1
0
mirror of https://github.com/trezor/trezor-firmware.git synced 2024-12-31 18:40:56 +00:00

chore(crypto): Improve comments and error handling in ecdsa_verify_digest().

This commit is contained in:
Andrew Kozlik 2020-10-21 15:51:12 +02:00 committed by Andrew Kozlik
parent f47b8bdbc8
commit 7ae338bd87

View File

@ -917,7 +917,8 @@ int ecdsa_read_pubkey(const ecdsa_curve *curve, const uint8_t *pub_key,
// - pub is not the point at infinity.
// - pub->x and pub->y are in range [0,p-1].
// - pub is on the curve.
// We assume that all curves using this code have cofactor 1, so there is no
// need to verify that pub is a scalar multiple of G.
int ecdsa_validate_pubkey(const ecdsa_curve *curve, const curve_point *pub) {
bignum256 y_2 = {0}, x3_ax_b = {0};
@ -1026,43 +1027,53 @@ int ecdsa_verify_digest(const ecdsa_curve *curve, const uint8_t *pub_key,
const uint8_t *sig, const uint8_t *digest) {
curve_point pub = {0}, res = {0};
bignum256 r = {0}, s = {0}, z = {0};
int result = 0;
if (!ecdsa_read_pubkey(curve, pub_key, &pub)) {
return 1;
}
bn_read_be(sig, &r);
bn_read_be(sig + 32, &s);
bn_read_be(digest, &z);
if (bn_is_zero(&r) || bn_is_zero(&s) || (!bn_is_less(&r, &curve->order)) ||
(!bn_is_less(&s, &curve->order)))
return 2;
bn_inverse(&s, &curve->order); // s^-1
bn_multiply(&s, &z, &curve->order); // z*s^-1
bn_mod(&z, &curve->order);
bn_multiply(&r, &s, &curve->order); // r*s^-1
bn_mod(&s, &curve->order);
int result = 0;
if (bn_is_zero(&z)) {
// our message hashes to zero
// I don't expect this to happen any time soon
result = 3;
} else {
scalar_multiply(curve, &z, &res);
result = 1;
}
if (result == 0) {
bn_read_be(sig, &r);
bn_read_be(sig + 32, &s);
if (bn_is_zero(&r) || bn_is_zero(&s) || (!bn_is_less(&r, &curve->order)) ||
(!bn_is_less(&s, &curve->order))) {
result = 2;
}
}
if (result == 0) {
bn_read_be(digest, &z);
bn_inverse(&s, &curve->order); // s = s^-1
bn_multiply(&s, &z, &curve->order); // z = z * s [u1 = z * s^-1 mod n]
bn_mod(&z, &curve->order);
if (bn_is_zero(&z)) {
// The digest was all-zero. The probability of this happening by chance is
// infinitesimal. In this case the signature (r,s) can be forged by taking
// r := (t * Q).x mod n and s := r * t^-1 mod n for any t in [1, n-1]. We
// fail verification, because there is no guarantee that the signature was
// created by the owner of the private key.
result = 3;
}
}
if (result == 0) {
bn_multiply(&r, &s, &curve->order); // s = r * s [u2 = r * s^-1 mod n]
bn_mod(&s, &curve->order);
scalar_multiply(curve, &z, &res); // res = z * G [= u1 * G]
point_multiply(curve, &s, &pub, &pub); // pub = s * pub [= u2 * Q]
point_add(curve, &pub, &res); // res = pub + res [R = u1 * G + u2 * Q]
if (point_is_infinity(&res)) {
// R == Infinity
result = 4;
}
}
if (result == 0) {
// both pub and res can be infinity, can have y = 0 OR can be equal -> false
// negative
point_multiply(curve, &s, &pub, &pub);
point_add(curve, &pub, &res);
bn_mod(&(res.x), &curve->order);
// signature does not match
if (!bn_is_equal(&res.x, &r)) {
// R.x != r
// signature does not match
result = 5;
}
}