ void bn_multiply(const bignum256 *k, bignum256 *x, const bignum256 *prime)
|
||||
temp >>= 30;
|
||||
}
|
||||
res[17] = temp;
|
||||
}
|
||||
|
||||
void bn_multiply_reduce_step(uint32_t res[18], const bignum256 *prime, uint32_t i) {
|
||||
// let k = i-8.
|
||||
// invariants:
|
||||
// res[0..(i+1)] = k * x (mod prime)
|
||||
// 0 <= res < 2^(30k + 256) * (2^30 + 1)
|
||||
// estimate (res / prime)
|
||||
// coef = res / 2^(30k + 256) rounded down
|
||||
// 0 <= coef <= 2^30
|
||||
// subtract (coef * 2^(30k) * prime) from res
|
||||
// note that we unrolled the first iteration
|
||||
uint32_t j;
|
||||
uint32_t coef = (res[i] >> 16) + (res[i + 1] << 14);
|
||||
uint64_t temp = 0x1000000000000000ull + res[i - 8] - prime->val[0] * (uint64_t)coef;
|
||||
res[i - 8] = temp & 0x3FFFFFFF;
|
||||
for (j = 1; j < 9; j++) {
|
||||
temp >>= 30;
|
||||
temp += 0xFFFFFFFC0000000ull + res[i - 8 + j] - prime->val[j] * (uint64_t)coef;
|
||||
res[i - 8 + j] = temp & 0x3FFFFFFF;
|
||||
}
|
||||
temp >>= 30;
|
||||
temp += 0xFFFFFFFC0000000ull + res[i - 8 + j];
|
||||
res[i - 8 + j] = temp & 0x3FFFFFFF;
|
||||
// we rely on the fact that prime > 2^256 - 2^196
|
||||
// res = oldres - coef*2^(30k) * prime;
|
||||
// and
|
||||
// coef * 2^(30k + 256) <= oldres < (coef+1) * 2^(30k + 256)
|
||||
// Hence, 0 <= res < 2^30k (2^256 + coef * (2^256 - prime))
|
||||
// Since coef * (2^256 - prime) < 2^226, we get
|
||||
// 0 <= res < 2^(30k + 226) (2^30 + 1)
|
||||
// Thus the invariant holds again.
|
||||
}
|
||||
|
||||
|
||||
void bn_multiply_reduce(bignum256 *x, uint32_t res[18], const bignum256 *prime)
|
||||
{
|
||||
int i;
|
||||
// res = k * x is a normalized number (every limb < 2^30)
|
||||
// 0 <= res < 2^526.
|
||||
// compute modulo p division is only estimated so this may give result greater than prime but not bigger than 2 * prime
|
||||
for (i = 16; i >= 8; i--) {
|
||||
// let k = i-8.
|
||||
// invariants:
|
||||
// res[0..(i+1)] = k * x (mod prime)
|
||||
// 0 <= res < 2^(30k + 256) * (2^30 + 1)
|
||||
// estimate (res / prime)
|
||||
coef = (res[i] >> 16) + (res[i + 1] << 14);
|
||||
|
||||
// coef = res / 2^(30k + 256) rounded down
|
||||
// 0 <= coef <= 2^30
|
||||
// subtract (coef * 2^(30k) * prime) from res
|
||||
// note that we unrolled the first iteration
|
||||
temp = 0x1000000000000000ull + res[i - 8] - prime->val[0] * (uint64_t)coef;
|
||||
res[i - 8] = temp & 0x3FFFFFFF;
|
||||
for (j = 1; j < 9; j++) {
|
||||
temp >>= 30;
|
||||
temp += 0xFFFFFFFC0000000ull + res[i - 8 + j] - prime->val[j] * (uint64_t)coef;
|
||||
res[i - 8 + j] = temp & 0x3FFFFFFF;
|
||||
}
|
||||
// we don't clear res[i+1] but we never read it again.
|
||||
|
||||
// we rely on the fact that prime > 2^256 - 2^196
|
||||
// res = oldres - coef*2^(30k) * prime;
|
||||
// and
|
||||
// coef * 2^(30k + 256) <= oldres < (coef+1) * 2^(30k + 256)
|
||||
// Hence, 0 <= res < 2^30k (2^256 + coef * (2^256 - prime))
|
||||
// Since coef * (2^256 - prime) < 2^226, we get
|
||||
// 0 <= res < 2^(30k + 226) (2^30 + 1)
|
||||
// Thus the invariant holds again.
|
||||
bn_multiply_reduce_step(res, prime, i);
|
||||
bn_multiply_reduce_step(res, prime, i); // apply twice, as a hack for NIST256P1 prime.
|
||||
assert(res[i + 1] == 0);
|
||||
}
|
||||
// store the result
|
||||
for (i = 0; i < 9; i++) {
|
||||
x->val[i] = res[i];
|
||||
}
|
||||
}
|
||||
|
||||
// Compute x := k * x (mod prime)
|
||||
// both inputs must be smaller than 2 * prime.
|
||||
// result is reduced to 0 <= x < 2 * prime
|
||||
// This only works for primes between 2^256-2^196 and 2^256.
|
||||
// this particular implementation accepts inputs up to 2^263 or 128*prime.
|
||||
|
||||
void bn_multiply(const bignum256 *k, bignum256 *x, const bignum256 *prime)
|
||||
{
|
||||
uint32_t res[18] = {0};
|
||||
bn_multiply_long(k, x, res);
|
||||
bn_multiply_reduce(x, res, prime);
|
||||
MEMSET_BZERO(res, sizeof(res));
|
||||
}
|
||||
|
||||
@ -660,9 +694,9 @@ void bn_addmodi(bignum256 *a, uint32_t b, const bignum256 *prime) {
|
||||
void bn_subtractmod(const bignum256 *a, const bignum256 *b, bignum256 *res, const bignum256 *prime)
|
||||
{
|
||||
int i;
|
||||
uint32_t temp = 0;
|
||||
uint32_t temp = 1;
|
||||
for (i = 0; i < 9; i++) {
|
||||
temp += a->val[i] + 2u * prime->val[i] - b->val[i];
|
||||
temp += 0x3FFFFFFF + a->val[i] + 2u * prime->val[i] - b->val[i];
|
||||
res->val[i] = temp & 0x3FFFFFFF;
|
||||
temp >>= 30;
|
||||
}
|
||||
|
4
bignum.h
4
bignum.h
@ -57,7 +57,9 @@ void bn_lshift(bignum256 *a);
|
||||
|
||||
void bn_rshift(bignum256 *a);
|
||||
|
||||
void bn_mult_3_2(bignum256 *x, const bignum256 *prime);
|
||||
void bn_mult_half(bignum256 *x, const bignum256 *prime);
|
||||
|
||||
void bn_mult_k(bignum256 *x, uint8_t k, const bignum256 *prime);
|
||||
|
||||
void bn_mod(bignum256 *x, const bignum256 *prime);
|
||||
|
||||
|
23
bip32.c
23
bip32.c
@ -32,6 +32,9 @@
|
||||
#include "ripemd160.h"
|
||||
#include "base58.h"
|
||||
#include "macros.h"
|
||||
#include "secp256k1.h"
|
||||
|
||||
static const ecdsa_curve *default_curve = &secp256k1;
|
||||
|
||||
int hdnode_from_xpub(uint32_t depth, uint32_t fingerprint, uint32_t child_num, const uint8_t *chain_code, const uint8_t *public_key, HDNode *out)
|
||||
{
|
||||
@ -56,7 +59,7 @@ int hdnode_from_xprv(uint32_t depth, uint32_t fingerprint, uint32_t child_num, c
|
||||
if (bn_is_zero(&a)) { // == 0
|
||||
failed = true;
|
||||
} else {
|
||||
if (!bn_is_less(&a, &order256k1)) { // >= order
|
||||
if (!bn_is_less(&a, &default_curve->order)) { // >= order
|
||||
failed = true;
|
||||
}
|
||||
MEMSET_BZERO(&a, sizeof(a));
|
||||
@ -91,7 +94,7 @@ int hdnode_from_seed(const uint8_t *seed, int seed_len, HDNode *out)
|
||||
if (bn_is_zero(&a)) { // == 0
|
||||
failed = true;
|
||||
} else {
|
||||
if (!bn_is_less(&a, &order256k1)) { // >= order
|
||||
if (!bn_is_less(&a, &default_curve->order)) { // >= order
|
||||
failed = true;
|
||||
}
|
||||
MEMSET_BZERO(&a, sizeof(a));
|
||||
@ -135,11 +138,11 @@ int hdnode_private_ckd(HDNode *inout, uint32_t i)
|
||||
|
||||
bool failed = false;
|
||||
|
||||
if (!bn_is_less(&b, &order256k1)) { // >= order
|
||||
if (!bn_is_less(&b, &default_curve->order)) { // >= order
|
||||
failed = true;
|
||||
}
|
||||
if (!failed) {
|
||||
bn_addmod(&a, &b, &order256k1);
|
||||
bn_addmod(&a, &b, &default_curve->order);
|
||||
if (bn_is_zero(&a)) {
|
||||
failed = true;
|
||||
}
|
||||
@ -182,7 +185,7 @@ int hdnode_public_ckd(HDNode *inout, uint32_t i)
|
||||
memset(inout->private_key, 0, 32);
|
||||
|
||||
bool failed = false;
|
||||
if (!ecdsa_read_pubkey(inout->public_key, &a)) {
|
||||
if (!ecdsa_read_pubkey(default_curve, inout->public_key, &a)) {
|
||||
failed = true;
|
||||
}
|
||||
|
||||
@ -190,15 +193,15 @@ int hdnode_public_ckd(HDNode *inout, uint32_t i)
|
||||
hmac_sha512(inout->chain_code, 32, data, sizeof(data), I);
|
||||
memcpy(inout->chain_code, I + 32, 32);
|
||||
bn_read_be(I, &c);
|
||||
if (!bn_is_less(&c, &order256k1)) { // >= order
|
||||
if (!bn_is_less(&c, &default_curve->order)) { // >= order
|
||||
failed = true;
|
||||
}
|
||||
}
|
||||
|
||||
if (!failed) {
|
||||
scalar_multiply(&c, &b); // b = c * G
|
||||
point_add(&a, &b); // b = a + b
|
||||
if (!ecdsa_validate_pubkey(&b)) {
|
||||
scalar_multiply(default_curve, &c, &b); // b = c * G
|
||||
point_add(default_curve, &a, &b); // b = a + b
|
||||
if (!ecdsa_validate_pubkey(default_curve, &b)) {
|
||||
failed = true;
|
||||
}
|
||||
}
|
||||
@ -291,7 +294,7 @@ int hdnode_private_ckd_cached(HDNode *inout, const uint32_t *i, size_t i_count)
|
||||
|
||||
void hdnode_fill_public_key(HDNode *node)
|
||||
{
|
||||
ecdsa_get_public_key33(node->private_key, node->public_key);
|
||||
ecdsa_get_public_key33(default_curve, node->private_key, node->public_key);
|
||||
}
|
||||
|
||||
void hdnode_serialize(const HDNode *node, uint32_t version, char use_public, char *str, int strsize)
|
||||
|
1
bip32.h
1
bip32.h
@ -26,6 +26,7 @@
|
||||
|
||||
#include <stdint.h>
|
||||
#include <stdlib.h>
|
||||
#include "ecdsa.h"
|
||||
#include "options.h"
|
||||
|
||||
typedef struct {
|
||||
|
440
ecdsa.c
440
ecdsa.c
@ -35,6 +35,9 @@
|
||||
#include "base58.h"
|
||||
#include "macros.h"
|
||||
|
||||
#include "secp256k1.h"
|
||||
#include "nist256p1.h"
|
||||
|
||||
// Set cp2 = cp1
|
||||
void point_copy(const curve_point *cp1, curve_point *cp2)
|
||||
{
|
||||
@ -42,10 +45,8 @@ void point_copy(const curve_point *cp1, curve_point *cp2)
|
||||
}
|
||||
|
||||
// cp2 = cp1 + cp2
|
||||
void point_add(const curve_point *cp1, curve_point *cp2)
|
||||
void point_add(const ecdsa_curve *curve, const curve_point *cp1, curve_point *cp2)
|
||||
{
|
||||
int i;
|
||||
uint32_t temp;
|
||||
bignum256 lambda, inv, xr, yr;
|
||||
|
||||
if (point_is_infinity(cp1)) {
|
||||
@ -56,7 +57,7 @@ void point_add(const curve_point *cp1, curve_point *cp2)
|
||||
return;
|
||||
}
|
||||
if (point_is_equal(cp1, cp2)) {
|
||||
point_double(cp2);
|
||||
point_double(curve, cp2);
|
||||
return;
|
||||
}
|
||||
if (point_is_negative_of(cp1, cp2)) {
|
||||
@ -64,39 +65,34 @@ void point_add(const curve_point *cp1, curve_point *cp2)
|
||||
return;
|
||||
}
|
||||
|
||||
bn_subtractmod(&(cp2->x), &(cp1->x), &inv, &prime256k1);
|
||||
bn_inverse(&inv, &prime256k1);
|
||||
bn_subtractmod(&(cp2->y), &(cp1->y), &lambda, &prime256k1);
|
||||
bn_multiply(&inv, &lambda, &prime256k1);
|
||||
bn_subtractmod(&(cp2->x), &(cp1->x), &inv, &curve->prime);
|
||||
bn_inverse(&inv, &curve->prime);
|
||||
bn_subtractmod(&(cp2->y), &(cp1->y), &lambda, &curve->prime);
|
||||
bn_multiply(&inv, &lambda, &curve->prime);
|
||||
|
||||
// xr = lambda^2 - x1 - x2
|
||||
xr = lambda;
|
||||
bn_multiply(&xr, &xr, &prime256k1);
|
||||
temp = 1;
|
||||
for (i = 0; i < 9; i++) {
|
||||
temp += 0x3FFFFFFF + xr.val[i] + 2u * prime256k1.val[i] - cp1->x.val[i] - cp2->x.val[i];
|
||||
xr.val[i] = temp & 0x3FFFFFFF;
|
||||
temp >>= 30;
|
||||
}
|
||||
bn_fast_mod(&xr, &prime256k1);
|
||||
bn_mod(&xr, &prime256k1);
|
||||
bn_multiply(&xr, &xr, &curve->prime);
|
||||
yr = cp1->x;
|
||||
bn_addmod(&yr, &(cp2->x), &curve->prime);
|
||||
bn_subtractmod(&xr, &yr, &xr, &curve->prime);
|
||||
bn_fast_mod(&xr, &curve->prime);
|
||||
bn_mod(&xr, &curve->prime);
|
||||
|
||||
// yr = lambda (x1 - xr) - y1
|
||||
bn_subtractmod(&(cp1->x), &xr, &yr, &prime256k1);
|
||||
bn_multiply(&lambda, &yr, &prime256k1);
|
||||
bn_subtractmod(&yr, &(cp1->y), &yr, &prime256k1);
|
||||
bn_fast_mod(&yr, &prime256k1);
|
||||
bn_mod(&yr, &prime256k1);
|
||||
bn_subtractmod(&(cp1->x), &xr, &yr, &curve->prime);
|
||||
bn_multiply(&lambda, &yr, &curve->prime);
|
||||
bn_subtractmod(&yr, &(cp1->y), &yr, &curve->prime);
|
||||
bn_fast_mod(&yr, &curve->prime);
|
||||
bn_mod(&yr, &curve->prime);
|
||||
|
||||
cp2->x = xr;
|
||||
cp2->y = yr;
|
||||
}
|
||||
|
||||
// cp = cp + cp
|
||||
void point_double(curve_point *cp)
|
||||
void point_double(const ecdsa_curve *curve, curve_point *cp)
|
||||
{
|
||||
int i;
|
||||
uint32_t temp;
|
||||
bignum256 lambda, xr, yr;
|
||||
|
||||
if (point_is_infinity(cp)) {
|
||||
@ -107,31 +103,32 @@ void point_double(curve_point *cp)
|
||||
return;
|
||||
}
|
||||
|
||||
// lambda = 3/2 x^2 / y
|
||||
// lambda = (3 x^2 + a) / (2 y)
|
||||
lambda = cp->y;
|
||||
bn_inverse(&lambda, &prime256k1);
|
||||
bn_multiply(&cp->x, &lambda, &prime256k1);
|
||||
bn_multiply(&cp->x, &lambda, &prime256k1);
|
||||
bn_mult_3_2(&lambda, &prime256k1);
|
||||
bn_mult_k(&lambda, 2, &curve->prime);
|
||||
bn_inverse(&lambda, &curve->prime);
|
||||
|
||||
xr = cp->x;
|
||||
bn_multiply(&xr, &xr, &curve->prime);
|
||||
bn_mult_k(&xr, 3, &curve->prime);
|
||||
bn_addmod(&xr, &curve->a, &curve->prime);
|
||||
bn_multiply(&xr, &lambda, &curve->prime);
|
||||
|
||||
// xr = lambda^2 - 2*x
|
||||
xr = lambda;
|
||||
bn_multiply(&xr, &xr, &prime256k1);
|
||||
temp = 1;
|
||||
for (i = 0; i < 9; i++) {
|
||||
temp += 0x3FFFFFFF + xr.val[i] + 2u * (prime256k1.val[i] - cp->x.val[i]);
|
||||
xr.val[i] = temp & 0x3FFFFFFF;
|
||||
temp >>= 30;
|
||||
}
|
||||
bn_fast_mod(&xr, &prime256k1);
|
||||
bn_mod(&xr, &prime256k1);
|
||||
bn_multiply(&xr, &xr, &curve->prime);
|
||||
yr = cp->x;
|
||||
bn_lshift(&yr);
|
||||
bn_subtractmod(&xr, &yr, &xr, &curve->prime);
|
||||
bn_fast_mod(&xr, &curve->prime);
|
||||
bn_mod(&xr, &curve->prime);
|
||||
|
||||
// yr = lambda (x - xr) - y
|
||||
bn_subtractmod(&(cp->x), &xr, &yr, &prime256k1);
|
||||
bn_multiply(&lambda, &yr, &prime256k1);
|
||||
bn_subtractmod(&yr, &(cp->y), &yr, &prime256k1);
|
||||
bn_fast_mod(&yr, &prime256k1);
|
||||
bn_mod(&yr, &prime256k1);
|
||||
bn_subtractmod(&(cp->x), &xr, &yr, &curve->prime);
|
||||
bn_multiply(&lambda, &yr, &curve->prime);
|
||||
bn_subtractmod(&yr, &(cp->y), &yr, &curve->prime);
|
||||
bn_fast_mod(&yr, &curve->prime);
|
||||
bn_mod(&yr, &curve->prime);
|
||||
|
||||
cp->x = xr;
|
||||
cp->y = yr;
|
||||
@ -176,7 +173,7 @@ int point_is_negative_of(const curve_point *p, const curve_point *q)
|
||||
|
||||
// Negate a (modulo prime) if cond is 0xffffffff, keep it if cond is 0.
|
||||
// The timing of this function does not depend on cond.
|
||||
static void conditional_negate(uint32_t cond, bignum256 *a, const bignum256 *prime)
|
||||
void conditional_negate(uint32_t cond, bignum256 *a, const bignum256 *prime)
|
||||
{
|
||||
int j;
|
||||
uint32_t tmp = 1;
|
||||
@ -193,7 +190,7 @@ typedef struct jacobian_curve_point {
|
||||
bignum256 x, y, z;
|
||||
} jacobian_curve_point;
|
||||
|
||||
static void curve_to_jacobian(const curve_point *p, jacobian_curve_point *jp) {
|
||||
void curve_to_jacobian(const curve_point *p, jacobian_curve_point *jp, const bignum256 *prime) {
|
||||
int i;
|
||||
// randomize z coordinate
|
||||
for (i = 0; i < 8; i++) {
|
||||
@ -202,41 +199,39 @@ static void curve_to_jacobian(const curve_point *p, jacobian_curve_point *jp) {
|
||||
jp->z.val[8] = (random32() & 0x7fff) + 1;
|
||||
|
||||
jp->x = jp->z;
|
||||
bn_multiply(&jp->z, &jp->x, &prime256k1);
|
||||
bn_multiply(&jp->z, &jp->x, prime);
|
||||
// x = z^2
|
||||
jp->y = jp->x;
|
||||
bn_multiply(&jp->z, &jp->y, &prime256k1);
|
||||
bn_multiply(&jp->z, &jp->y, prime);
|
||||
// y = z^3
|
||||
|
||||
bn_multiply(&p->x, &jp->x, &prime256k1);
|
||||
bn_multiply(&p->y, &jp->y, &prime256k1);
|
||||
bn_mod(&jp->x, &prime256k1);
|
||||
bn_mod(&jp->y, &prime256k1);
|
||||
bn_multiply(&p->x, &jp->x, prime);
|
||||
bn_multiply(&p->y, &jp->y, prime);
|
||||
bn_mod(&jp->x, prime);
|
||||
bn_mod(&jp->y, prime);
|
||||
}
|
||||
|
||||
static void jacobian_to_curve(const jacobian_curve_point *jp, curve_point *p) {
|
||||
void jacobian_to_curve(const jacobian_curve_point *jp, curve_point *p, const bignum256 *prime) {
|
||||
p->y = jp->z;
|
||||
bn_mod(&p->y, &prime256k1);
|
||||
bn_inverse(&p->y, &prime256k1);
|
||||
bn_mod(&p->y, prime);
|
||||
bn_inverse(&p->y, prime);
|
||||
// p->y = z^-1
|
||||
p->x = p->y;
|
||||
bn_multiply(&p->x, &p->x, &prime256k1);
|
||||
bn_multiply(&p->x, &p->x, prime);
|
||||
// p->x = z^-2
|
||||
bn_multiply(&p->x, &p->y, &prime256k1);
|
||||
bn_multiply(&p->x, &p->y, prime);
|
||||
// p->y = z^-3
|
||||
bn_multiply(&jp->x, &p->x, &prime256k1);
|
||||
bn_multiply(&jp->x, &p->x, prime);
|
||||
// p->x = jp->x * z^-2
|
||||
bn_multiply(&jp->y, &p->y, &prime256k1);
|
||||
bn_multiply(&jp->y, &p->y, prime);
|
||||
// p->y = jp->y * z^-3
|
||||
bn_mod(&p->x, &prime256k1);
|
||||
bn_mod(&p->y, &prime256k1);
|
||||
bn_mod(&p->x, prime);
|
||||
bn_mod(&p->y, prime);
|
||||
}
|
||||
|
||||
static void point_jacobian_add(const curve_point *p1, jacobian_curve_point *p2) {
|
||||
void point_jacobian_add(const curve_point *p1, jacobian_curve_point *p2, const bignum256 *prime) {
|
||||
bignum256 r, h;
|
||||
bignum256 rsq, hcb, hcby2, hsqx2;
|
||||
int j;
|
||||
uint64_t tmp1;
|
||||
|
||||
/* usual algorithm:
|
||||
*
|
||||
@ -270,75 +265,70 @@ static void point_jacobian_add(const curve_point *p1, jacobian_curve_point *p2)
|
||||
// h = x1 * z2^2 - x2;
|
||||
// r = y1 * z2^3 - y2;
|
||||
h = p2->z;
|
||||
bn_multiply(&h, &h, &prime256k1); // h = z2^2
|
||||
bn_multiply(&h, &h, prime); // h = z2^2
|
||||
r = p2->z;
|
||||
bn_multiply(&h, &r, &prime256k1); // r = z2^3
|
||||
bn_multiply(&h, &r, prime); // r = z2^3
|
||||
|
||||
bn_multiply(&p1->x, &h, &prime256k1);
|
||||
bn_subtractmod(&h, &p2->x, &h, &prime256k1);
|
||||
bn_multiply(&p1->x, &h, prime);
|
||||
bn_subtractmod(&h, &p2->x, &h, prime);
|
||||
// h = x1 * z2^2 - x2;
|
||||
|
||||
bn_multiply(&p1->y, &r, &prime256k1);
|
||||
bn_subtractmod(&r, &p2->y, &r, &prime256k1);
|
||||
bn_multiply(&p1->y, &r, prime);
|
||||
bn_subtractmod(&r, &p2->y, &r, prime);
|
||||
// r = y1 * z2^3 - y2;
|
||||
|
||||
// hsqx2 = h^2
|
||||
hsqx2 = h;
|
||||
bn_multiply(&hsqx2, &hsqx2, &prime256k1);
|
||||
bn_multiply(&hsqx2, &hsqx2, prime);
|
||||
|
||||
// hcb = h^3
|
||||
hcb = h;
|
||||
bn_multiply(&hsqx2, &hcb, &prime256k1);
|
||||
bn_multiply(&hsqx2, &hcb, prime);
|
||||
|
||||
// hsqx2 = h^2 * x2
|
||||
bn_multiply(&p2->x, &hsqx2, &prime256k1);
|
||||
bn_multiply(&p2->x, &hsqx2, prime);
|
||||
|
||||
// hcby2 = h^3 * y2
|
||||
hcby2 = hcb;
|
||||
bn_multiply(&p2->y, &hcby2, &prime256k1);
|
||||
bn_multiply(&p2->y, &hcby2, prime);
|
||||
|
||||
// rsq = r^2
|
||||
rsq = r;
|
||||
bn_multiply(&rsq, &rsq, &prime256k1);
|
||||
bn_multiply(&rsq, &rsq, prime);
|
||||
|
||||
// z3 = h*z2
|
||||
bn_multiply(&h, &p2->z, &prime256k1);
|
||||
bn_mod(&p2->z, &prime256k1);
|
||||
bn_multiply(&h, &p2->z, prime);
|
||||
bn_mod(&p2->z, prime);
|
||||
|
||||
// x3 = r^2 - h^3 - 2h^2x2
|
||||
tmp1 = 0;
|
||||
for (j = 0; j < 9; j++) {
|
||||
tmp1 += (uint64_t) rsq.val[j] + 4*prime256k1.val[j] - hcb.val[j] - 2*hsqx2.val[j];
|
||||
assert(tmp1 < 5 * 0x40000000ull);
|
||||
p2->x.val[j] = tmp1 & 0x3fffffff;
|
||||
tmp1 >>= 30;
|
||||
}
|
||||
bn_fast_mod(&p2->x, &prime256k1);
|
||||
bn_mod(&p2->x, &prime256k1);
|
||||
bn_addmod(&hcb, &hsqx2, prime);
|
||||
bn_addmod(&hcb, &hsqx2, prime);
|
||||
bn_subtractmod(&rsq, &hcb, &p2->x, prime);
|
||||
bn_fast_mod(&p2->x, prime);
|
||||
bn_mod(&p2->x, prime);
|
||||
|
||||
// y3 = r*(h^2x2 - x3) - y2*h^3
|
||||
bn_subtractmod(&hsqx2, &p2->x, &p2->y, &prime256k1);
|
||||
bn_multiply(&r, &p2->y, &prime256k1);
|
||||
bn_subtractmod(&p2->y, &hcby2, &p2->y, &prime256k1);
|
||||
bn_fast_mod(&p2->y, &prime256k1);
|
||||
bn_mod(&p2->y, &prime256k1);
|
||||
bn_subtractmod(&hsqx2, &p2->x, &p2->y, prime);
|
||||
bn_multiply(&r, &p2->y, prime);
|
||||
bn_subtractmod(&p2->y, &hcby2, &p2->y, prime);
|
||||
bn_fast_mod(&p2->y, prime);
|
||||
bn_mod(&p2->y, prime);
|
||||
}
|
||||
|
||||
static void point_jacobian_double(jacobian_curve_point *p) {
|
||||
bignum256 m, msq, ysq, xysq;
|
||||
int j;
|
||||
uint32_t tmp1;
|
||||
void point_jacobian_double(jacobian_curve_point *p, const ecdsa_curve *curve) {
|
||||
bignum256 az4, m, msq, ysq, xysq;
|
||||
const bignum256 *prime = &curve->prime;
|
||||
|
||||
/* usual algorithm:
|
||||
*
|
||||
* lambda = (3(x/z^2)^2 / 2y/z^3) = 3x^2/2yz
|
||||
* lambda = (3((x/z^2)^2 + a) / 2y/z^3) = (3x^2 + az^4)/2yz
|
||||
* x3/z3^2 = lambda^2 - 2x/z^2
|
||||
* y3/z3^3 = lambda * (x/z^2 - x3/z3^2) - y/z^3
|
||||
*
|
||||
* to get rid of fraction we set
|
||||
* m = 3/2 x^2
|
||||
* m = (3 x^2 + az^4) / 2
|
||||
* Hence,
|
||||
* lambda = m / yz
|
||||
* lambda = m / yz = m / z3
|
||||
*
|
||||
* With z3 = yz (the denominator of lambda)
|
||||
* we get x3 = lambda^2*z3^2 - 2*x/z^2*z3^2
|
||||
@ -347,57 +337,62 @@ static void point_jacobian_double(jacobian_curve_point *p) {
|
||||
* = m * (xy^2 - x3) - y^4
|
||||
*/
|
||||
|
||||
/* m = 3/2*x*x
|
||||
/* m = (3*x^2 + a z^4) / 2
|
||||
* x3 = m^2 - 2*xy^2
|
||||
* y3 = m*(xy^2 - x3) - 8y^4
|
||||
* z3 = y*z
|
||||
*/
|
||||
|
||||
m = p->x;
|
||||
bn_multiply(&m, &m, &prime256k1);
|
||||
bn_mult_3_2(&m, &prime256k1);
|
||||
bn_multiply(&m, &m, prime);
|
||||
bn_mult_k(&m, 3, prime);
|
||||
|
||||
az4 = p->z;
|
||||
bn_multiply(&az4, &az4, prime);
|
||||
bn_multiply(&az4, &az4, prime);
|
||||
bn_multiply(&curve->a, &az4, prime);
|
||||
bn_addmod(&m, &az4, prime);
|
||||
bn_mult_half(&m, prime);
|
||||
|
||||
// msq = m^2
|
||||
msq = m;
|
||||
bn_multiply(&msq, &msq, &prime256k1);
|
||||
bn_multiply(&msq, &msq, prime);
|
||||
// ysq = y^2
|
||||
ysq = p->y;
|
||||
bn_multiply(&ysq, &ysq, &prime256k1);
|
||||
bn_multiply(&ysq, &ysq, prime);
|
||||
// xysq = xy^2
|
||||
xysq = p->x;
|
||||
bn_multiply(&ysq, &xysq, &prime256k1);
|
||||
bn_multiply(&ysq, &xysq, prime);
|
||||
|
||||
// z3 = yz
|
||||
bn_multiply(&p->y, &p->z, &prime256k1);
|
||||
bn_mod(&p->z, &prime256k1);
|
||||
bn_multiply(&p->y, &p->z, prime);
|
||||
bn_mod(&p->z, prime);
|
||||
|
||||
// x3 = m^2 - 2*xy^2
|
||||
tmp1 = 0;
|
||||
for (j = 0; j < 9; j++) {
|
||||
tmp1 += msq.val[j] + 3*prime256k1.val[j] - 2*xysq.val[j];
|
||||
p->x.val[j] = tmp1 & 0x3fffffff;
|
||||
tmp1 >>= 30;
|
||||
}
|
||||
bn_fast_mod(&p->x, &prime256k1);
|
||||
bn_mod(&p->x, &prime256k1);
|
||||
p->x = xysq;
|
||||
bn_mod(&p->x, prime);
|
||||
bn_lshift(&p->x);
|
||||
bn_subtractmod(&msq, &p->x, &p->x, prime);
|
||||
bn_fast_mod(&p->x, prime);
|
||||
bn_mod(&p->x, prime);
|
||||
|
||||
// y3 = m*(xy^2 - x3) - y^4
|
||||
bn_subtractmod(&xysq, &p->x, &p->y, &prime256k1);
|
||||
bn_multiply(&m, &p->y, &prime256k1);
|
||||
bn_multiply(&ysq, &ysq, &prime256k1);
|
||||
bn_subtractmod(&p->y, &ysq, &p->y, &prime256k1);
|
||||
bn_fast_mod(&p->y, &prime256k1);
|
||||
bn_mod(&p->y, &prime256k1);
|
||||
bn_subtractmod(&xysq, &p->x, &p->y, prime);
|
||||
bn_multiply(&m, &p->y, prime);
|
||||
bn_multiply(&ysq, &ysq, prime);
|
||||
bn_subtractmod(&p->y, &ysq, &p->y, prime);
|
||||
bn_fast_mod(&p->y, prime);
|
||||
bn_mod(&p->y, prime);
|
||||
}
|
||||
|
||||
// res = k * p
|
||||
void point_multiply(const bignum256 *k, const curve_point *p, curve_point *res)
|
||||
void point_multiply(const ecdsa_curve *curve, const bignum256 *k, const curve_point *p, curve_point *res)
|
||||
{
|
||||
// this algorithm is loosely based on
|
||||
// Katsuyuki Okeya and Tsuyoshi Takagi, The Width-w NAF Method Provides
|
||||
// Small Memory and Fast Elliptic Scalar Multiplications Secure against
|
||||
// Side Channel Attacks.
|
||||
assert (bn_is_less(k, &order256k1));
|
||||
assert (bn_is_less(k, &curve->order));
|
||||
|
||||
int i, j;
|
||||
int pos, shift;
|
||||
@ -406,21 +401,22 @@ void point_multiply(const bignum256 *k, const curve_point *p, curve_point *res)
|
||||
uint32_t bits, sign, nsign;
|
||||
jacobian_curve_point jres;
|
||||
curve_point pmult[8];
|
||||
const bignum256 *prime = &curve->prime;
|
||||
|
||||
// is_even = 0xffffffff if k is even, 0 otherwise.
|
||||
|
||||
// add 2^256.
|
||||
// make number odd: subtract order256k1 if even
|
||||
// make number odd: subtract curve->order if even
|
||||
uint32_t tmp = 1;
|
||||
uint32_t is_non_zero = 0;
|
||||
for (j = 0; j < 8; j++) {
|
||||
is_non_zero |= k->val[j];
|
||||
tmp += 0x3fffffff + k->val[j] - (order256k1.val[j] & is_even);
|
||||
tmp += 0x3fffffff + k->val[j] - (curve->order.val[j] & is_even);
|
||||
a.val[j] = tmp & 0x3fffffff;
|
||||
tmp >>= 30;
|
||||
}
|
||||
is_non_zero |= k->val[j];
|
||||
a.val[j] = tmp + 0xffff + k->val[j] - (order256k1.val[j] & is_even);
|
||||
a.val[j] = tmp + 0xffff + k->val[j] - (curve->order.val[j] & is_even);
|
||||
assert((a.val[0] & 1) != 0);
|
||||
|
||||
// special case 0*p: just return zero. We don't care about constant time.
|
||||
@ -429,7 +425,7 @@ void point_multiply(const bignum256 *k, const curve_point *p, curve_point *res)
|
||||
return;
|
||||
}
|
||||
|
||||
// Now a = k + 2^256 (mod order256k1) and a is odd.
|
||||
// Now a = k + 2^256 (mod curve->order) and a is odd.
|
||||
//
|
||||
// The idea is to bring the new a into the form.
|
||||
// sum_{i=0..64} a[i] 16^i, where |a[i]| < 16 and a[i] is odd.
|
||||
@ -437,7 +433,7 @@ void point_multiply(const bignum256 *k, const curve_point *p, curve_point *res)
|
||||
// add 1 to it and subtract 16 from a[i-1]. Afterwards,
|
||||
// a[64] = 1, which is the 2^256 that we added before.
|
||||
//
|
||||
// Since k = a - 2^256 (mod order256k1), we can compute
|
||||
// Since k = a - 2^256 (mod curve->order), we can compute
|
||||
// k*p = sum_{i=0..63} a[i] 16^i * p
|
||||
//
|
||||
// We compute |a[i]| * p in advance for all possible
|
||||
@ -445,12 +441,12 @@ void point_multiply(const bignum256 *k, const curve_point *p, curve_point *res)
|
||||
// We compute p, 3*p, ..., 15*p and store it in the table pmult.
|
||||
// store p^2 temporarily in pmult[7]
|
||||
pmult[7] = *p;
|
||||
point_double(&pmult[7]);
|
||||
point_double(curve, &pmult[7]);
|
||||
// compute 3*p, etc by repeatedly adding p^2.
|
||||
pmult[0] = *p;
|
||||
for (i = 1; i < 8; i++) {
|
||||
pmult[i] = pmult[7];
|
||||
point_add(&pmult[i-1], &pmult[i]);
|
||||
point_add(curve, &pmult[i-1], &pmult[i]);
|
||||
}
|
||||
|
||||
// now compute res = sum_{i=0..63} a[i] * 16^i * p step by step,
|
||||
@ -464,15 +460,15 @@ void point_multiply(const bignum256 *k, const curve_point *p, curve_point *res)
|
||||
sign = (bits >> 4) - 1;
|
||||
bits ^= sign;
|
||||
bits &= 15;
|
||||
curve_to_jacobian(&pmult[bits>>1], &jres);
|
||||
curve_to_jacobian(&pmult[bits>>1], &jres, prime);
|
||||
for (i = 62; i >= 0; i--) {
|
||||
// sign = sign(a[i+1]) (0xffffffff for negative, 0 for positive)
|
||||
// invariant jres = (-1)^sign sum_{j=i+1..63} (a[j] * 16^{j-i-1} * p)
|
||||
|
||||
point_jacobian_double(&jres);
|
||||
point_jacobian_double(&jres);
|
||||
point_jacobian_double(&jres);
|
||||
point_jacobian_double(&jres);
|
||||
point_jacobian_double(&jres, curve);
|
||||
point_jacobian_double(&jres, curve);
|
||||
point_jacobian_double(&jres, curve);
|
||||
point_jacobian_double(&jres, curve);
|
||||
|
||||
// get lowest 5 bits of a >> (i*4).
|
||||
pos = i*4/30; shift = i*4 % 30;
|
||||
@ -483,44 +479,45 @@ void point_multiply(const bignum256 *k, const curve_point *p, curve_point *res)
|
||||
|
||||
// negate last result to make signs of this round and the
|
||||
// last round equal.
|
||||
conditional_negate(sign ^ nsign, &jres.z, &prime256k1);
|
||||
conditional_negate(sign ^ nsign, &jres.z, prime);
|
||||
|
||||
// add odd factor
|
||||
point_jacobian_add(&pmult[bits >> 1], &jres);
|
||||
point_jacobian_add(&pmult[bits >> 1], &jres, prime);
|
||||
sign = nsign;
|
||||
}
|
||||
conditional_negate(sign, &jres.z, &prime256k1);
|
||||
jacobian_to_curve(&jres, res);
|
||||
conditional_negate(sign, &jres.z, prime);
|
||||
jacobian_to_curve(&jres, res, prime);
|
||||
}
|
||||
|
||||
#if USE_PRECOMPUTED_CP
|
||||
|
||||
// res = k * G
|
||||
// k must be a normalized number with 0 <= k < order256k1
|
||||
void scalar_multiply(const bignum256 *k, curve_point *res)
|
||||
// k must be a normalized number with 0 <= k < curve->order
|
||||
void scalar_multiply(const ecdsa_curve *curve, const bignum256 *k, curve_point *res)
|
||||
{
|
||||
assert (bn_is_less(k, &order256k1));
|
||||
assert (bn_is_less(k, &curve->order));
|
||||
|
||||
int i, j;
|
||||
bignum256 a;
|
||||
uint32_t is_even = (k->val[0] & 1) - 1;
|
||||
uint32_t lowbits;
|
||||
jacobian_curve_point jres;
|
||||
const bignum256 *prime = &curve->prime;
|
||||
|
||||
// is_even = 0xffffffff if k is even, 0 otherwise.
|
||||
|
||||
// add 2^256.
|
||||
// make number odd: subtract order256k1 if even
|
||||
// make number odd: subtract curve->order if even
|
||||
uint32_t tmp = 1;
|
||||
uint32_t is_non_zero = 0;
|
||||
for (j = 0; j < 8; j++) {
|
||||
is_non_zero |= k->val[j];
|
||||
tmp += 0x3fffffff + k->val[j] - (order256k1.val[j] & is_even);
|
||||
tmp += 0x3fffffff + k->val[j] - (curve->order.val[j] & is_even);
|
||||
a.val[j] = tmp & 0x3fffffff;
|
||||
tmp >>= 30;
|
||||
}
|
||||
is_non_zero |= k->val[j];
|
||||
a.val[j] = tmp + 0xffff + k->val[j] - (order256k1.val[j] & is_even);
|
||||
a.val[j] = tmp + 0xffff + k->val[j] - (curve->order.val[j] & is_even);
|
||||
assert((a.val[0] & 1) != 0);
|
||||
|
||||
// special case 0*G: just return zero. We don't care about constant time.
|
||||
@ -529,7 +526,7 @@ void scalar_multiply(const bignum256 *k, curve_point *res)
|
||||
return;
|
||||
}
|
||||
|
||||
// Now a = k + 2^256 (mod order256k1) and a is odd.
|
||||
// Now a = k + 2^256 (mod curve->order) and a is odd.
|
||||
//
|
||||
// The idea is to bring the new a into the form.
|
||||
// sum_{i=0..64} a[i] 16^i, where |a[i]| < 16 and a[i] is odd.
|
||||
@ -537,12 +534,12 @@ void scalar_multiply(const bignum256 *k, curve_point *res)
|
||||
// add 1 to it and subtract 16 from a[i-1]. Afterwards,
|
||||
// a[64] = 1, which is the 2^256 that we added before.
|
||||
//
|
||||
// Since k = a - 2^256 (mod order256k1), we can compute
|
||||
// Since k = a - 2^256 (mod curve->order), we can compute
|
||||
// k*G = sum_{i=0..63} a[i] 16^i * G
|
||||
//
|
||||
// We have a big table secp256k1_cp that stores all possible
|
||||
// We have a big table curve->cp that stores all possible
|
||||
// values of |a[i]| 16^i * G.
|
||||
// secp256k1_cp[i][j] = (2*j+1) * 16^i * G
|
||||
// curve->cp[i][j] = (2*j+1) * 16^i * G
|
||||
|
||||
// now compute res = sum_{i=0..63} a[i] * 16^i * G step by step.
|
||||
// initial res = |a[0]| * G. Note that a[0] = a & 0xf if (a&0x10) != 0
|
||||
@ -552,7 +549,7 @@ void scalar_multiply(const bignum256 *k, curve_point *res)
|
||||
lowbits = a.val[0] & ((1 << 5) - 1);
|
||||
lowbits ^= (lowbits >> 4) - 1;
|
||||
lowbits &= 15;
|
||||
curve_to_jacobian(&secp256k1_cp[0][lowbits >> 1], &jres);
|
||||
curve_to_jacobian(&curve->cp[0][lowbits >> 1], &jres, prime);
|
||||
for (i = 1; i < 64; i ++) {
|
||||
// invariant res = sign(a[i-1]) sum_{j=0..i-1} (a[j] * 16^j * G)
|
||||
|
||||
@ -569,26 +566,26 @@ void scalar_multiply(const bignum256 *k, curve_point *res)
|
||||
lowbits &= 15;
|
||||
// negate last result to make signs of this round and the
|
||||
// last round equal.
|
||||
conditional_negate((lowbits & 1) - 1, &jres.y, &prime256k1);
|
||||
conditional_negate((lowbits & 1) - 1, &jres.y, prime);
|
||||
|
||||
// add odd factor
|
||||
point_jacobian_add(&secp256k1_cp[i][lowbits >> 1], &jres);
|
||||
point_jacobian_add(&curve->cp[i][lowbits >> 1], &jres, prime);
|
||||
}
|
||||
conditional_negate(((a.val[0] >> 4) & 1) - 1, &jres.y, &prime256k1);
|
||||
jacobian_to_curve(&jres, res);
|
||||
conditional_negate(((a.val[0] >> 4) & 1) - 1, &jres.y, prime);
|
||||
jacobian_to_curve(&jres, res, prime);
|
||||
}
|
||||
|
||||
#else
|
||||
|
||||
void scalar_multiply(const bignum256 *k, curve_point *res)
|
||||
void scalar_multiply(const ecdsa_curve *curve, const bignum256 *k, curve_point *res)
|
||||
{
|
||||
point_multiply(k, &G256k1, res);
|
||||
point_multiply(curve, k, &curve->G, res);
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
// generate random K for signing
|
||||
int generate_k_random(bignum256 *k) {
|
||||
int generate_k_random(const ecdsa_curve *curve, bignum256 *k) {
|
||||
int i, j;
|
||||
for (j = 0; j < 10000; j++) {
|
||||
for (i = 0; i < 8; i++) {
|
||||
@ -596,7 +593,7 @@ int generate_k_random(bignum256 *k) {
|
||||
}
|
||||
k->val[8] = random32() & 0xFFFF;
|
||||
// if k is too big or too small, we don't like it
|
||||
if ( !bn_is_zero(k) && bn_is_less(k, &order256k1) ) {
|
||||
if ( !bn_is_zero(k) && bn_is_less(k, &curve->order) ) {
|
||||
return 0; // good number - no error
|
||||
}
|
||||
}
|
||||
@ -606,7 +603,7 @@ int generate_k_random(bignum256 *k) {
|
||||
|
||||
// generate K in a deterministic way, according to RFC6979
|
||||
// http://tools.ietf.org/html/rfc6979
|
||||
int generate_k_rfc6979(bignum256 *secret, const uint8_t *priv_key, const uint8_t *hash)
|
||||
int generate_k_rfc6979(const ecdsa_curve *curve, bignum256 *secret, const uint8_t *priv_key, const uint8_t *hash)
|
||||
{
|
||||
int i;
|
||||
uint8_t v[32], k[32], bx[2*32], buf[32 + 1 + sizeof(bx)];
|
||||
@ -614,7 +611,7 @@ int generate_k_rfc6979(bignum256 *secret, const uint8_t *priv_key, const uint8_t
|
||||
|
||||
memcpy(bx, priv_key, 32);
|
||||
bn_read_be(hash, &z1);
|
||||
bn_mod(&z1, &order256k1);
|
||||
bn_mod(&z1, &curve->order);
|
||||
bn_write_be(&z1, bx + 32);
|
||||
|
||||
memset(v, 1, sizeof(v));
|
||||
@ -635,7 +632,7 @@ int generate_k_rfc6979(bignum256 *secret, const uint8_t *priv_key, const uint8_t
|
||||
for (i = 0; i < 10000; i++) {
|
||||
hmac_sha256(k, sizeof(k), v, sizeof(v), v);
|
||||
bn_read_be(v, secret);
|
||||
if ( !bn_is_zero(secret) && bn_is_less(secret, &order256k1) ) {
|
||||
if ( !bn_is_zero(secret) && bn_is_less(secret, &curve->order) ) {
|
||||
return 0; // good number -> no error
|
||||
}
|
||||
memcpy(buf, v, sizeof(v));
|
||||
@ -649,11 +646,11 @@ int generate_k_rfc6979(bignum256 *secret, const uint8_t *priv_key, const uint8_t
|
||||
|
||||
// msg is a data to be signed
|
||||
// msg_len is the message length
|
||||
int ecdsa_sign(const uint8_t *priv_key, const uint8_t *msg, uint32_t msg_len, uint8_t *sig, uint8_t *pby)
|
||||
int ecdsa_sign(const ecdsa_curve *curve, const uint8_t *priv_key, const uint8_t *msg, uint32_t msg_len, uint8_t *sig, uint8_t *pby)
|
||||
{
|
||||
uint8_t hash[32];
|
||||
sha256_Raw(msg, msg_len, hash);
|
||||
int res = ecdsa_sign_digest(priv_key, hash, sig, pby);
|
||||
int res = ecdsa_sign_digest(curve, priv_key, hash, sig, pby);
|
||||
MEMSET_BZERO(hash, sizeof(hash));
|
||||
return res;
|
||||
|
||||
@ -661,12 +658,12 @@ int ecdsa_sign(const uint8_t *priv_key, const uint8_t *msg, uint32_t msg_len, ui
|
||||
|
||||
// msg is a data to be signed
|
||||
// msg_len is the message length
|
||||
int ecdsa_sign_double(const uint8_t *priv_key, const uint8_t *msg, uint32_t msg_len, uint8_t *sig, uint8_t *pby)
|
||||
int ecdsa_sign_double(const ecdsa_curve *curve, const uint8_t *priv_key, const uint8_t *msg, uint32_t msg_len, uint8_t *sig, uint8_t *pby)
|
||||
{
|
||||
uint8_t hash[32];
|
||||
sha256_Raw(msg, msg_len, hash);
|
||||
sha256_Raw(hash, 32, hash);
|
||||
int res = ecdsa_sign_digest(priv_key, hash, sig, pby);
|
||||
int res = ecdsa_sign_digest(curve, priv_key, hash, sig, pby);
|
||||
MEMSET_BZERO(hash, sizeof(hash));
|
||||
return res;
|
||||
}
|
||||
@ -675,7 +672,7 @@ int ecdsa_sign_double(const uint8_t *priv_key, const uint8_t *msg, uint32_t msg_
|
||||
// priv_key is a 32 byte big endian stored number
|
||||
// sig is 64 bytes long array for the signature
|
||||
// digest is 32 bytes of digest
|
||||
int ecdsa_sign_digest(const uint8_t *priv_key, const uint8_t *digest, uint8_t *sig, uint8_t *pby)
|
||||
int ecdsa_sign_digest(const ecdsa_curve *curve, const uint8_t *priv_key, const uint8_t *digest, uint8_t *sig, uint8_t *pby)
|
||||
{
|
||||
uint32_t i;
|
||||
curve_point R;
|
||||
@ -686,24 +683,24 @@ int ecdsa_sign_digest(const uint8_t *priv_key, const uint8_t *digest, uint8_t *s
|
||||
|
||||
#if USE_RFC6979
|
||||
// generate K deterministically
|
||||
if (generate_k_rfc6979(&k, priv_key, digest) != 0) {
|
||||
if (generate_k_rfc6979(curve, &k, priv_key, digest) != 0) {
|
||||
result = 1;
|
||||
}
|
||||
#else
|
||||
// generate random number k
|
||||
if (generate_k_random(&k) != 0) {
|
||||
if (generate_k_random(curve, &k) != 0) {
|
||||
result = 1;
|
||||
}
|
||||
#endif
|
||||
|
||||
if (result == 0) {
|
||||
// compute k*G
|
||||
scalar_multiply(&k, &R);
|
||||
scalar_multiply(curve, &k, &R);
|
||||
if (pby) {
|
||||
*pby = R.y.val[0] & 1;
|
||||
}
|
||||
// r = (rx mod n)
|
||||
bn_mod(&R.x, &order256k1);
|
||||
bn_mod(&R.x, &curve->order);
|
||||
// if r is zero, we fail
|
||||
if (bn_is_zero(&R.x))
|
||||
{
|
||||
@ -712,17 +709,17 @@ int ecdsa_sign_digest(const uint8_t *priv_key, const uint8_t *digest, uint8_t *s
|
||||
}
|
||||
|
||||
if (result == 0) {
|
||||
bn_inverse(&k, &order256k1);
|
||||
bn_inverse(&k, &curve->order);
|
||||
bn_read_be(priv_key, da);
|
||||
bn_multiply(&R.x, da, &order256k1);
|
||||
bn_multiply(&R.x, da, &curve->order);
|
||||
for (i = 0; i < 8; i++) {
|
||||
da->val[i] += z.val[i];
|
||||
da->val[i + 1] += (da->val[i] >> 30);
|
||||
da->val[i] &= 0x3FFFFFFF;
|
||||
}
|
||||
da->val[8] += z.val[8];
|
||||
bn_multiply(da, &k, &order256k1);
|
||||
bn_mod(&k, &order256k1);
|
||||
bn_multiply(da, &k, &curve->order);
|
||||
bn_mod(&k, &curve->order);
|
||||
// if k is zero, we fail
|
||||
if (bn_is_zero(&k)) {
|
||||
result = 3;
|
||||
@ -730,13 +727,6 @@ int ecdsa_sign_digest(const uint8_t *priv_key, const uint8_t *digest, uint8_t *s
|
||||
}
|
||||
|
||||
if (result == 0) {
|
||||
// if S > order/2 => S = -S
|
||||
if (bn_is_less(&order256k1_half, &k)) {
|
||||
bn_subtract(&order256k1, &k, &k);
|
||||
if (pby) {
|
||||
*pby = !*pby;
|
||||
}
|
||||
}
|
||||
// we are done, R.x and k is the result signature
|
||||
bn_write_be(&R.x, sig);
|
||||
bn_write_be(&k, sig + 32);
|
||||
@ -748,28 +738,28 @@ int ecdsa_sign_digest(const uint8_t *priv_key, const uint8_t *digest, uint8_t *s
|
||||
return 0;
|
||||
}
|
||||
|
||||
void ecdsa_get_public_key33(const uint8_t *priv_key, uint8_t *pub_key)
|
||||
void ecdsa_get_public_key33(const ecdsa_curve *curve, const uint8_t *priv_key, uint8_t *pub_key)
|
||||
{
|
||||
curve_point R;
|
||||
bignum256 k;
|
||||
|
||||
bn_read_be(priv_key, &k);
|
||||
// compute k*G
|
||||
scalar_multiply(&k, &R);
|
||||
scalar_multiply(curve, &k, &R);
|
||||
pub_key[0] = 0x02 | (R.y.val[0] & 0x01);
|
||||
bn_write_be(&R.x, pub_key + 1);
|
||||
MEMSET_BZERO(&R, sizeof(R));
|
||||
MEMSET_BZERO(&k, sizeof(k));
|
||||
}
|
||||
|
||||
void ecdsa_get_public_key65(const uint8_t *priv_key, uint8_t *pub_key)
|
||||
void ecdsa_get_public_key65(const ecdsa_curve *curve, const uint8_t *priv_key, uint8_t *pub_key)
|
||||
{
|
||||
curve_point R;
|
||||
bignum256 k;
|
||||
|
||||
bn_read_be(priv_key, &k);
|
||||
// compute k*G
|
||||
scalar_multiply(&k, &R);
|
||||
scalar_multiply(curve, &k, &R);
|
||||
pub_key[0] = 0x04;
|
||||
bn_write_be(&R.x, pub_key + 1);
|
||||
bn_write_be(&R.y, pub_key + 33);
|
||||
@ -825,30 +815,30 @@ int ecdsa_address_decode(const char *addr, uint8_t *out)
|
||||
return base58_decode_check(addr, out, 21) == 21;
|
||||
}
|
||||
|
||||
void uncompress_coords(uint8_t odd, const bignum256 *x, bignum256 *y)
|
||||
void uncompress_coords(const ecdsa_curve *curve, uint8_t odd, const bignum256 *x, bignum256 *y)
|
||||
{
|
||||
// y^2 = x^3 + 0*x + 7
|
||||
memcpy(y, x, sizeof(bignum256)); // y is x
|
||||
bn_multiply(x, y, &prime256k1); // y is x^2
|
||||
bn_multiply(x, y, &prime256k1); // y is x^3
|
||||
bn_addmodi(y, 7, &prime256k1); // y is x^3 + 7
|
||||
bn_sqrt(y, &prime256k1); // y = sqrt(y)
|
||||
bn_multiply(x, y, &curve->prime); // y is x^2
|
||||
bn_multiply(x, y, &curve->prime); // y is x^3
|
||||
bn_addmodi(y, 7, &curve->prime); // y is x^3 + 7
|
||||
bn_sqrt(y, &curve->prime); // y = sqrt(y)
|
||||
if ((odd & 0x01) != (y->val[0] & 1)) {
|
||||
bn_subtract(&prime256k1, y, y); // y = -y
|
||||
bn_subtract(&curve->prime, y, y); // y = -y
|
||||
}
|
||||
}
|
||||
|
||||
int ecdsa_read_pubkey(const uint8_t *pub_key, curve_point *pub)
|
||||
int ecdsa_read_pubkey(const ecdsa_curve *curve, const uint8_t *pub_key, curve_point *pub)
|
||||
{
|
||||
if (pub_key[0] == 0x04) {
|
||||
bn_read_be(pub_key + 1, &(pub->x));
|
||||
bn_read_be(pub_key + 33, &(pub->y));
|
||||
return ecdsa_validate_pubkey(pub);
|
||||
return ecdsa_validate_pubkey(curve, pub);
|
||||
}
|
||||
if (pub_key[0] == 0x02 || pub_key[0] == 0x03) { // compute missing y coords
|
||||
bn_read_be(pub_key + 1, &(pub->x));
|
||||
uncompress_coords(pub_key[0], &(pub->x), &(pub->y));
|
||||
return ecdsa_validate_pubkey(pub);
|
||||
uncompress_coords(curve, pub_key[0], &(pub->x), &(pub->y));
|
||||
return ecdsa_validate_pubkey(curve, pub);
|
||||
}
|
||||
// error
|
||||
return 0;
|
||||
@ -859,7 +849,7 @@ int ecdsa_read_pubkey(const uint8_t *pub_key, curve_point *pub)
|
||||
// - pub->x and pub->y are in range [0,p-1].
|
||||
// - pub is on the curve.
|
||||
|
||||
int ecdsa_validate_pubkey(const curve_point *pub)
|
||||
int ecdsa_validate_pubkey(const ecdsa_curve *curve, const curve_point *pub)
|
||||
{
|
||||
bignum256 y_2, x_3_b;
|
||||
|
||||
@ -867,7 +857,7 @@ int ecdsa_validate_pubkey(const curve_point *pub)
|
||||
return 0;
|
||||
}
|
||||
|
||||
if (!bn_is_less(&(pub->x), &prime256k1) || !bn_is_less(&(pub->y), &prime256k1)) {
|
||||
if (!bn_is_less(&(pub->x), &curve->prime) || !bn_is_less(&(pub->y), &curve->prime)) {
|
||||
return 0;
|
||||
}
|
||||
|
||||
@ -875,13 +865,13 @@ int ecdsa_validate_pubkey(const curve_point *pub)
|
||||
memcpy(&x_3_b, &(pub->x), sizeof(bignum256));
|
||||
|
||||
// y^2
|
||||
bn_multiply(&(pub->y), &y_2, &prime256k1);
|
||||
bn_mod(&y_2, &prime256k1);
|
||||
bn_multiply(&(pub->y), &y_2, &curve->prime);
|
||||
bn_mod(&y_2, &curve->prime);
|
||||
|
||||
// x^3 + b
|
||||
bn_multiply(&(pub->x), &x_3_b, &prime256k1);
|
||||
bn_multiply(&(pub->x), &x_3_b, &prime256k1);
|
||||
bn_addmodi(&x_3_b, 7, &prime256k1);
|
||||
bn_multiply(&(pub->x), &x_3_b, &curve->prime);
|
||||
bn_multiply(&(pub->x), &x_3_b, &curve->prime);
|
||||
bn_addmodi(&x_3_b, 7, &curve->prime);
|
||||
|
||||
if (!bn_is_equal(&x_3_b, &y_2)) {
|
||||
return 0;
|
||||
@ -896,32 +886,32 @@ int ecdsa_validate_pubkey(const curve_point *pub)
|
||||
// msg is a data that was signed
|
||||
// msg_len is the message length
|
||||
|
||||
int ecdsa_verify(const uint8_t *pub_key, const uint8_t *sig, const uint8_t *msg, uint32_t msg_len)
|
||||
int ecdsa_verify(const ecdsa_curve *curve, const uint8_t *pub_key, const uint8_t *sig, const uint8_t *msg, uint32_t msg_len)
|
||||
{
|
||||
uint8_t hash[32];
|
||||
sha256_Raw(msg, msg_len, hash);
|
||||
int res = ecdsa_verify_digest(pub_key, sig, hash);
|
||||
int res = ecdsa_verify_digest(curve, pub_key, sig, hash);
|
||||
MEMSET_BZERO(hash, sizeof(hash));
|
||||
return res;
|
||||
}
|
||||
|
||||
int ecdsa_verify_double(const uint8_t *pub_key, const uint8_t *sig, const uint8_t *msg, uint32_t msg_len)
|
||||
int ecdsa_verify_double(const ecdsa_curve *curve, const uint8_t *pub_key, const uint8_t *sig, const uint8_t *msg, uint32_t msg_len)
|
||||
{
|
||||
uint8_t hash[32];
|
||||
sha256_Raw(msg, msg_len, hash);
|
||||
sha256_Raw(hash, 32, hash);
|
||||
int res = ecdsa_verify_digest(pub_key, sig, hash);
|
||||
int res = ecdsa_verify_digest(curve, pub_key, sig, hash);
|
||||
MEMSET_BZERO(hash, sizeof(hash));
|
||||
return res;
|
||||
}
|
||||
|
||||
// returns 0 if verification succeeded
|
||||
int ecdsa_verify_digest(const uint8_t *pub_key, const uint8_t *sig, const uint8_t *digest)
|
||||
int ecdsa_verify_digest(const ecdsa_curve *curve, const uint8_t *pub_key, const uint8_t *sig, const uint8_t *digest)
|
||||
{
|
||||
curve_point pub, res;
|
||||
bignum256 r, s, z;
|
||||
|
||||
if (!ecdsa_read_pubkey(pub_key, &pub)) {
|
||||
if (!ecdsa_read_pubkey(curve, pub_key, &pub)) {
|
||||
return 1;
|
||||
}
|
||||
|
||||
@ -931,14 +921,14 @@ int ecdsa_verify_digest(const uint8_t *pub_key, const uint8_t *sig, const uint8_
|
||||
bn_read_be(digest, &z);
|
||||
|
||||
if (bn_is_zero(&r) || bn_is_zero(&s) ||
|
||||
(!bn_is_less(&r, &order256k1)) ||
|
||||
(!bn_is_less(&s, &order256k1))) return 2;
|
||||
(!bn_is_less(&r, &curve->order)) ||
|
||||
(!bn_is_less(&s, &curve->order))) return 2;
|
||||
|
||||
bn_inverse(&s, &order256k1); // s^-1
|
||||
bn_multiply(&s, &z, &order256k1); // z*s^-1
|
||||
bn_mod(&z, &order256k1);
|
||||
bn_multiply(&r, &s, &order256k1); // r*s^-1
|
||||
bn_mod(&s, &order256k1);
|
||||
bn_inverse(&s, &curve->order); // s^-1
|
||||
bn_multiply(&s, &z, &curve->order); // z*s^-1
|
||||
bn_mod(&z, &curve->order);
|
||||
bn_multiply(&r, &s, &curve->order); // r*s^-1
|
||||
bn_mod(&s, &curve->order);
|
||||
|
||||
int result = 0;
|
||||
if (bn_is_zero(&z)) {
|
||||
@ -946,14 +936,14 @@ int ecdsa_verify_digest(const uint8_t *pub_key, const uint8_t *sig, const uint8_
|
||||
// I don't expect this to happen any time soon
|
||||
result = 3;
|
||||
} else {
|
||||
scalar_multiply(&z, &res);
|
||||
scalar_multiply(curve, &z, &res);
|
||||
}
|
||||
|
||||
if (result == 0) {
|
||||
// both pub and res can be infinity, can have y = 0 OR can be equal -> false negative
|
||||
point_multiply(&s, &pub, &pub);
|
||||
point_add(&pub, &res);
|
||||
bn_mod(&(res.x), &order256k1);
|
||||
point_multiply(curve, &s, &pub, &pub);
|
||||
point_add(curve, &pub, &res);
|
||||
bn_mod(&(res.x), &curve->order);
|
||||
// signature does not match
|
||||
if (!bn_is_equal(&res.x, &r)) {
|
||||
result = 5;
|
||||
@ -1006,3 +996,17 @@ int ecdsa_sig_to_der(const uint8_t *sig, uint8_t *der)
|
||||
*len = *len1 + *len2 + 4;
|
||||
return *len + 2;
|
||||
}
|
||||
|
||||
|
||||
const ecdsa_curve *get_curve_by_name(const char *curve_name) {
|
||||
if (curve_name == 0) {
|
||||
return 0;
|
||||
}
|
||||
if (strcmp(curve_name, "secp256k1") == 0) {
|
||||
return &secp256k1;
|
||||
}
|
||||
if (strcmp(curve_name, "nist256p1") == 0) {
|
||||
return &nist256p1;
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
55
ecdsa.h
55
ecdsa.h
@ -26,38 +26,57 @@
|
||||
|
||||
#include <stdint.h>
|
||||
#include "options.h"
|
||||
#include "secp256k1.h"
|
||||
#include "bignum.h"
|
||||
|
||||
// curve point x and y
|
||||
typedef struct {
|
||||
bignum256 x, y;
|
||||
} curve_point;
|
||||
|
||||
typedef struct {
|
||||
|
||||
bignum256 prime; // prime order of the finite field
|
||||
curve_point G; // initial curve point
|
||||
bignum256 order; // order of G
|
||||
bignum256 a; // coefficient 'a' of the elliptic curve
|
||||
|
||||
#if USE_PRECOMPUTED_CP
|
||||
const curve_point cp[64][8];
|
||||
#endif
|
||||
|
||||
} ecdsa_curve;
|
||||
|
||||
void point_copy(const curve_point *cp1, curve_point *cp2);
|
||||
void point_add(const curve_point *cp1, curve_point *cp2);
|
||||
void point_double(curve_point *cp);
|
||||
void point_multiply(const bignum256 *k, const curve_point *p, curve_point *res);
|
||||
void point_add(const ecdsa_curve *curve, const curve_point *cp1, curve_point *cp2);
|
||||
void point_double(const ecdsa_curve *curve, curve_point *cp);
|
||||
void point_multiply(const ecdsa_curve *curve, const bignum256 *k, const curve_point *p, curve_point *res);
|
||||
void point_set_infinity(curve_point *p);
|
||||
int point_is_infinity(const curve_point *p);
|
||||
int point_is_equal(const curve_point *p, const curve_point *q);
|
||||
int point_is_negative_of(const curve_point *p, const curve_point *q);
|
||||
void scalar_multiply(const bignum256 *k, curve_point *res);
|
||||
void uncompress_coords(uint8_t odd, const bignum256 *x, bignum256 *y);
|
||||
void scalar_multiply(const ecdsa_curve *curve, const bignum256 *k, curve_point *res);
|
||||
void uncompress_coords(const ecdsa_curve *curve, uint8_t odd, const bignum256 *x, bignum256 *y);
|
||||
|
||||
int ecdsa_sign(const uint8_t *priv_key, const uint8_t *msg, uint32_t msg_len, uint8_t *sig, uint8_t *pby);
|
||||
int ecdsa_sign_double(const uint8_t *priv_key, const uint8_t *msg, uint32_t msg_len, uint8_t *sig, uint8_t *pby);
|
||||
int ecdsa_sign_digest(const uint8_t *priv_key, const uint8_t *digest, uint8_t *sig, uint8_t *pby);
|
||||
void ecdsa_get_public_key33(const uint8_t *priv_key, uint8_t *pub_key);
|
||||
void ecdsa_get_public_key65(const uint8_t *priv_key, uint8_t *pub_key);
|
||||
int ecdsa_sign(const ecdsa_curve *curve, const uint8_t *priv_key, const uint8_t *msg, uint32_t msg_len, uint8_t *sig, uint8_t *pby);
|
||||
int ecdsa_sign_double(const ecdsa_curve *curve, const uint8_t *priv_key, const uint8_t *msg, uint32_t msg_len, uint8_t *sig, uint8_t *pby);
|
||||
int ecdsa_sign_digest(const ecdsa_curve *curve, const uint8_t *priv_key, const uint8_t *digest, uint8_t *sig, uint8_t *pby);
|
||||
void ecdsa_get_public_key33(const ecdsa_curve *curve, const uint8_t *priv_key, uint8_t *pub_key);
|
||||
void ecdsa_get_public_key65(const ecdsa_curve *curve, const uint8_t *priv_key, uint8_t *pub_key);
|
||||
void ecdsa_get_pubkeyhash(const uint8_t *pub_key, uint8_t *pubkeyhash);
|
||||
void ecdsa_get_address_raw(const uint8_t *pub_key, uint8_t version, uint8_t *addr_raw);
|
||||
void ecdsa_get_address(const uint8_t *pub_key, uint8_t version, char *addr, int addrsize);
|
||||
void ecdsa_get_wif(const uint8_t *priv_key, uint8_t version, char *wif, int wifsize);
|
||||
int ecdsa_address_decode(const char *addr, uint8_t *out);
|
||||
int ecdsa_read_pubkey(const uint8_t *pub_key, curve_point *pub);
|
||||
int ecdsa_validate_pubkey(const curve_point *pub);
|
||||
int ecdsa_verify(const uint8_t *pub_key, const uint8_t *sig, const uint8_t *msg, uint32_t msg_len);
|
||||
int ecdsa_verify_double(const uint8_t *pub_key, const uint8_t *sig, const uint8_t *msg, uint32_t msg_len);
|
||||
int ecdsa_verify_digest(const uint8_t *pub_key, const uint8_t *sig, const uint8_t *digest);
|
||||
int ecdsa_read_pubkey(const ecdsa_curve *curve, const uint8_t *pub_key, curve_point *pub);
|
||||
int ecdsa_validate_pubkey(const ecdsa_curve *curve, const curve_point *pub);
|
||||
int ecdsa_verify(const ecdsa_curve *curve, const uint8_t *pub_key, const uint8_t *sig, const uint8_t *msg, uint32_t msg_len);
|
||||
int ecdsa_verify_double(const ecdsa_curve *curve, const uint8_t *pub_key, const uint8_t *sig, const uint8_t *msg, uint32_t msg_len);
|
||||
int ecdsa_verify_digest(const ecdsa_curve *curve, const uint8_t *pub_key, const uint8_t *sig, const uint8_t *digest);
|
||||
int ecdsa_sig_to_der(const uint8_t *sig, uint8_t *der);
|
||||
const ecdsa_curve *get_curve_by_name(const char *curve_name);
|
||||
|
||||
// Private
|
||||
int generate_k_rfc6979(bignum256 *secret, const uint8_t *priv_key, const uint8_t *hash);
|
||||
int generate_k_random(bignum256 *k);
|
||||
int generate_k_rfc6979(const ecdsa_curve *curve, bignum256 *secret, const uint8_t *priv_key, const uint8_t *hash);
|
||||
int generate_k_random(const ecdsa_curve *curve, bignum256 *k);
|
||||
|
||||
#endif
|
||||
|
50
nist256p1.c
Normal file
50
nist256p1.c
Normal file
@ -0,0 +1,50 @@
|
||||
/**
|
||||
* Copyright (c) 2013-2014 Tomas Dzetkulic
|
||||
* Copyright (c) 2013-2014 Pavol Rusnak
|
||||
*
|
||||
* Permission is hereby granted, free of charge, to any person obtaining
|
||||
* a copy of this software and associated documentation files (the "Software"),
|
||||
* to deal in the Software without restriction, including without limitation
|
||||
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
||||
* and/or sell copies of the Software, and to permit persons to whom the
|
||||
* Software is furnished to do so, subject to the following conditions:
|
||||
*
|
||||
* The above copyright notice and this permission notice shall be included
|
||||
* in all copies or substantial portions of the Software.
|
||||
*
|
||||
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
|
||||
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
||||
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES
|
||||
* OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
|
||||
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
|
||||
* OTHER DEALINGS IN THE SOFTWARE.
|
||||
*/
|
||||
|
||||
#include "nist256p1.h"
|
||||
|
||||
const ecdsa_curve nist256p1 = {
|
||||
/* .prime */ {
|
||||
/*.val =*/ {0x3fffffff, 0x3fffffff, 0x3fffffff, 0x3f, 0x0, 0x0, 0x1000, 0x3fffc000, 0xffff}
|
||||
},
|
||||
|
||||
/* G */ {
|
||||
/*.x =*/{/*.val =*/{0x1898c296, 0x1284e517, 0x1eb33a0f, 0xdf604b, 0x2440f277, 0x339b958e, 0x4247f8b, 0x347cb84b, 0x6b17}},
|
||||
/*.y =*/{/*.val =*/{0x37bf51f5, 0x2ed901a0, 0x3315ecec, 0x338cd5da, 0xf9e162b, 0x1fad29f0, 0x27f9b8ee, 0x10b8bf86, 0x4fe3}}
|
||||
},
|
||||
|
||||
/* order */ {
|
||||
/*.val =*/{0x3c632551, 0xee72b0b, 0x3179e84f, 0x39beab69, 0x3fffffbc, 0x3fffffff, 0xfff, 0x3fffc000, 0xffff}
|
||||
},
|
||||
|
||||
/* a */ {
|
||||
/*.val =*/{0x3ffffffc, 0x3fffffff, 0x3fffffff, 0x3f, 0x0, 0x0, 0x1000, 0x3fffc000, 0xffff}
|
||||
}
|
||||
#if USE_PRECOMPUTED_CP
|
||||
,
|
||||
/* cp */ {
|
||||
#include "nist256p1.table"
|
||||
}
|
||||
#endif
|
||||
|
||||
};
|
33
nist256p1.h
Normal file
33
nist256p1.h
Normal file
@ -0,0 +1,33 @@
|
||||
/**
|
||||
* Copyright (c) 2013-2014 Tomas Dzetkulic
|
||||
* Copyright (c) 2013-2014 Pavol Rusnak
|
||||
*
|
||||
* Permission is hereby granted, free of charge, to any person obtaining
|
||||
* a copy of this software and associated documentation files (the "Software"),
|
||||
* to deal in the Software without restriction, including without limitation
|
||||
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
||||
* and/or sell copies of the Software, and to permit persons to whom the
|
||||
* Software is furnished to do so, subject to the following conditions:
|
||||
*
|
||||
* The above copyright notice and this permission notice shall be included
|
||||
* in all copies or substantial portions of the Software.
|
||||
*
|
||||
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
|
||||
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
||||
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES
|
||||
* OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
|
||||
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
|
||||
* OTHER DEALINGS IN THE SOFTWARE.
|
||||
*/
|
||||
|
||||
#ifndef __NIST256P1_H__
|
||||
#define __NIST256P1_H__
|
||||
|
||||
#include <stdint.h>
|
||||
|
||||
#include "ecdsa.h"
|
||||
|
||||
extern const ecdsa_curve nist256p1;
|
||||
|
||||
#endif
|
1664
nist256p1.table
Normal file
1664
nist256p1.table
Normal file
File diff suppressed because it is too large
Load Diff
1698
secp256k1.c
1698
secp256k1.c
File diff suppressed because it is too large
Load Diff
26
secp256k1.h
26
secp256k1.h
@ -26,30 +26,8 @@
|
||||
|
||||
#include <stdint.h>
|
||||
|
||||
#include "bignum.h"
|
||||
#include "ecdsa.h"
|
||||
|
||||
// curve point x and y
|
||||
typedef struct {
|
||||
bignum256 x, y;
|
||||
} curve_point;
|
||||
|
||||
// secp256k1 prime
|
||||
extern const bignum256 prime256k1;
|
||||
|
||||
// secp256k1 initial curve point
|
||||
extern const curve_point G256k1;
|
||||
|
||||
// secp256k1 order of G
|
||||
extern const bignum256 order256k1;
|
||||
|
||||
// secp256k1 order of G / 2
|
||||
extern const bignum256 order256k1_half;
|
||||
|
||||
// 3/2 in G_p
|
||||
extern const bignum256 three_over_two256k1;
|
||||
|
||||
#if USE_PRECOMPUTED_CP
|
||||
extern const curve_point secp256k1_cp[64][8];
|
||||
#endif
|
||||
extern const ecdsa_curve secp256k1;
|
||||
|
||||
#endif
|
||||
|
1664
secp256k1.table
Normal file
1664
secp256k1.table
Normal file
File diff suppressed because it is too large
Load Diff
@ -29,6 +29,13 @@
|
||||
|
||||
#include "ecdsa.h"
|
||||
#include "rand.h"
|
||||
#include "secp256k1.h"
|
||||
|
||||
#define CURVE (&secp256k1)
|
||||
#define prime256k1 (secp256k1.prime)
|
||||
#define G256k1 (secp256k1.G)
|
||||
#define order256k1 (secp256k1.order)
|
||||
#define secp256k1_cp (secp256k1.cp)
|
||||
|
||||
int main(int argc, char *argv[])
|
||||
{
|
||||
@ -81,21 +88,21 @@ int main(int argc, char *argv[])
|
||||
}
|
||||
|
||||
// use our ECDSA signer to sign the message with the key
|
||||
if (ecdsa_sign(priv_key, msg, msg_len, sig, 0) != 0) {
|
||||
if (ecdsa_sign(CURVE, priv_key, msg, msg_len, sig, 0) != 0) {
|
||||
printf("trezor-crypto signing failed\n");
|
||||
break;
|
||||
}
|
||||
|
||||
// generate public key from private key
|
||||
ecdsa_get_public_key33(priv_key, pub_key33);
|
||||
ecdsa_get_public_key65(priv_key, pub_key65);
|
||||
ecdsa_get_public_key33(&secp256k1, priv_key, pub_key33);
|
||||
ecdsa_get_public_key65(&secp256k1, priv_key, pub_key65);
|
||||
|
||||
// use our ECDSA verifier to verify the message signature
|
||||
if (ecdsa_verify(pub_key65, sig, msg, msg_len) != 0) {
|
||||
if (ecdsa_verify(CURVE, pub_key65, sig, msg, msg_len) != 0) {
|
||||
printf("trezor-crypto verification failed (pub_key_len = 65)\n");
|
||||
break;
|
||||
}
|
||||
if (ecdsa_verify(pub_key33, sig, msg, msg_len) != 0) {
|
||||
if (ecdsa_verify(CURVE, pub_key33, sig, msg, msg_len) != 0) {
|
||||
printf("trezor-crypto verification failed (pub_key_len = 33)\n");
|
||||
break;
|
||||
}
|
||||
|
304
test_curves.py
Normal file
304
test_curves.py
Normal file
@ -0,0 +1,304 @@
|
||||
import ctypes as c
|
||||
import random
|
||||
import ecdsa
|
||||
import hashlib
|
||||
import subprocess
|
||||
import binascii
|
||||
import pytest
|
||||
import os
|
||||
|
||||
|
||||
def bytes2num(s):
|
||||
res = 0
|
||||
for i, b in enumerate(reversed(bytearray(s))):
|
||||
res += b << (i * 8)
|
||||
return res
|
||||
|
||||
|
||||
curves = {
|
||||
'nist256p1': ecdsa.curves.NIST256p,
|
||||
'secp256k1': ecdsa.curves.SECP256k1
|
||||
}
|
||||
|
||||
random_iters = int(os.environ.get('ITERS', 1))
|
||||
|
||||
scons_file = '''
|
||||
srcs = 'ecdsa bignum secp256k1 nist256p1 sha2 rand hmac ripemd160 base58'
|
||||
srcs = [(s + '.c') for s in srcs.split()]
|
||||
flags = ('-Os -g -W -Wall -Wextra -Wimplicit-function-declaration '
|
||||
'-Wredundant-decls -Wstrict-prototypes -Wundef -Wshadow '
|
||||
'-Wpointer-arith -Wformat -Wreturn-type -Wsign-compare -Wmultichar '
|
||||
'-Wformat-nonliteral -Winit-self -Wuninitialized -Wformat-security '
|
||||
'-Werror -Wno-sequence-point ')
|
||||
SharedLibrary('ecdsa', srcs, CCFLAGS=flags)
|
||||
'''
|
||||
open('SConstruct', 'w').write(scons_file)
|
||||
|
||||
subprocess.check_call('scons -s', shell=True)
|
||||
lib = c.cdll.LoadLibrary('./libecdsa.so')
|
||||
|
||||
lib.get_curve_by_name.restype = c.c_void_p
|
||||
|
||||
BIGNUM = c.c_uint32 * 9
|
||||
|
||||
|
||||
class Random(random.Random):
|
||||
def randbytes(self, n):
|
||||
buf = (c.c_uint8 * n)()
|
||||
for i in range(n):
|
||||
buf[i] = self.randrange(0, 256)
|
||||
return buf
|
||||
|
||||
def randpoint(self, curve):
|
||||
k = self.randrange(0, curve.order)
|
||||
return k * curve.generator
|
||||
|
||||
|
||||
def int2bn(x, bn_type=BIGNUM):
|
||||
b = bn_type()
|
||||
b._int = x
|
||||
for i in range(len(b)):
|
||||
b[i] = x % (1 << 30)
|
||||
x = x >> 30
|
||||
return b
|
||||
|
||||
|
||||
def bn2int(b):
|
||||
x = 0
|
||||
for i in range(len(b)):
|
||||
x += (b[i] << (30 * i))
|
||||
return x
|
||||
|
||||
|
||||
@pytest.fixture(params=range(random_iters))
|
||||
def r(request):
|
||||
seed = request.param
|
||||
return Random(seed + int(os.environ.get('SEED', 0)))
|
||||
|
||||
|
||||
@pytest.fixture(params=list(sorted(curves)))
|
||||
def curve(request):
|
||||
name = request.param
|
||||
curve_ptr = lib.get_curve_by_name(name)
|
||||
assert curve_ptr, 'curve {} not found'.format(name)
|
||||
curve_obj = curves[name]
|
||||
curve_obj.ptr = c.c_void_p(curve_ptr)
|
||||
curve_obj.p = curve_obj.curve.p() # shorthand
|
||||
return curve_obj
|
||||
|
||||
|
||||
def test_inverse(curve, r):
|
||||
x = r.randrange(1, curve.p)
|
||||
y = int2bn(x)
|
||||
lib.bn_inverse(y, int2bn(curve.p))
|
||||
y = bn2int(y)
|
||||
y_ = ecdsa.numbertheory.inverse_mod(x, curve.p)
|
||||
assert y == y_
|
||||
|
||||
|
||||
def test_inverse(curve, r):
|
||||
x = r.randrange(0, 2*curve.p)
|
||||
y = int2bn(x)
|
||||
lib.bn_mult_half(y, int2bn(curve.p))
|
||||
y = bn2int(y)
|
||||
if y > curve.p:
|
||||
y -= curve.p
|
||||
half = ecdsa.numbertheory.inverse_mod(2, curve.p)
|
||||
assert y == (x * half) % curve.p
|
||||
|
||||
|
||||
def test_subtractmod(curve, r):
|
||||
x = r.randrange(0, 2 ** 256)
|
||||
y = r.randrange(0, 2 ** 256)
|
||||
z = int2bn(0)
|
||||
lib.bn_subtractmod(int2bn(x), int2bn(y), z, int2bn(curve.p))
|
||||
z = bn2int(z)
|
||||
z_ = x + 2*curve.p - y
|
||||
assert z == z_
|
||||
|
||||
|
||||
def test_subtract2(r):
|
||||
x = r.randrange(0, 2 ** 256)
|
||||
y = r.randrange(0, 2 ** 256)
|
||||
x, y = max(x, y), min(x, y)
|
||||
z = int2bn(0)
|
||||
lib.bn_subtract(int2bn(x), int2bn(y), z)
|
||||
z = bn2int(z)
|
||||
z_ = x - y
|
||||
assert z == z_
|
||||
|
||||
|
||||
def test_addmod(curve, r):
|
||||
x = r.randrange(0, 2 ** 256)
|
||||
y = r.randrange(0, 2 ** 256)
|
||||
z_ = (x + y) % curve.p
|
||||
z = int2bn(x)
|
||||
lib.bn_addmod(z, int2bn(y), int2bn(curve.p))
|
||||
z = bn2int(z)
|
||||
|
||||
assert z == z_
|
||||
|
||||
|
||||
def test_multiply(curve, r):
|
||||
k = r.randrange(0, 2 * curve.p)
|
||||
x = r.randrange(0, 2 * curve.p)
|
||||
z = (k * x) % curve.p
|
||||
k = int2bn(k)
|
||||
z_ = int2bn(x)
|
||||
p_ = int2bn(curve.p)
|
||||
lib.bn_multiply(k, z_, p_)
|
||||
z_ = bn2int(z_)
|
||||
assert z_ < 2*curve.p
|
||||
if z_ >= curve.p:
|
||||
z_ = z_ - curve.p
|
||||
assert z_ == z
|
||||
|
||||
|
||||
def test_multiply1(curve, r):
|
||||
k = r.randrange(0, 2 * curve.p)
|
||||
x = r.randrange(0, 2 * curve.p)
|
||||
kx = k * x
|
||||
res = int2bn(0, bn_type=(c.c_uint32 * 18))
|
||||
lib.bn_multiply_long(int2bn(k), int2bn(x), res)
|
||||
res = bn2int(res)
|
||||
assert res == kx
|
||||
|
||||
|
||||
def test_multiply2(curve, r):
|
||||
x = int2bn(0)
|
||||
s = r.randrange(0, 2 ** 526)
|
||||
res = int2bn(s, bn_type=(c.c_uint32 * 18))
|
||||
prime = int2bn(curve.p)
|
||||
lib.bn_multiply_reduce(x, res, prime)
|
||||
|
||||
x = bn2int(x)
|
||||
x_ = s % curve.p
|
||||
|
||||
assert x == x_
|
||||
|
||||
|
||||
def test_fast_mod(curve, r):
|
||||
x = r.randrange(0, 128*curve.p)
|
||||
y = int2bn(x)
|
||||
lib.bn_fast_mod(y, int2bn(curve.p))
|
||||
y = bn2int(y)
|
||||
assert y < 2*curve.p
|
||||
if y >= curve.p:
|
||||
y -= curve.p
|
||||
assert x % curve.p == y
|
||||
|
||||
|
||||
def test_mod(curve, r):
|
||||
x = r.randrange(0, 2*curve.p)
|
||||
y = int2bn(x)
|
||||
lib.bn_mod(y, int2bn(curve.p))
|
||||
assert bn2int(y) == x % curve.p
|
||||
|
||||
POINT = BIGNUM * 2
|
||||
to_POINT = lambda p: POINT(int2bn(p.x()), int2bn(p.y()))
|
||||
from_POINT = lambda p: (bn2int(p[0]), bn2int(p[1]))
|
||||
|
||||
JACOBIAN = BIGNUM * 3
|
||||
to_JACOBIAN = lambda jp: JACOBIAN(int2bn(jp[0]), int2bn(jp[1]), int2bn(jp[2]))
|
||||
from_JACOBIAN = lambda p: (bn2int(p[0]), bn2int(p[1]), bn2int(p[2]))
|
||||
|
||||
|
||||
def test_point_multiply(curve, r):
|
||||
p = r.randpoint(curve)
|
||||
k = r.randrange(0, 2 ** 256)
|
||||
kp = k * p
|
||||
res = POINT(int2bn(0), int2bn(0))
|
||||
lib.point_multiply(curve.ptr, int2bn(k), to_POINT(p), res)
|
||||
res = from_POINT(res)
|
||||
assert res == (kp.x(), kp.y())
|
||||
|
||||
|
||||
def test_point_add(curve, r):
|
||||
p1 = r.randpoint(curve)
|
||||
p2 = r.randpoint(curve)
|
||||
#print '-' * 80
|
||||
q = p1 + p2
|
||||
q1 = to_POINT(p1)
|
||||
q2 = to_POINT(p2)
|
||||
lib.point_add(curve.ptr, q1, q2)
|
||||
q_ = from_POINT(q2)
|
||||
assert q_ == (q.x(), q.y())
|
||||
|
||||
|
||||
def test_point_double(curve, r):
|
||||
p = r.randpoint(curve)
|
||||
q = p.double()
|
||||
q_ = to_POINT(p)
|
||||
lib.point_double(curve.ptr, q_)
|
||||
q_ = from_POINT(q_)
|
||||
assert q_ == (q.x(), q.y())
|
||||
|
||||
|
||||
def test_point_to_jacobian(curve, r):
|
||||
p = r.randpoint(curve)
|
||||
jp = JACOBIAN()
|
||||
lib.curve_to_jacobian(to_POINT(p), jp, int2bn(curve.p))
|
||||
jx, jy, jz = from_JACOBIAN(jp)
|
||||
assert jx == (p.x() * jz ** 2) % curve.p
|
||||
assert jy == (p.y() * jz ** 3) % curve.p
|
||||
|
||||
q = POINT()
|
||||
lib.jacobian_to_curve(jp, q, int2bn(curve.p))
|
||||
q = from_POINT(q)
|
||||
assert q == (p.x(), p.y())
|
||||
|
||||
|
||||
def test_cond_negate(curve, r):
|
||||
x = r.randrange(0, curve.p)
|
||||
a = int2bn(x)
|
||||
lib.conditional_negate(0, a, int2bn(curve.p))
|
||||
assert bn2int(a) == x
|
||||
lib.conditional_negate(-1, a, int2bn(curve.p))
|
||||
assert bn2int(a) == curve.p - x
|
||||
|
||||
|
||||
def test_jacobian_add(curve, r):
|
||||
p1 = r.randpoint(curve)
|
||||
p2 = r.randpoint(curve)
|
||||
prime = int2bn(curve.p)
|
||||
q = POINT()
|
||||
jp2 = JACOBIAN()
|
||||
lib.curve_to_jacobian(to_POINT(p2), jp2, prime)
|
||||
lib.point_jacobian_add(to_POINT(p1), jp2, prime)
|
||||
lib.jacobian_to_curve(jp2, q, prime)
|
||||
q = from_POINT(q)
|
||||
p_ = p1 + p2
|
||||
assert (p_.x(), p_.y()) == q
|
||||
|
||||
def test_jacobian_double(curve, r):
|
||||
p = r.randpoint(curve)
|
||||
p2 = p.double()
|
||||
prime = int2bn(curve.p)
|
||||
q = POINT()
|
||||
jp = JACOBIAN()
|
||||
lib.curve_to_jacobian(to_POINT(p), jp, prime)
|
||||
lib.point_jacobian_double(jp, curve.ptr)
|
||||
lib.jacobian_to_curve(jp, q, prime)
|
||||
q = from_POINT(q)
|
||||
assert (p2.x(), p2.y()) == q
|
||||
|
||||
def sigdecode(sig, _):
|
||||
return map(bytes2num, [sig[:32], sig[32:]])
|
||||
|
||||
|
||||
def test_sign(curve, r):
|
||||
priv = r.randbytes(32)
|
||||
digest = r.randbytes(32)
|
||||
sig = r.randbytes(64)
|
||||
|
||||
lib.ecdsa_sign_digest(curve.ptr, priv, digest, sig, c.c_void_p(0))
|
||||
|
||||
exp = bytes2num(priv)
|
||||
sk = ecdsa.SigningKey.from_secret_exponent(exp, curve,
|
||||
hashfunc=hashlib.sha256)
|
||||
vk = sk.get_verifying_key()
|
||||
|
||||
sig_ref = sk.sign_digest_deterministic(digest, hashfunc=hashlib.sha256)
|
||||
assert binascii.hexlify(sig) == binascii.hexlify(sig_ref)
|
||||
|
||||
assert vk.verify_digest(sig, digest, sigdecode)
|
107
tests.c
107
tests.c
@ -37,6 +37,13 @@
|
||||
#include "rand.h"
|
||||
#include "sha2.h"
|
||||
#include "options.h"
|
||||
#include "secp256k1.h"
|
||||
|
||||
#define CURVE (&secp256k1)
|
||||
#define prime256k1 (secp256k1.prime)
|
||||
#define G256k1 (secp256k1.G)
|
||||
#define order256k1 (secp256k1.order)
|
||||
#define secp256k1_cp (secp256k1.cp)
|
||||
|
||||
uint8_t *fromhex(const char *str)
|
||||
{
|
||||
@ -502,7 +509,7 @@ END_TEST
|
||||
|
||||
#define test_deterministic(KEY, MSG, K) do { \
|
||||
sha256_Raw((uint8_t *)MSG, strlen(MSG), buf); \
|
||||
res = generate_k_rfc6979(&k, fromhex(KEY), buf); \
|
||||
res = generate_k_rfc6979(CURVE, &k, fromhex(KEY), buf); \
|
||||
ck_assert_int_eq(res, 0); \
|
||||
bn_write_be(&k, buf); \
|
||||
ck_assert_mem_eq(buf, fromhex(K), 32); \
|
||||
@ -537,13 +544,13 @@ START_TEST(test_sign_speed)
|
||||
|
||||
memcpy(priv_key, fromhex("c55ece858b0ddd5263f96810fe14437cd3b5e1fbd7c6a2ec1e031f05e86d8bd5"), 32);
|
||||
for (i = 0 ; i < 250; i++) {
|
||||
res = ecdsa_sign(priv_key, msg, sizeof(msg), sig, 0);
|
||||
res = ecdsa_sign(CURVE, priv_key, msg, sizeof(msg), sig, 0);
|
||||
ck_assert_int_eq(res, 0);
|
||||
}
|
||||
|
||||
memcpy(priv_key, fromhex("509a0382ff5da48e402967a671bdcde70046d07f0df52cff12e8e3883b426a0a"), 32);
|
||||
for (i = 0 ; i < 250; i++) {
|
||||
res = ecdsa_sign(priv_key, msg, sizeof(msg), sig, 0);
|
||||
res = ecdsa_sign(CURVE, priv_key, msg, sizeof(msg), sig, 0);
|
||||
ck_assert_int_eq(res, 0);
|
||||
}
|
||||
|
||||
@ -568,9 +575,9 @@ START_TEST(test_verify_speed)
|
||||
memcpy(pub_key65, fromhex("044054fd18aeb277aeedea01d3f3986ff4e5be18092a04339dcf4e524e2c0a09746c7083ed2097011b1223a17a644e81f59aa3de22dac119fd980b36a8ff29a244"), 65);
|
||||
|
||||
for (i = 0 ; i < 25; i++) {
|
||||
res = ecdsa_verify(pub_key65, sig, msg, sizeof(msg));
|
||||
res = ecdsa_verify(CURVE, pub_key65, sig, msg, sizeof(msg));
|
||||
ck_assert_int_eq(res, 0);
|
||||
res = ecdsa_verify(pub_key33, sig, msg, sizeof(msg));
|
||||
res = ecdsa_verify(CURVE, pub_key33, sig, msg, sizeof(msg));
|
||||
ck_assert_int_eq(res, 0);
|
||||
}
|
||||
|
||||
@ -579,9 +586,9 @@ START_TEST(test_verify_speed)
|
||||
memcpy(pub_key65, fromhex("04ff45a5561a76be930358457d113f25fac790794ec70317eff3b97d7080d457196235193a15778062ddaa44aef7e6901b781763e52147f2504e268b2d572bf197"), 65);
|
||||
|
||||
for (i = 0 ; i < 25; i++) {
|
||||
res = ecdsa_verify(pub_key65, sig, msg, sizeof(msg));
|
||||
res = ecdsa_verify(CURVE, pub_key65, sig, msg, sizeof(msg));
|
||||
ck_assert_int_eq(res, 0);
|
||||
res = ecdsa_verify(pub_key33, sig, msg, sizeof(msg));
|
||||
res = ecdsa_verify(CURVE, pub_key33, sig, msg, sizeof(msg));
|
||||
ck_assert_int_eq(res, 0);
|
||||
}
|
||||
|
||||
@ -1034,43 +1041,43 @@ START_TEST(test_pubkey_validity)
|
||||
int res;
|
||||
|
||||
memcpy(pub_key, fromhex("0226659c1cf7321c178c07437150639ff0c5b7679c7ea195253ed9abda2e081a37"), 33);
|
||||
res = ecdsa_read_pubkey(pub_key, &pub);
|
||||
res = ecdsa_read_pubkey(CURVE, pub_key, &pub);
|
||||
ck_assert_int_eq(res, 1);
|
||||
|
||||
memcpy(pub_key, fromhex("025b1654a0e78d28810094f6c5a96b8efb8a65668b578f170ac2b1f83bc63ba856"), 33);
|
||||
res = ecdsa_read_pubkey(pub_key, &pub);
|
||||
res = ecdsa_read_pubkey(CURVE, pub_key, &pub);
|
||||
ck_assert_int_eq(res, 1);
|
||||
|
||||
memcpy(pub_key, fromhex("03433f246a12e6486a51ff08802228c61cf895175a9b49ed4766ea9a9294a3c7fe"), 33);
|
||||
res = ecdsa_read_pubkey(pub_key, &pub);
|
||||
res = ecdsa_read_pubkey(CURVE, pub_key, &pub);
|
||||
ck_assert_int_eq(res, 1);
|
||||
|
||||
memcpy(pub_key, fromhex("03aeb03abeee0f0f8b4f7a5d65ce31f9570cef9f72c2dd8a19b4085a30ab033d48"), 33);
|
||||
res = ecdsa_read_pubkey(pub_key, &pub);
|
||||
res = ecdsa_read_pubkey(CURVE, pub_key, &pub);
|
||||
ck_assert_int_eq(res, 1);
|
||||
|
||||
memcpy(pub_key, fromhex("0496e8f2093f018aff6c2e2da5201ee528e2c8accbf9cac51563d33a7bb74a016054201c025e2a5d96b1629b95194e806c63eb96facaedc733b1a4b70ab3b33e3a"), 65);
|
||||
res = ecdsa_read_pubkey(pub_key, &pub);
|
||||
res = ecdsa_read_pubkey(CURVE, pub_key, &pub);
|
||||
ck_assert_int_eq(res, 1);
|
||||
|
||||
memcpy(pub_key, fromhex("0498010f8a687439ff497d3074beb4519754e72c4b6220fb669224749591dde416f3961f8ece18f8689bb32235e436874d2174048b86118a00afbd5a4f33a24f0f"), 65);
|
||||
res = ecdsa_read_pubkey(pub_key, &pub);
|
||||
res = ecdsa_read_pubkey(CURVE, pub_key, &pub);
|
||||
ck_assert_int_eq(res, 1);
|
||||
|
||||
memcpy(pub_key, fromhex("04f80490839af36d13701ec3f9eebdac901b51c362119d74553a3c537faff31b17e2a59ebddbdac9e87b816307a7ed5b826b8f40b92719086238e1bebf19b77a4d"), 65);
|
||||
res = ecdsa_read_pubkey(pub_key, &pub);
|
||||
res = ecdsa_read_pubkey(CURVE, pub_key, &pub);
|
||||
ck_assert_int_eq(res, 1);
|
||||
|
||||
memcpy(pub_key, fromhex("04f80490839af36d13701ec3f9eebdac901b51c362119d74553a3c537faff31b17e2a59ebddbdac9e87b816307a7ed5b826b8f40b92719086238e1bebf00000000"), 65);
|
||||
res = ecdsa_read_pubkey(pub_key, &pub);
|
||||
res = ecdsa_read_pubkey(CURVE, pub_key, &pub);
|
||||
ck_assert_int_eq(res, 0);
|
||||
|
||||
memcpy(pub_key, fromhex("04f80490839af36d13701ec3f9eebdac901b51c362119d74553a3c537faff31b17e2a59ebddbdac9e87b816307a7ed5b8211111111111111111111111111111111"), 65);
|
||||
res = ecdsa_read_pubkey(pub_key, &pub);
|
||||
res = ecdsa_read_pubkey(CURVE, pub_key, &pub);
|
||||
ck_assert_int_eq(res, 0);
|
||||
|
||||
memcpy(pub_key, fromhex("00"), 1);
|
||||
res = ecdsa_read_pubkey(pub_key, &pub);
|
||||
res = ecdsa_read_pubkey(CURVE, pub_key, &pub);
|
||||
ck_assert_int_eq(res, 0);
|
||||
}
|
||||
END_TEST
|
||||
@ -1214,21 +1221,21 @@ START_TEST(test_secp256k1_cp) {
|
||||
bn_normalize(&a);
|
||||
// note that this is not a trivial test. We add 64 curve
|
||||
// points in the table to get that particular curve point.
|
||||
scalar_multiply(&a, &p);
|
||||
scalar_multiply(CURVE, &a, &p);
|
||||
ck_assert_mem_eq(&p, &secp256k1_cp[i][j], sizeof(curve_point));
|
||||
bn_zero(&p.y); // test that point_multiply is not a noop
|
||||
point_multiply(&a, &G256k1, &p);
|
||||
bn_zero(&p.y); // test that point_multiply CURVE, is not a noop
|
||||
point_multiply(CURVE, &a, &G256k1, &p);
|
||||
ck_assert_mem_eq(&p, &secp256k1_cp[i][j], sizeof(curve_point));
|
||||
|
||||
// even/odd has different behaviour;
|
||||
// increment by one and test again
|
||||
p1 = p;
|
||||
point_add(&G256k1, &p1);
|
||||
point_add(CURVE, &G256k1, &p1);
|
||||
bn_addmodi(&a, 1, &order256k1);
|
||||
scalar_multiply(&a, &p);
|
||||
scalar_multiply(CURVE, &a, &p);
|
||||
ck_assert_mem_eq(&p, &p1, sizeof(curve_point));
|
||||
bn_zero(&p.y); // test that point_multiply is not a noop
|
||||
point_multiply(&a, &G256k1, &p);
|
||||
bn_zero(&p.y); // test that point_multiply CURVE, is not a noop
|
||||
point_multiply(CURVE, &a, &G256k1, &p);
|
||||
ck_assert_mem_eq(&p, &p1, sizeof(curve_point));
|
||||
}
|
||||
}
|
||||
@ -1240,43 +1247,43 @@ START_TEST(test_mult_border_cases) {
|
||||
curve_point p;
|
||||
curve_point expected;
|
||||
bn_zero(&a); // a == 0
|
||||
scalar_multiply(&a, &p);
|
||||
scalar_multiply(CURVE, &a, &p);
|
||||
ck_assert(point_is_infinity(&p));
|
||||
point_multiply(&a, &p, &p);
|
||||
point_multiply(CURVE, &a, &p, &p);
|
||||
ck_assert(point_is_infinity(&p));
|
||||
point_multiply(&a, &G256k1, &p);
|
||||
point_multiply(CURVE, &a, &G256k1, &p);
|
||||
ck_assert(point_is_infinity(&p));
|
||||
|
||||
bn_addmodi(&a, 1, &order256k1); // a == 1
|
||||
scalar_multiply(&a, &p);
|
||||
scalar_multiply(CURVE, &a, &p);
|
||||
ck_assert_mem_eq(&p, &G256k1, sizeof(curve_point));
|
||||
point_multiply(&a, &G256k1, &p);
|
||||
point_multiply(CURVE, &a, &G256k1, &p);
|
||||
ck_assert_mem_eq(&p, &G256k1, sizeof(curve_point));
|
||||
|
||||
bn_subtract(&order256k1, &a, &a); // a == -1
|
||||
expected = G256k1;
|
||||
bn_subtract(&prime256k1, &expected.y, &expected.y);
|
||||
scalar_multiply(&a, &p);
|
||||
scalar_multiply(CURVE, &a, &p);
|
||||
ck_assert_mem_eq(&p, &expected, sizeof(curve_point));
|
||||
point_multiply(&a, &G256k1, &p);
|
||||
point_multiply(CURVE, &a, &G256k1, &p);
|
||||
ck_assert_mem_eq(&p, &expected, sizeof(curve_point));
|
||||
|
||||
bn_subtract(&order256k1, &a, &a);
|
||||
bn_addmodi(&a, 1, &order256k1); // a == 2
|
||||
expected = G256k1;
|
||||
point_add(&expected, &expected);
|
||||
scalar_multiply(&a, &p);
|
||||
point_add(CURVE, &expected, &expected);
|
||||
scalar_multiply(CURVE, &a, &p);
|
||||
ck_assert_mem_eq(&p, &expected, sizeof(curve_point));
|
||||
point_multiply(&a, &G256k1, &p);
|
||||
point_multiply(CURVE, &a, &G256k1, &p);
|
||||
ck_assert_mem_eq(&p, &expected, sizeof(curve_point));
|
||||
|
||||
bn_subtract(&order256k1, &a, &a); // a == -2
|
||||
expected = G256k1;
|
||||
point_add(&expected, &expected);
|
||||
point_add(CURVE, &expected, &expected);
|
||||
bn_subtract(&prime256k1, &expected.y, &expected.y);
|
||||
scalar_multiply(&a, &p);
|
||||
scalar_multiply(CURVE, &a, &p);
|
||||
ck_assert_mem_eq(&p, &expected, sizeof(curve_point));
|
||||
point_multiply(&a, &G256k1, &p);
|
||||
point_multiply(CURVE, &a, &G256k1, &p);
|
||||
ck_assert_mem_eq(&p, &expected, sizeof(curve_point));
|
||||
}
|
||||
END_TEST
|
||||
@ -1289,11 +1296,11 @@ START_TEST(test_scalar_mult) {
|
||||
curve_point p1, p2, p3;
|
||||
for (i = 0; i < 1000; i++) {
|
||||
/* test distributivity: (a + b)G = aG + bG */
|
||||
scalar_multiply(&a, &p1);
|
||||
scalar_multiply(&b, &p2);
|
||||
scalar_multiply(CURVE, &a, &p1);
|
||||
scalar_multiply(CURVE, &b, &p2);
|
||||
bn_addmod(&a, &b, &order256k1);
|
||||
scalar_multiply(&a, &p3);
|
||||
point_add(&p1, &p2);
|
||||
scalar_multiply(CURVE, &a, &p3);
|
||||
point_add(CURVE, &p1, &p2);
|
||||
ck_assert_mem_eq(&p2, &p3, sizeof(curve_point));
|
||||
// new "random" numbers
|
||||
a = p3.x;
|
||||
@ -1311,11 +1318,11 @@ START_TEST(test_point_mult) {
|
||||
curve_point p1, p2, p3;
|
||||
for (i = 0; i < 200; i++) {
|
||||
/* test distributivity: (a + b)P = aP + bP */
|
||||
point_multiply(&a, &p, &p1);
|
||||
point_multiply(&b, &p, &p2);
|
||||
point_multiply(CURVE, &a, &p, &p1);
|
||||
point_multiply(CURVE, &b, &p, &p2);
|
||||
bn_addmod(&a, &b, &order256k1);
|
||||
point_multiply(&a, &p, &p3);
|
||||
point_add(&p1, &p2);
|
||||
point_multiply(CURVE, &a, &p, &p3);
|
||||
point_add(CURVE, &p1, &p2);
|
||||
ck_assert_mem_eq(&p2, &p3, sizeof(curve_point));
|
||||
// new "random" numbers and a "random" point
|
||||
a = p1.x;
|
||||
@ -1335,16 +1342,16 @@ START_TEST(test_scalar_point_mult) {
|
||||
/* test commutativity and associativity:
|
||||
* a(bG) = (ab)G = b(aG)
|
||||
*/
|
||||
scalar_multiply(&a, &p1);
|
||||
point_multiply(&b, &p1, &p1);
|
||||
scalar_multiply(CURVE, &a, &p1);
|
||||
point_multiply(CURVE, &b, &p1, &p1);
|
||||
|
||||
scalar_multiply(&b, &p2);
|
||||
point_multiply(&a, &p2, &p2);
|
||||
scalar_multiply(CURVE, &b, &p2);
|
||||
point_multiply(CURVE, &a, &p2, &p2);
|
||||
|
||||
ck_assert_mem_eq(&p1, &p2, sizeof(curve_point));
|
||||
|
||||
bn_multiply(&a, &b, &order256k1);
|
||||
scalar_multiply(&b, &p2);
|
||||
scalar_multiply(CURVE, &b, &p2);
|
||||
|
||||
ck_assert_mem_eq(&p1, &p2, sizeof(curve_point));
|
||||
|
||||
|
2
tools/.gitignore
vendored
2
tools/.gitignore
vendored
@ -1,3 +1,3 @@
|
||||
xpubaddrgen
|
||||
mksecptable
|
||||
mktable
|
||||
bip39bruteforce
|
||||
|
@ -23,9 +23,9 @@ CFLAGS += $(OPTFLAGS) \
|
||||
-Werror \
|
||||
-I..
|
||||
|
||||
all: xpubaddrgen mksecptable bip39bruteforce
|
||||
all: xpubaddrgen mktable bip39bruteforce
|
||||
|
||||
OBJS = ../bip32.o ../bip39.o ../ecdsa.o ../sha2.o ../bignum.o ../base58.o ../secp256k1.o ../ripemd160.o ../hmac.o ../rand.o ../pbkdf2.o
|
||||
OBJS = ../bip32.o ../bip39.o ../ecdsa.o ../sha2.o ../bignum.o ../base58.o ../secp256k1.o ../nist256p1.o ../ripemd160.o ../hmac.o ../rand.o ../pbkdf2.o
|
||||
|
||||
%.o: %.c %.h options.h
|
||||
$(CC) $(CFLAGS) -o $@ -c $<
|
||||
@ -33,11 +33,11 @@ OBJS = ../bip32.o ../bip39.o ../ecdsa.o ../sha2.o ../bignum.o ../base58.o ../sec
|
||||
xpubaddrgen: xpubaddrgen.o $(OBJS)
|
||||
$(CC) xpubaddrgen.o $(OBJS) -o xpubaddrgen
|
||||
|
||||
mksecptable: mksecptable.o $(OBJS)
|
||||
$(CC) mksecptable.o $(OBJS) -o mksecptable
|
||||
mktable: mktable.o $(OBJS)
|
||||
$(CC) mktable.o $(OBJS) -o mktable
|
||||
|
||||
bip39bruteforce: bip39bruteforce.o $(OBJS)
|
||||
$(CC) bip39bruteforce.o $(OBJS) -o bip39bruteforce
|
||||
|
||||
clean:
|
||||
rm -f *.o xpubaddrgen mksecptable bip39bruteforce
|
||||
rm -f *.o xpubaddrgen mktable bip39bruteforce
|
||||
|
@ -45,9 +45,10 @@ It will print ```<jobid> error``` when there was an error processing job jobid.
|
||||
It will print ```error``` when it encountered a malformed line.
|
||||
|
||||
|
||||
mksecptable
|
||||
mktable
|
||||
-----------
|
||||
|
||||
mksecptable computes the points of the form `(2*j+1)*16^i*G` and prints them in the format to be included in `secp256k1.c`. These points are used by the fast ECC multiplication.
|
||||
mktable computes the points of the form `(2*j+1)*16^i*G` and prints them in the format to be included in `secp256k1.c` and `nist256p1.c`.
|
||||
These points are used by the fast ECC multiplication.
|
||||
|
||||
It is only meant to be run if the `scalar_mult` algorithm changes.
|
||||
|
@ -10,10 +10,21 @@
|
||||
* The entry secp256k1_cp[i][j] contains the number (2*j+1)*16^i*G,
|
||||
* where G is the generator of secp256k1.
|
||||
*/
|
||||
int main(int __attribute__((unused)) argc, char __attribute__((unused)) **argv) {
|
||||
int main(int argc, char **argv) {
|
||||
int i,j,k;
|
||||
curve_point ng = G256k1;
|
||||
curve_point pow2ig = G256k1;
|
||||
if (argc != 2) {
|
||||
printf("Usage: %s CURVE_NAME\n", argv[0]);
|
||||
return 1;
|
||||
}
|
||||
const char *name = argv[1];
|
||||
const ecdsa_curve *curve = get_curve_by_name(name);
|
||||
if (curve == 0) {
|
||||
printf("Unknown curve '%s'\n", name);
|
||||
return 1;
|
||||
}
|
||||
|
||||
curve_point ng = curve->G;
|
||||
curve_point pow2ig = curve->G;
|
||||
for (i = 0; i < 64; i++) {
|
||||
// invariants:
|
||||
// pow2ig = 16^i * G
|
||||
@ -29,7 +40,7 @@ int main(int __attribute__((unused)) argc, char __attribute__((unused)) **argv)
|
||||
bn_zero(&a);
|
||||
a.val[(4*i) / 30] = ((uint32_t) 2*j+1) << ((4*i) % 30);
|
||||
bn_normalize(&a);
|
||||
point_multiply(&a, &G256k1, &checkresult);
|
||||
point_multiply(curve, &a, &curve->G, &checkresult);
|
||||
assert(point_is_equal(&checkresult, &ng));
|
||||
#endif
|
||||
printf("\t\t/* %2d*16^%d*G: */\n\t\t{{{", 2*j + 1, i);
|
||||
@ -46,9 +57,9 @@ int main(int __attribute__((unused)) argc, char __attribute__((unused)) **argv)
|
||||
printf("}}}\n\t},\n");
|
||||
} else {
|
||||
printf("}}},\n");
|
||||
point_add(&pow2ig, &ng);
|
||||
point_add(curve, &pow2ig, &ng);
|
||||
}
|
||||
point_add(&pow2ig, &ng);
|
||||
point_add(curve, &pow2ig, &ng);
|
||||
}
|
||||
pow2ig = ng;
|
||||
}
|
Loading…
Reference in New Issue
Block a user