1
0
mirror of https://github.com/trezor/trezor-firmware.git synced 2024-12-22 14:28:07 +00:00

feat(core): Integrate OPTIGA Trust M

[no changelog]
This commit is contained in:
Andrew Kozlik 2023-07-24 23:26:07 +02:00 committed by Andrew Kozlik
parent a4034097d6
commit 74759310bb
11 changed files with 1535 additions and 1 deletions

View File

@ -18,7 +18,7 @@ FEATURE_FLAGS = {
"SYSTEM_VIEW": False,
}
FEATURES_WANTED = ["input", "sbu", "sd_card", "rgb_led", "dma2d", "consumption_mask", "usb"]
FEATURES_WANTED = ["input", "sbu", "sd_card", "rgb_led", "dma2d", "consumption_mask", "usb" ,"optiga"]
CCFLAGS_MOD = ''
CPPPATH_MOD = []

View File

@ -47,6 +47,8 @@
#include "mpu.h"
#include "random_delays.h"
#include TREZOR_BOARD
#ifdef USE_RGB_LED
#include "rgb_led.h"
#endif
@ -68,6 +70,9 @@
#ifdef USE_SD_CARD
#include "sdcard.h"
#endif
#ifdef USE_OPTIGA
#include "optiga_transport.h"
#endif
#include "unit_variant.h"
#ifdef SYSTEM_VIEW
@ -155,6 +160,10 @@ int main(void) {
sdcard_init();
#endif
#ifdef USE_OPTIGA
optiga_init();
#endif
#if !defined TREZOR_MODEL_1
// jump to unprivileged mode
// http://infocenter.arm.com/help/topic/com.arm.doc.dui0552a/CHDBIBGJ.html

View File

@ -5,6 +5,7 @@
#define USE_SBU 1
#define USE_I2C 1
#define USE_CONSUMPTION_MASK 1
#define USE_OPTIGA 1
#include "displays/vg-2864ksweg01.h"
@ -48,4 +49,6 @@
#define I2C_INSTANCE_1_SCL_CLK_EN __HAL_RCC_GPIOB_CLK_ENABLE
#define I2C_INSTANCE_1_RESET_FLG RCC_APB1RSTR_I2C2RST
#define OPTIGA_I2C_INSTANCE 0
#endif //_TREZOR_R_V10_H

View File

@ -0,0 +1,750 @@
/*
* This file is part of the Trezor project, https://trezor.io/
*
* Copyright (c) SatoshiLabs
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/*
* Reference manuals:
* https://github.com/Infineon/optiga-trust-m/blob/develop/documents/OPTIGA%E2%84%A2%20Trust%20M%20Solution%20Reference%20Manual.md
* https://github.com/Infineon/optiga-trust-m/blob/develop/documents/Infineon_I2C_Protocol_v2.03.pdf
*/
#include "optiga_commands.h"
#include <string.h>
#include "ecdsa.h"
#include "hmac.h"
#include "memzero.h"
#include "nist256p1.h"
#include "optiga_transport.h"
#include "sha2.h"
// Static buffer for commands and responses.
static uint8_t tx_buffer[1750] = {0};
static size_t tx_size = 0;
static optiga_result process_output_fixedlen(uint8_t *data, size_t data_size) {
// Expecting data_size bytes of output data in the response.
if (tx_size != 4 + data_size ||
(tx_buffer[2] << 8) + tx_buffer[3] != tx_size - 4) {
return OPTIGA_ERR_UNEXPECTED;
}
if (tx_buffer[0] != 0) {
return OPTIGA_ERR_CMD;
}
if (data_size != 0) {
memcpy(data, tx_buffer + 4, data_size);
memzero(tx_buffer, tx_size);
}
return OPTIGA_SUCCESS;
}
static optiga_result process_output_varlen(uint8_t *data, size_t max_data_size,
size_t *data_size) {
// Check that there is no trailing output data in the response.
if (tx_size < 4 || (tx_buffer[2] << 8) + tx_buffer[3] != tx_size - 4) {
return OPTIGA_ERR_UNEXPECTED;
}
// Check response status code.
if (tx_buffer[0] != 0) {
return OPTIGA_ERR_CMD;
}
// Return result.
if (tx_size - 4 > max_data_size) {
return OPTIGA_ERR_SIZE;
}
*data_size = tx_size - 4;
memcpy(data, tx_buffer + 4, tx_size - 4);
memzero(tx_buffer, tx_size);
return OPTIGA_SUCCESS;
}
/*
* For metadata description see:
* https://github.com/Infineon/optiga-trust-m/blob/develop/documents/OPTIGA%E2%84%A2%20Trust%20M%20Solution%20Reference%20Manual.md#metadata-expression
*/
static const struct {
size_t offset;
uint8_t tag;
} METADATA_OFFSET_TAG_MAP[] = {
{offsetof(optiga_metadata, lcso), 0xC0},
{offsetof(optiga_metadata, version), 0xC1},
{offsetof(optiga_metadata, max_size), 0xC4},
{offsetof(optiga_metadata, used_size), 0xC5},
{offsetof(optiga_metadata, change), 0xD0},
{offsetof(optiga_metadata, read), 0xD1},
{offsetof(optiga_metadata, execute), 0xD3},
{offsetof(optiga_metadata, meta_update), 0xD8},
{offsetof(optiga_metadata, algorithm), 0xE0},
{offsetof(optiga_metadata, key_usage), 0xE1},
{offsetof(optiga_metadata, data_type), 0xE8},
{offsetof(optiga_metadata, reset_type), 0xF0},
};
static const size_t METADATA_TAG_COUNT =
sizeof(METADATA_OFFSET_TAG_MAP) / sizeof(METADATA_OFFSET_TAG_MAP[0]);
optiga_result optiga_parse_metadata(const uint8_t *serialized,
size_t serialized_size,
optiga_metadata *metadata) {
memzero(metadata, sizeof(*metadata));
if (serialized_size < 2 || serialized[0] != 0x20 ||
serialized[1] + 2 != serialized_size) {
return OPTIGA_ERR_PARAM;
}
size_t pos = 2;
while (pos < serialized_size) {
if (pos + 2 >= serialized_size) {
return OPTIGA_ERR_PARAM;
}
// Determine metadata type from tag.
optiga_metadata_item *item = NULL;
for (int i = 0; i < METADATA_TAG_COUNT; ++i) {
if (METADATA_OFFSET_TAG_MAP[i].tag == serialized[pos]) {
item = (void *)((char *)metadata + METADATA_OFFSET_TAG_MAP[i].offset);
break;
}
}
if (item == NULL || item->ptr != NULL) {
// Invalid tag or multiply defined tag.
return OPTIGA_ERR_PARAM;
}
item->ptr = &serialized[pos + 2];
item->len = serialized[pos + 1];
pos += 2 + serialized[pos + 1];
}
if (pos != serialized_size) {
return OPTIGA_ERR_PARAM;
}
return OPTIGA_SUCCESS;
}
optiga_result optiga_serialize_metadata(const optiga_metadata *metadata,
uint8_t *serialized,
size_t max_serialized,
size_t *serialized_size) {
*serialized_size = 0;
if (max_serialized < 2) {
return OPTIGA_ERR_SIZE;
}
serialized[0] = 0x20; // Metadata constructed TLV-Object tag.
size_t pos = 2; // Leave room for length byte.
for (int i = 0; i < METADATA_TAG_COUNT; ++i) {
optiga_metadata_item *item =
(void *)((char *)metadata + METADATA_OFFSET_TAG_MAP[i].offset);
if (item->ptr == NULL) {
continue;
}
if (max_serialized < pos + 2 + item->len) {
return OPTIGA_ERR_SIZE;
}
serialized[pos++] = METADATA_OFFSET_TAG_MAP[i].tag;
serialized[pos++] = item->len;
memcpy(&serialized[pos], item->ptr, item->len);
pos += item->len;
}
// Set length byte.
if (pos - 2 > 256) {
return OPTIGA_ERR_SIZE;
}
serialized[1] = pos - 2;
*serialized_size = pos;
return OPTIGA_SUCCESS;
}
/*
* https://github.com/Infineon/optiga-trust-m/blob/develop/documents/OPTIGA%E2%84%A2%20Trust%20M%20Solution%20Reference%20Manual.md#openapplication
*/
optiga_result optiga_open_application(void) {
static const uint8_t OPEN_APP[] = {
0x70, 0x00, 0x00, 0x10, 0xD2, 0x76, 0x00, 0x00, 0x04, 0x47,
0x65, 0x6E, 0x41, 0x75, 0x74, 0x68, 0x41, 0x70, 0x70, 0x6C,
};
optiga_result ret =
optiga_execute_command(false, OPEN_APP, sizeof(OPEN_APP), tx_buffer,
sizeof(tx_buffer), &tx_size);
if (ret != OPTIGA_SUCCESS) {
return ret;
}
return process_output_fixedlen(NULL, 0);
}
optiga_result optiga_get_error_code(uint8_t *error_code) {
size_t data_size = 0;
optiga_result ret =
optiga_get_data_object(0xf1c2, false, error_code, 1, &data_size);
if (ret != OPTIGA_SUCCESS) {
return ret;
}
if (data_size != 1) {
return OPTIGA_ERR_SIZE;
}
return OPTIGA_SUCCESS;
}
/*
* https://github.com/Infineon/optiga-trust-m/blob/develop/documents/OPTIGA%E2%84%A2%20Trust%20M%20Solution%20Reference%20Manual.md#getdataobject
*/
optiga_result optiga_get_data_object(uint16_t oid, bool get_metadata,
uint8_t *data, size_t max_data_size,
size_t *data_size) {
uint8_t get_data[6] = {0x01, 0x00, 0x00, 0x02};
if (get_metadata) {
get_data[1] = 0x01;
}
get_data[4] = oid >> 8;
get_data[5] = oid & 0xff;
optiga_result ret =
optiga_execute_command(false, get_data, sizeof(get_data), tx_buffer,
sizeof(tx_buffer), &tx_size);
if (ret != OPTIGA_SUCCESS) {
return ret;
}
return process_output_varlen(data, max_data_size, data_size);
}
/*
* https://github.com/Infineon/optiga-trust-m/blob/develop/documents/OPTIGA%E2%84%A2%20Trust%20M%20Solution%20Reference%20Manual.md#setdataobject
*/
optiga_result optiga_set_data_object(uint16_t oid, bool set_metadata,
const uint8_t *data, size_t data_size) {
if (data_size + 8 > sizeof(tx_buffer)) {
return OPTIGA_ERR_PARAM;
}
tx_size = data_size + 8;
tx_buffer[0] = 0x02;
tx_buffer[1] = set_metadata ? 0x01 : 0x40;
tx_buffer[2] = (tx_size - 4) >> 8;
tx_buffer[3] = (tx_size - 4) & 0xff;
tx_buffer[4] = oid >> 8;
tx_buffer[5] = oid & 0xff;
tx_buffer[6] = 0;
tx_buffer[7] = 0;
if (data_size != 0) {
memcpy(tx_buffer + 8, data, data_size);
}
optiga_result ret = optiga_execute_command(
false, tx_buffer, data_size + 8, tx_buffer, sizeof(tx_buffer), &tx_size);
if (ret != OPTIGA_SUCCESS) {
memzero(tx_buffer + 8, data_size);
return ret;
}
ret = process_output_fixedlen(NULL, 0);
memzero(tx_buffer + 8, data_size);
return ret;
}
/*
* https://github.com/Infineon/optiga-trust-m/blob/develop/documents/OPTIGA%E2%84%A2%20Trust%20M%20Solution%20Reference%20Manual.md#getrandom
*/
optiga_result optiga_get_random(uint8_t *random, size_t random_size) {
if (random_size < 8 || random_size > 256) {
return OPTIGA_ERR_SIZE;
}
uint8_t get_random[6] = {0x0C, 0x00, 0x00, 0x02};
get_random[4] = random_size >> 8;
get_random[5] = random_size & 0xff;
optiga_result ret =
optiga_execute_command(false, get_random, sizeof(get_random), tx_buffer,
sizeof(tx_buffer), &tx_size);
if (ret != OPTIGA_SUCCESS) {
return ret;
}
return process_output_fixedlen(random, random_size);
}
/*
* https://github.com/Infineon/optiga-trust-m/blob/develop/documents/OPTIGA%E2%84%A2%20Trust%20M%20Solution%20Reference%20Manual.md#encryptsym
*/
optiga_result optiga_encrypt_sym(optiga_sym_mode mode, uint16_t oid,
const uint8_t *input, size_t input_size,
uint8_t *output, size_t max_output_size,
size_t *output_size) {
if (input_size < 1 || input_size > 640) {
return OPTIGA_ERR_PARAM;
}
tx_size = 9 + input_size;
tx_buffer[0] = 0x14;
tx_buffer[1] = mode;
tx_buffer[2] = (tx_size - 4) >> 8;
tx_buffer[3] = (tx_size - 4) & 0xff;
tx_buffer[4] = oid >> 8;
tx_buffer[5] = oid & 0xff;
tx_buffer[6] = 0x01;
tx_buffer[7] = input_size >> 8;
tx_buffer[8] = input_size & 0xff;
memcpy(tx_buffer + 9, input, input_size);
optiga_result ret = optiga_execute_command(
false, tx_buffer, tx_size, tx_buffer, sizeof(tx_buffer), &tx_size);
if (ret == OPTIGA_SUCCESS) {
ret = process_output_varlen(output, max_output_size, output_size);
}
memzero(tx_buffer + 7, input_size);
return ret;
}
/*
* https://github.com/Infineon/optiga-trust-m/blob/develop/documents/OPTIGA%E2%84%A2%20Trust%20M%20Solution%20Reference%20Manual.md#decryptsym
*/
optiga_result optiga_set_auto_state(uint16_t nonce_oid, uint16_t key_oid,
const uint8_t key[32]) {
uint8_t nonce[16] = {0};
uint8_t get_random[] = {
0x0C, 0x00, 0x00, 0x07, 0x00, sizeof(nonce), 0x00, 0x00, 0x41, 0x00, 0x00,
};
get_random[6] = nonce_oid >> 8;
get_random[7] = nonce_oid & 0xff;
optiga_result ret =
optiga_execute_command(false, get_random, sizeof(get_random), tx_buffer,
sizeof(tx_buffer), &tx_size);
ret = process_output_fixedlen(nonce, sizeof(nonce));
if (ret != OPTIGA_SUCCESS) {
return ret;
}
tx_size = 11 + sizeof(nonce) + 3 + 32;
tx_buffer[0] = 0x15;
tx_buffer[1] = 0x20;
tx_buffer[2] = 0x00;
tx_buffer[3] = tx_size - 4;
tx_buffer[4] = key_oid >> 8;
tx_buffer[5] = key_oid & 0xff;
tx_buffer[6] = 0x01;
tx_buffer[7] = 0x00;
tx_buffer[8] = 2 + sizeof(nonce);
tx_buffer[9] = nonce_oid >> 8;
tx_buffer[10] = nonce_oid & 0xff;
memcpy(&tx_buffer[11], nonce, sizeof(nonce));
tx_buffer[11 + sizeof(nonce)] = 0x43;
tx_buffer[12 + sizeof(nonce)] = 0x00;
tx_buffer[13 + sizeof(nonce)] = 0x20;
hmac_sha256(key, 32, nonce, sizeof(nonce), &tx_buffer[14 + sizeof(nonce)]);
ret = optiga_execute_command(false, tx_buffer, tx_size, tx_buffer,
sizeof(tx_buffer), &tx_size);
if (ret != OPTIGA_SUCCESS) {
return ret;
}
return process_output_fixedlen(NULL, 0);
}
optiga_result optiga_clear_auto_state(uint16_t key_oid) {
uint8_t decrypt_sym[] = {
0x15, 0x20, 0x00, 0x08, 0x00, 0x00, 0x01, 0x00, 0x00, 0x43, 0x00, 0x00,
};
decrypt_sym[4] = key_oid >> 8;
decrypt_sym[5] = key_oid & 0xff;
optiga_result ret =
optiga_execute_command(false, decrypt_sym, sizeof(decrypt_sym), tx_buffer,
sizeof(tx_buffer), &tx_size);
if (ret != OPTIGA_SUCCESS) {
return ret;
}
// Expecting no output data. Response status code should indicate failure.
if (tx_size != 4 || tx_buffer[0] != 0xff || tx_buffer[2] != 0 ||
tx_buffer[3] != 0) {
return OPTIGA_ERR_UNEXPECTED;
}
return OPTIGA_SUCCESS;
}
/*
* https://github.com/Infineon/optiga-trust-m/blob/develop/documents/OPTIGA%E2%84%A2%20Trust%20M%20Solution%20Reference%20Manual.md#calcsign
*/
optiga_result optiga_calc_sign(uint16_t oid, const uint8_t *digest,
size_t digest_size, uint8_t *signature,
size_t max_sig_size, size_t *sig_size) {
if (digest_size + 12 > sizeof(tx_buffer)) {
return OPTIGA_ERR_PARAM;
}
tx_size = digest_size + 12;
tx_buffer[0] = 0x31;
tx_buffer[1] = 0x11;
tx_buffer[2] = (tx_size - 4) >> 8;
tx_buffer[3] = (tx_size - 4) & 0xff;
tx_buffer[4] = 0x01;
tx_buffer[5] = digest_size >> 8;
tx_buffer[6] = digest_size & 0xff;
memcpy(tx_buffer + 7, digest, digest_size);
tx_buffer[7 + digest_size] = 0x03;
tx_buffer[8 + digest_size] = 0x00;
tx_buffer[9 + digest_size] = 0x02;
tx_buffer[10 + digest_size] = oid >> 8;
tx_buffer[11 + digest_size] = oid & 0xff;
optiga_result ret = optiga_execute_command(
false, tx_buffer, tx_size, tx_buffer, sizeof(tx_buffer), &tx_size);
if (ret != OPTIGA_SUCCESS) {
return ret;
}
return process_output_varlen(signature, max_sig_size, sig_size);
}
/*
* https://github.com/Infineon/optiga-trust-m/blob/develop/documents/OPTIGA%E2%84%A2%20Trust%20M%20Solution%20Reference%20Manual.md#genkeypair
*/
optiga_result optiga_gen_key_pair(optiga_curve curve, optiga_key_usage usage,
uint16_t oid, uint8_t *public_key,
size_t max_public_key_size,
size_t *public_key_size) {
tx_size = 13;
tx_buffer[0] = 0x38;
tx_buffer[1] = curve;
tx_buffer[2] = 0x00;
tx_buffer[3] = 0x09;
tx_buffer[4] = 0x01;
tx_buffer[5] = 0x00;
tx_buffer[6] = 0x02;
tx_buffer[7] = oid >> 8;
tx_buffer[8] = oid & 0xff;
tx_buffer[9] = 0x02;
tx_buffer[10] = 0x00;
tx_buffer[11] = 0x01;
tx_buffer[12] = usage;
optiga_result ret = optiga_execute_command(
false, tx_buffer, tx_size, tx_buffer, sizeof(tx_buffer), &tx_size);
if (ret != OPTIGA_SUCCESS) {
return ret;
}
return process_output_varlen(public_key, max_public_key_size,
public_key_size);
}
/*
* https://github.com/Infineon/optiga-trust-m/blob/develop/documents/OPTIGA%E2%84%A2%20Trust%20M%20Solution%20Reference%20Manual.md#gensymkey
*/
optiga_result optiga_gen_sym_key(optiga_aes algorithm, optiga_key_usage usage,
uint16_t oid) {
tx_size = 13;
tx_buffer[0] = 0x39;
tx_buffer[1] = algorithm;
tx_buffer[2] = 0x00;
tx_buffer[3] = 0x09;
tx_buffer[4] = 0x01;
tx_buffer[5] = 0x00;
tx_buffer[6] = 0x02;
tx_buffer[7] = oid >> 8;
tx_buffer[8] = oid & 0xff;
tx_buffer[9] = 0x02;
tx_buffer[10] = 0x00;
tx_buffer[11] = 0x01;
tx_buffer[12] = usage;
optiga_result ret = optiga_execute_command(
false, tx_buffer, tx_size, tx_buffer, sizeof(tx_buffer), &tx_size);
if (ret != OPTIGA_SUCCESS) {
return ret;
}
return process_output_fixedlen(NULL, 0);
}
/*
* https://github.com/Infineon/optiga-trust-m/blob/develop/documents/OPTIGA%E2%84%A2%20Trust%20M%20Solution%20Reference%20Manual.md#calcssec
*/
optiga_result optiga_calc_ssec(optiga_curve curve, uint16_t oid,
const uint8_t *public_key,
size_t public_key_size, uint8_t *secret,
size_t max_secret_size, size_t *secret_size) {
// Size of a P521 public key encode as a DER BIT STRING.
static const size_t MAX_PUBKEY_SIZE = 5 + 2 * 66;
if (public_key_size > MAX_PUBKEY_SIZE) {
return OPTIGA_ERR_PARAM;
}
tx_size = 16 + public_key_size + 3;
tx_buffer[0] = 0x33;
tx_buffer[1] = 0x01;
tx_buffer[2] = 0x00;
tx_buffer[3] = tx_size - 4;
tx_buffer[4] = 0x01;
tx_buffer[5] = 0x00;
tx_buffer[6] = 0x02;
tx_buffer[7] = oid >> 8;
tx_buffer[8] = oid & 0xff;
tx_buffer[9] = 0x05;
tx_buffer[10] = 0x00;
tx_buffer[11] = 0x01;
tx_buffer[12] = curve;
tx_buffer[13] = 0x06;
tx_buffer[14] = 0x00;
tx_buffer[15] = public_key_size;
memcpy(&tx_buffer[16], public_key, public_key_size);
tx_buffer[16 + public_key_size] = 0x07;
tx_buffer[17 + public_key_size] = 0x00;
tx_buffer[18 + public_key_size] = 0x00;
optiga_result ret = optiga_execute_command(
false, tx_buffer, tx_size, tx_buffer, sizeof(tx_buffer), &tx_size);
if (ret != OPTIGA_SUCCESS) {
return ret;
}
return process_output_varlen(secret, max_secret_size, secret_size);
}
/*
* https://github.com/Infineon/optiga-trust-m/blob/develop/documents/OPTIGA%E2%84%A2%20Trust%20M%20Solution%20Reference%20Manual.md#derivekey
*/
optiga_result optiga_derive_key(optiga_key_derivation deriv, uint16_t oid,
const uint8_t *salt, size_t salt_size,
uint8_t *info, size_t info_size, uint8_t *key,
size_t key_size) {
const bool is_hkdf =
(deriv == OPTIGA_DERIV_HKDF_SHA256 || deriv == OPTIGA_DERIV_HKDF_SHA384 ||
deriv == OPTIGA_DERIV_HKDF_SHA512);
if (salt_size > 1024 || (!is_hkdf && salt_size < 8)) {
return OPTIGA_ERR_PARAM;
}
if (info_size > 256 || (!is_hkdf && info_size != 0)) {
return OPTIGA_ERR_PARAM;
}
tx_size = is_hkdf ? 23 + salt_size + info_size : 20 + salt_size;
tx_buffer[0] = 0x34;
tx_buffer[1] = deriv;
tx_buffer[2] = (tx_size - 4) >> 8;
tx_buffer[3] = (tx_size - 4) & 0xff;
tx_buffer[4] = 0x01;
tx_buffer[5] = 0x00;
tx_buffer[6] = 0x02;
tx_buffer[7] = oid >> 8;
tx_buffer[8] = oid & 0xff;
tx_buffer[9] = 0x02;
tx_buffer[10] = salt_size >> 8;
tx_buffer[11] = salt_size & 0xff;
if (salt_size != 0) {
memcpy(&tx_buffer[12], salt, salt_size);
}
tx_buffer[12 + salt_size] = 0x03;
tx_buffer[13 + salt_size] = 0x00;
tx_buffer[14 + salt_size] = 0x02;
tx_buffer[15 + salt_size] = key_size >> 8;
tx_buffer[16 + salt_size] = key_size & 0xff;
if (is_hkdf) {
tx_buffer[17 + salt_size] = 0x04;
tx_buffer[18 + salt_size] = info_size >> 8;
tx_buffer[19 + salt_size] = info_size & 0xff;
if (info_size != 0) {
memcpy(&tx_buffer[20 + salt_size], info, info_size);
}
tx_buffer[20 + salt_size + info_size] = 0x07;
tx_buffer[21 + salt_size + info_size] = 0x00;
tx_buffer[22 + salt_size + info_size] = 0x00;
} else {
tx_buffer[17 + salt_size] = 0x07;
tx_buffer[18 + salt_size] = 0x00;
tx_buffer[19 + salt_size] = 0x00;
}
optiga_result ret = optiga_execute_command(
false, tx_buffer, tx_size, tx_buffer, sizeof(tx_buffer), &tx_size);
if (ret == OPTIGA_SUCCESS) {
ret = process_output_fixedlen(key, key_size);
}
memzero(&tx_buffer[12], salt_size);
memzero(&tx_buffer[20 + salt_size], info_size);
return ret;
}
optiga_result optiga_set_trust_anchor(void) {
// Trust anchor certificate.
const uint8_t TA_CERT[] = {
0x30, 0x82, 0x01, 0x49, 0x30, 0x81, 0xf0, 0xa0, 0x03, 0x02, 0x01, 0x02,
0x02, 0x01, 0x01, 0x30, 0x0a, 0x06, 0x08, 0x2a, 0x86, 0x48, 0xce, 0x3d,
0x04, 0x03, 0x02, 0x30, 0x0d, 0x31, 0x0b, 0x30, 0x09, 0x06, 0x03, 0x55,
0x04, 0x03, 0x0c, 0x02, 0x54, 0x41, 0x30, 0x20, 0x17, 0x0d, 0x32, 0x33,
0x30, 0x37, 0x32, 0x34, 0x31, 0x35, 0x31, 0x31, 0x34, 0x37, 0x5a, 0x18,
0x0f, 0x32, 0x30, 0x35, 0x33, 0x30, 0x37, 0x32, 0x33, 0x31, 0x35, 0x31,
0x31, 0x34, 0x37, 0x5a, 0x30, 0x0d, 0x31, 0x0b, 0x30, 0x09, 0x06, 0x03,
0x55, 0x04, 0x03, 0x0c, 0x02, 0x54, 0x41, 0x30, 0x59, 0x30, 0x13, 0x06,
0x07, 0x2a, 0x86, 0x48, 0xce, 0x3d, 0x02, 0x01, 0x06, 0x08, 0x2a, 0x86,
0x48, 0xce, 0x3d, 0x03, 0x01, 0x07, 0x03, 0x42, 0x00, 0x04, 0x9b, 0xbf,
0x06, 0xda, 0xd9, 0xab, 0x59, 0x05, 0xe0, 0x54, 0x71, 0xce, 0x16, 0xd5,
0x22, 0x2c, 0x89, 0xc2, 0xca, 0xa3, 0x9f, 0x26, 0x26, 0x7a, 0xc0, 0x74,
0x71, 0x29, 0x88, 0x5f, 0xbd, 0x44, 0x1b, 0xcc, 0x7f, 0xa8, 0x4d, 0xe1,
0x20, 0xa3, 0x67, 0x55, 0xda, 0xf3, 0x0a, 0x6f, 0x47, 0xe8, 0xc0, 0xd4,
0xbd, 0xdc, 0x15, 0x03, 0x6e, 0xd2, 0xa3, 0x44, 0x7d, 0xfa, 0x7a, 0x1d,
0x3e, 0x88, 0xa3, 0x3f, 0x30, 0x3d, 0x30, 0x0c, 0x06, 0x03, 0x55, 0x1d,
0x13, 0x01, 0x01, 0xff, 0x04, 0x02, 0x30, 0x00, 0x30, 0x0e, 0x06, 0x03,
0x55, 0x1d, 0x0f, 0x01, 0x01, 0xff, 0x04, 0x04, 0x03, 0x02, 0x07, 0x80,
0x30, 0x1d, 0x06, 0x03, 0x55, 0x1d, 0x0e, 0x04, 0x16, 0x04, 0x14, 0x68,
0x36, 0xfc, 0x5d, 0x40, 0xb5, 0xbe, 0x47, 0xd4, 0xb0, 0xe2, 0x46, 0x7a,
0xfe, 0x54, 0x3d, 0x8a, 0xd7, 0x0e, 0x26, 0x30, 0x0a, 0x06, 0x08, 0x2a,
0x86, 0x48, 0xce, 0x3d, 0x04, 0x03, 0x02, 0x03, 0x48, 0x00, 0x30, 0x45,
0x02, 0x21, 0x00, 0xff, 0x39, 0x3d, 0x00, 0x1d, 0x9f, 0x88, 0xdc, 0xc1,
0x58, 0x12, 0x68, 0xa5, 0x7f, 0x06, 0x18, 0x1e, 0x65, 0x77, 0x88, 0x12,
0xcb, 0xa5, 0x9d, 0x47, 0xd0, 0x17, 0x85, 0xcd, 0xb8, 0xdc, 0xaa, 0x02,
0x20, 0x08, 0xb8, 0xbe, 0x65, 0xd4, 0xbe, 0x31, 0xe7, 0x74, 0x64, 0x46,
0xfb, 0xe7, 0x70, 0x48, 0x02, 0xd1, 0x08, 0x64, 0xf8, 0xe8, 0x4e, 0xfc,
0xb0, 0xa5, 0x21, 0x2c, 0x54, 0x3a, 0x6c, 0x04, 0x72,
};
return optiga_set_data_object(0xe0e8, false, TA_CERT, sizeof(TA_CERT));
}
/*
* https://github.com/Infineon/optiga-trust-m/blob/develop/documents/OPTIGA%E2%84%A2%20Trust%20M%20Solution%20Reference%20Manual.md#setobjectprotected
*/
optiga_result optiga_set_priv_key(uint16_t oid, const uint8_t priv_key[32]) {
uint8_t metadata_buffer[256] = {0};
size_t metadata_size = 0;
optiga_result ret = optiga_get_data_object(
oid, true, metadata_buffer, sizeof(metadata_buffer), &metadata_size);
if (ret != OPTIGA_SUCCESS) {
return ret;
}
optiga_metadata metadata = {0};
ret = optiga_parse_metadata(metadata_buffer, metadata_size, &metadata);
if (ret != OPTIGA_SUCCESS) {
return ret;
}
uint16_t payload_version = 0;
if (metadata.version.ptr != NULL) {
if (metadata.version.len != 2) {
return OPTIGA_ERR_UNEXPECTED;
}
payload_version = (metadata.version.ptr[0] << 8) + metadata.version.ptr[1];
}
payload_version += 1;
if (payload_version > 23) {
// CBOR integer encoding not implemented.
return OPTIGA_ERR_PARAM;
}
// Trust anchor private key.
const uint8_t TA_PRIV_KEY[32] = {1};
// First part of the SetObjectProtected command containing the manifest.
uint8_t sop_cmd1[145] = {
0x03, 0x01, 0x00, 0x8d, 0x30, 0x00, 0x8a, 0x84, 0x43, 0xA1, 0x01, 0x26,
0xA1, 0x04, 0x42, 0xE0, 0xE8, 0x58, 0x3C, 0x86, 0x01, 0xF6, 0xF6, 0x84,
0x22, 0x18, 0x23, 0x03, 0x82, 0x03, 0x10, 0x82, 0x82, 0x20, 0x58, 0x25,
0x82, 0x18, 0x29, 0x58, 0x20, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0xF6, 0x82, 0x40, 0x42, 0xE0, 0xF2, 0x58, 0x40,
};
// Second part of the SetObjectProtected command containing the fragment
// with the private key.
uint8_t sop_cmd2[42] = {
0x03, 0x01, 0x00, 0x26, 0x31, 0x00, 0x23, 0x01, 0x00, 0x20,
};
memcpy(&sop_cmd2[10], &priv_key[0], 32);
sha256_Raw(&sop_cmd2[7], 35, &sop_cmd1[41]);
sop_cmd1[27] = payload_version;
sop_cmd1[77] = oid >> 8;
sop_cmd1[78] = oid & 0xff;
// NOTE sop_cmd1[26] = fragment length (1 + 2 + 32)
// NOTE sop_cmd1[30] = key usage
const uint8_t signature_header[] = {
0x84, 0x4A, 0x53, 0x69, 0x67, 0x6E, 0x61, 0x74, 0x75,
0x72, 0x65, 0x31, 0x43, 0xA1, 0x01, 0x26, 0x40,
};
uint8_t digest[SHA256_DIGEST_LENGTH] = {0};
SHA256_CTX context = {0};
sha256_Init(&context);
sha256_Update(&context, signature_header, sizeof(signature_header));
sha256_Update(&context, &sop_cmd1[17], 62);
sha256_Final(&context, digest);
if (0 != ecdsa_sign_digest(&nist256p1, TA_PRIV_KEY, digest, &sop_cmd1[81],
NULL, NULL)) {
memzero(sop_cmd2, sizeof(sop_cmd2));
return OPTIGA_ERR_PROCESS;
}
ret = optiga_execute_command(false, sop_cmd1, sizeof(sop_cmd1), tx_buffer,
sizeof(tx_buffer), &tx_size);
if (ret != OPTIGA_SUCCESS) {
memzero(sop_cmd2, sizeof(sop_cmd2));
return ret;
}
ret = process_output_fixedlen(NULL, 0);
if (ret != OPTIGA_SUCCESS) {
memzero(sop_cmd2, sizeof(sop_cmd2));
return ret;
}
ret = optiga_execute_command(false, sop_cmd2, sizeof(sop_cmd2), tx_buffer,
sizeof(tx_buffer), &tx_size);
memzero(sop_cmd2, sizeof(sop_cmd2));
if (ret != OPTIGA_SUCCESS) {
return ret;
}
return process_output_fixedlen(NULL, 0);
}

View File

@ -0,0 +1,506 @@
/*
* This file is part of the Trezor project, https://trezor.io/
*
* Copyright (c) SatoshiLabs
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/*
* Reference manual:
* https://github.com/Infineon/optiga-trust-m/blob/develop/documents/Infineon_I2C_Protocol_v2.03.pdf
*/
#include "optiga_transport.h"
#include <string.h>
#include "common.h"
#include "i2c.h"
#include "optiga_hal.h"
#include TREZOR_BOARD
// Maximum possible packet size that can be transmitted.
#define OPTIGA_MAX_PACKET_SIZE (OPTIGA_DATA_REG_LEN - 5)
// Register address of the data register.
static const uint8_t REG_DATA = 0x80;
// Register address of the register holding the maximum data register length (2
// bytes).
static const uint8_t REG_DATA_LEN = 0x81;
// Register address of the I2C state register (4 bytes).
static const uint8_t REG_I2C_STATE = 0x82;
// Register address of the register that triggers a warm device reset.
static const uint8_t REG_SOFT_RESET = 0x88;
// I2C state register - Device is busy executing a command.
static const uint8_t I2C_STATE_BYTE1_BUSY = 0x80;
// I2C state register - Device is ready to return a response.
static const uint8_t I2C_STATE_BYTE1_RESP_RDY = 0x40;
// I2C base address of Optiga.
static const uint8_t BASE_ADDR = 0x30;
// Address of Optiga use by our HAL which requires it to be shifted by one bit.
static const uint16_t OPTIGA_ADDRESS = (BASE_ADDR << 1);
// Constants for our I2C HAL.
static const uint32_t I2C_TIMEOUT = 15;
static const int I2C_MAX_RETRY_COUNT = 10;
// Maximum number of times to retry reading Optiga's response to a command.
static const int MAX_RETRY_READ = 10000;
// Maximum number of packets per response. Used for flushing old reponses.
static const int MAX_RESPONSE_PACKET_COUNT = 15;
// Frame control byte - Type.
static const uint8_t FTYPE_MASK = 0x80;
static const uint8_t FTYPE_DATA = 0x00;
static const uint8_t FTYPE_CONTROL = 0x80;
// Frame control byte - Sequence.
static const uint8_t SEQCTR_ACK = 0x00; // Acknowledge received frame ACKNR.
static const uint8_t SEQCTR_RESET = 0x40; // Reset frame counter for sync.
static const uint8_t SEQCTR_MASK = 0x60; // Mask of SEQCTR bits.
// Frame control byte - Frame number.
static const uint8_t FRNR_MASK = 0x0C;
static const uint8_t FRNR_SHIFT = 2;
static const uint8_t ACKNR_MASK = 0x03;
// Packet control byte.
enum {
PCTR_PRESENTATION_LAYER = 0x08, // Presentation layer present.
PCTR_CHAIN_NONE = 0x00, // No chaining. Single frame.
PCTR_CHAIN_FIRST = 0x01, // First packet of a chain.
PCTR_CHAIN_MIDDLE = 0x02, // Intermediate packet(s) of a chain.
PCTR_CHAIN_LAST = 0x04, // Last packet of a chain.
PCTR_CHAIN_MASK = 0x07, // Mask of chain field.
};
static uint8_t frame_num_out = 0xff;
static uint8_t frame_num_in = 0xff;
static uint8_t frame_buffer[1 + OPTIGA_DATA_REG_LEN];
static size_t frame_size = 0; // Set by optiga_read().
#ifdef NDEBUG
#define OPTIGA_LOG(prefix, data, data_size)
#else
static optiga_log_hex_t log_hex = NULL;
void optiga_set_log_hex(optiga_log_hex_t f) { log_hex = f; }
#define OPTIGA_LOG(prefix, data, data_size) \
if (log_hex != NULL) { \
log_hex(prefix, data, data_size); \
}
#endif
static uint16_t calc_crc_byte(uint16_t seed, uint8_t c) {
uint16_t h1 = (seed ^ c) & 0xFF;
uint16_t h2 = h1 & 0x0F;
uint16_t h3 = (h2 << 4) ^ h1;
uint16_t h4 = h3 >> 4;
return (((((h3 << 1) ^ h4) << 4) ^ h2) << 3) ^ h4 ^ (seed >> 8);
}
static uint16_t calc_crc(uint8_t *data, size_t data_size) {
uint16_t crc = 0;
for (size_t i = 0; i < data_size; ++i) {
crc = calc_crc_byte(crc, data[i]);
}
return crc;
}
optiga_result optiga_init(void) {
optiga_hal_init();
return optiga_set_data_reg_len(OPTIGA_DATA_REG_LEN);
}
static optiga_result optiga_i2c_write(const uint8_t *data, uint16_t data_size) {
OPTIGA_LOG(">>> ", data, data_size)
for (int try_count = 0; try_count <= I2C_MAX_RETRY_COUNT; ++try_count) {
if (try_count != 0) {
hal_delay(1);
}
if (HAL_OK == i2c_transmit(OPTIGA_I2C_INSTANCE, OPTIGA_ADDRESS,
(uint8_t *)data, data_size, I2C_TIMEOUT)) {
return OPTIGA_SUCCESS;
}
}
return OPTIGA_ERR_I2C_WRITE;
}
static optiga_result optiga_i2c_read(uint8_t *buffer, uint16_t buffer_size) {
for (int try_count = 0; try_count <= I2C_MAX_RETRY_COUNT; ++try_count) {
HAL_Delay(1);
if (HAL_OK == i2c_receive(OPTIGA_I2C_INSTANCE, OPTIGA_ADDRESS, buffer,
buffer_size, I2C_TIMEOUT)) {
OPTIGA_LOG("<<< ", buffer, buffer_size)
return OPTIGA_SUCCESS;
}
}
return OPTIGA_ERR_I2C_READ;
}
optiga_result optiga_resync(void) {
frame_num_out = 0xff;
frame_num_in = 0xff;
uint8_t data[6] = {REG_DATA, FTYPE_CONTROL | SEQCTR_RESET, 0, 0};
uint16_t crc = calc_crc(&data[1], 3);
data[4] = crc >> 8;
data[5] = crc & 0xff;
return optiga_i2c_write(data, sizeof(data));
}
optiga_result optiga_soft_reset(void) {
uint8_t data[3] = {REG_SOFT_RESET, 0xff, 0xff};
optiga_result ret = optiga_i2c_write(data, sizeof(data));
if (ret != OPTIGA_SUCCESS) {
return ret;
}
frame_num_out = 0xff;
frame_num_in = 0xff;
return OPTIGA_SUCCESS;
}
static optiga_result optiga_send_ack(void) {
// Set up frame control information.
uint8_t fctr = FTYPE_CONTROL | SEQCTR_ACK;
fctr |= (frame_num_in & ACKNR_MASK);
// Compile frame.
frame_buffer[0] = REG_DATA;
frame_buffer[1] = fctr;
frame_buffer[2] = 0;
frame_buffer[3] = 0;
uint16_t crc = calc_crc(&frame_buffer[1], 3);
frame_buffer[4] = crc >> 8;
frame_buffer[5] = crc & 0xff;
return optiga_i2c_write(frame_buffer, 6);
}
static optiga_result optiga_check_ack(void) {
// Expected frame control information byte.
uint8_t fctr = FTYPE_CONTROL | SEQCTR_ACK;
fctr |= (frame_num_out & ACKNR_MASK);
optiga_result ret = OPTIGA_SUCCESS;
if (frame_size != 3 || frame_buffer[0] != fctr || frame_buffer[1] != 0 ||
frame_buffer[2] != 0) {
ret = OPTIGA_ERR_UNEXPECTED;
}
frame_size = 0;
return ret;
}
static optiga_result optiga_ensure_ready(void) {
optiga_result ret = OPTIGA_SUCCESS;
for (int i = 0; i < MAX_RESPONSE_PACKET_COUNT; ++i) {
for (int j = 0; j < MAX_RETRY_READ; ++j) {
ret = optiga_i2c_write(&REG_I2C_STATE, 1);
if (OPTIGA_SUCCESS != ret) {
return ret;
}
ret = optiga_i2c_read(frame_buffer, 4);
if (OPTIGA_SUCCESS != ret) {
return ret;
}
if ((frame_buffer[0] & I2C_STATE_BYTE1_BUSY) == 0) {
break;
}
ret = OPTIGA_ERR_BUSY;
}
if (ret != OPTIGA_SUCCESS) {
return ret;
}
if ((frame_buffer[0] & I2C_STATE_BYTE1_RESP_RDY) == 0) {
return OPTIGA_SUCCESS;
}
// Flush out the previous response.
uint16_t size = (frame_buffer[2] << 8) + frame_buffer[3];
if (size > sizeof(frame_buffer)) {
return OPTIGA_ERR_SIZE;
}
ret = optiga_i2c_write(&REG_DATA, 1);
if (OPTIGA_SUCCESS != ret) {
return ret;
}
ret = optiga_i2c_read(frame_buffer, size);
if (OPTIGA_SUCCESS != ret) {
return ret;
}
if (size < 3) {
return OPTIGA_ERR_UNEXPECTED;
}
// Ignore CRC.
frame_size = size - 2;
if ((frame_buffer[0] & FTYPE_MASK) == FTYPE_DATA) {
// Sync frame numbers with Optiga.
frame_num_in = (frame_buffer[0] & FRNR_MASK) >> FRNR_SHIFT;
frame_num_out = frame_buffer[0] & ACKNR_MASK;
ret = optiga_send_ack();
if (OPTIGA_SUCCESS != ret) {
return ret;
}
} else {
if ((frame_buffer[0] & SEQCTR_MASK) == SEQCTR_RESET) {
frame_num_out = 0xff;
frame_num_in = 0xff;
}
}
}
return OPTIGA_ERR_TIMEOUT;
}
optiga_result optiga_set_data_reg_len(size_t size) {
if (size > 0xffff) {
return OPTIGA_ERR_SIZE;
}
// Set the new data register length.
uint8_t data[3] = {REG_DATA_LEN, size >> 8, size & 0xff};
optiga_result ret = optiga_i2c_write(data, sizeof(data));
if (ret != OPTIGA_SUCCESS) {
return ret;
}
// Check that the length was set correctly.
ret = optiga_i2c_write(&REG_DATA_LEN, 1);
if (OPTIGA_SUCCESS != ret) {
return ret;
}
ret = optiga_i2c_read(frame_buffer, 2);
if (OPTIGA_SUCCESS != ret) {
return ret;
}
if ((frame_buffer[0] << 8) + frame_buffer[1] != size) {
return OPTIGA_ERR_SIZE;
}
return OPTIGA_SUCCESS;
}
static optiga_result optiga_read(void) {
for (int i = 0; i < MAX_RETRY_READ; ++i) {
optiga_result ret = optiga_i2c_write(&REG_I2C_STATE, 1);
if (OPTIGA_SUCCESS != ret) {
return ret;
}
ret = optiga_i2c_read(frame_buffer, 4);
if (OPTIGA_SUCCESS != ret) {
return ret;
}
if (frame_buffer[0] & I2C_STATE_BYTE1_RESP_RDY) {
uint16_t size = (frame_buffer[2] << 8) + frame_buffer[3];
if (size > sizeof(frame_buffer)) {
return OPTIGA_ERR_SIZE;
}
ret = optiga_i2c_write(&REG_DATA, 1);
if (OPTIGA_SUCCESS != ret) {
return ret;
}
ret = optiga_i2c_read(frame_buffer, size);
if (OPTIGA_SUCCESS != ret) {
return ret;
}
if (calc_crc(frame_buffer, size - 2) !=
(frame_buffer[size - 2] << 8) + frame_buffer[size - 1]) {
return OPTIGA_ERR_CRC;
}
frame_size = size - 2;
return OPTIGA_SUCCESS;
}
}
return OPTIGA_ERR_TIMEOUT;
}
static optiga_result optiga_send_packet(uint8_t packet_control_byte,
const uint8_t *packet_data,
size_t packet_data_size) {
_Static_assert(sizeof(frame_buffer) - 7 >= OPTIGA_MAX_PACKET_SIZE - 1);
if (packet_data_size > sizeof(frame_buffer) - 7) {
return OPTIGA_ERR_SIZE;
}
// Set up frame control information.
uint8_t fctr = FTYPE_DATA | SEQCTR_ACK;
fctr |= (frame_num_out << FRNR_SHIFT) & FRNR_MASK;
fctr |= (frame_num_in & ACKNR_MASK);
// Compile frame.
frame_buffer[0] = REG_DATA;
frame_buffer[1] = fctr;
frame_buffer[2] = (packet_data_size + 1) >> 8;
frame_buffer[3] = (packet_data_size + 1) & 0xff;
frame_buffer[4] = packet_control_byte;
memcpy(&frame_buffer[5], packet_data, packet_data_size);
uint16_t crc = calc_crc(&frame_buffer[1], packet_data_size + 4);
frame_buffer[packet_data_size + 5] = crc >> 8;
frame_buffer[packet_data_size + 6] = crc & 0xff;
return optiga_i2c_write(frame_buffer, packet_data_size + 7);
}
static optiga_result optiga_receive_packet(uint8_t *packet_control_byte,
uint8_t *packet_data,
size_t max_packet_data_size,
size_t *packet_data_size) {
// Expected frame control information byte.
uint8_t fctr = FTYPE_DATA | SEQCTR_ACK;
fctr |= (frame_num_in << FRNR_SHIFT) & FRNR_MASK;
fctr |= (frame_num_out & ACKNR_MASK);
*packet_data_size = (frame_buffer[1] << 8) + frame_buffer[2] - 1;
if (frame_size < 3 || frame_buffer[0] != fctr ||
*packet_data_size + 4 != frame_size) {
frame_size = 0;
return OPTIGA_ERR_UNEXPECTED;
}
frame_size = 0;
if (*packet_data_size > max_packet_data_size) {
return OPTIGA_ERR_SIZE;
}
*packet_control_byte = frame_buffer[3];
memcpy(packet_data, &frame_buffer[4], *packet_data_size);
return OPTIGA_SUCCESS;
}
optiga_result optiga_execute_command(
bool presentation_layer, const uint8_t *command_data, size_t command_size,
uint8_t *response_data, size_t max_response_size, size_t *response_size) {
*response_size = 0;
optiga_result ret = optiga_ensure_ready();
if (ret != OPTIGA_SUCCESS) {
return ret;
}
uint8_t pctr = 0;
if (presentation_layer) {
pctr |= PCTR_PRESENTATION_LAYER;
}
// Transmit command packets to OPTIGA.
uint8_t chain = PCTR_CHAIN_NONE;
do {
size_t packet_data_size = 0;
// The first byte of each packet is the packet control byte pctr, so each
// packet contains at most OPTIGA_MAX_PACKET_SIZE - 1 bytes of data.
if (command_size > OPTIGA_MAX_PACKET_SIZE - 1) {
packet_data_size = OPTIGA_MAX_PACKET_SIZE - 1;
if (chain == PCTR_CHAIN_NONE) {
chain = PCTR_CHAIN_FIRST;
} else {
chain = PCTR_CHAIN_MIDDLE;
}
} else {
packet_data_size = command_size;
if (chain != PCTR_CHAIN_NONE) {
chain = PCTR_CHAIN_LAST;
}
}
frame_num_out += 1;
ret = optiga_send_packet(pctr | chain, command_data, packet_data_size);
if (ret != OPTIGA_SUCCESS) {
return ret;
}
command_data += packet_data_size;
command_size -= packet_data_size;
ret = optiga_read();
if (ret != OPTIGA_SUCCESS) {
return ret;
}
if ((frame_buffer[0] & FTYPE_MASK) == FTYPE_DATA) {
// OPTIGA sometimes doesn't send a separate control frame to ACK receipt,
// but responds directly with data. It may also respond with data instead
// of an ACK if there is an error in a multi-packet transmission.
break;
}
ret = optiga_check_ack();
if (ret != OPTIGA_SUCCESS) {
return ret;
}
} while (command_size != 0);
// Receive response packets from OPTIGA.
do {
frame_num_in += 1;
// Read only if there is no pending data in the frame buffer. (There will
// already be data if OPTIGA didn't send a separate control frame in the
// previous loop.)
if (frame_size == 0) {
ret = optiga_read();
if (ret != OPTIGA_SUCCESS) {
return ret;
}
}
size_t packet_data_size = 0;
ret = optiga_receive_packet(&pctr, response_data, max_response_size,
&packet_data_size);
if (ret != OPTIGA_SUCCESS) {
*response_size = 0;
return ret;
}
*response_size += packet_data_size;
response_data += packet_data_size;
max_response_size -= packet_data_size;
ret = optiga_send_ack();
if (ret != OPTIGA_SUCCESS) {
*response_size = 0;
return ret;
}
pctr &= PCTR_CHAIN_MASK;
} while (pctr == PCTR_CHAIN_FIRST || pctr == PCTR_CHAIN_MIDDLE);
return command_size == 0 ? OPTIGA_SUCCESS : OPTIGA_ERR_CMD;
}

View File

@ -0,0 +1,144 @@
/*
* This file is part of the Trezor project, https://trezor.io/
*
* Copyright (c) SatoshiLabs
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef TREZORHAL_OPTIGA_COMMANDS_H
#define TREZORHAL_OPTIGA_COMMANDS_H
#include <stdbool.h>
#include <stddef.h>
#include <stdint.h>
#include "optiga_common.h"
// ECC curve identifiers.
typedef enum {
OPTIGA_CURVE_P256 = 0x03, // NIST P256 ECC key.
OPTIGA_CURVE_P384 = 0x04, // NIST P384 ECC key.
OPTIGA_CURVE_P521 = 0x05, // NIST P521 ECC key.
} optiga_curve;
// AES algorithm identifiers.
typedef enum {
OPTIGA_AES_128 = 0x81, // AES-128 key.
OPTIGA_AES_192 = 0x82, // AES-192 key.
OPTIGA_AES_256 = 0x83, // AES-256 key.
} optiga_aes;
// Key usage identifiers.
typedef enum {
OPTIGA_KEY_USAGE_AUTH = 0x01, // Authentication.
OPTIGA_KEY_USAGE_ENC = 0x02, // Encryption, decryption, key transport.
OPTIGA_KEY_USAGE_SIGN = 0x10, // Signature calculation and verification.
OPTIGA_KEY_USAGE_KEYAGREE = 0x20, // Key agreement.
} optiga_key_usage;
// Key derivation methods.
typedef enum {
OPTIGA_DERIV_TLS_PRF_SHA256 = 0x01,
OPTIGA_DERIV_TLS_PRF_SHA384 = 0x02,
OPTIGA_DERIV_TLS_PRF_SHA512 = 0x03,
OPTIGA_DERIV_HKDF_SHA256 = 0x08,
OPTIGA_DERIV_HKDF_SHA384 = 0x09,
OPTIGA_DERIV_HKDF_SHA512 = 0x0a,
} optiga_key_derivation;
// Symmetric modes of operation.
typedef enum {
OPTIGA_SYM_MODE_ECB = 0x08, // Input must be padded.
OPTIGA_SYM_MODE_CBC_MAC = 0x0A, // Input must be padded.
OPTIGA_SYM_MODE_CMAC = 0x0B,
OPTIGA_SYM_MODE_HMAC_SHA256 = 0x20,
OPTIGA_SYM_MODE_HMAC_SHA384 = 0x21,
OPTIGA_SYM_MODE_HMAC_SHA512 = 0x22,
} optiga_sym_mode;
// Data object types.
typedef enum {
OPTIGA_DATA_TYPE_BSTR = 0x00, // Byte string.
OPTIGA_DATA_TYPE_UPCTR = 0x01, // Monotonic up-counter.
OPTIGA_DATA_TYPE_TA = 0x11, // Trust anchor.
OPTIGA_DATA_TYPE_DEVCERT = 0x12, // Device identity certificate.
OPTIGA_DATA_TYPE_PRESSEC = 0x21, // Secret for HMAC computation.
OPTIGA_DATA_TYPE_PTFBIND = 0x22, // Secret for platform binding.
OPTIGA_DATA_TYPE_UPDATSEC = 0x23, // Secret for confidential object update.
OPTIGA_DATA_TYPE_AUTOREF = 0x31, // Secret for verifying external entity.
} optiga_data_type;
typedef struct {
const uint8_t *ptr;
uint16_t len;
} optiga_metadata_item;
typedef struct {
optiga_metadata_item lcso; // C0 - Life cycle state of data object.
optiga_metadata_item version; // C1 - Version information of data object.
optiga_metadata_item max_size; // C4 - Maximum size of the data object.
optiga_metadata_item used_size; // C5 - Used size of the data object.
optiga_metadata_item change; // D0 - Change access conditions.
optiga_metadata_item read; // D1 - Read access conditions.
optiga_metadata_item execute; // D3 - Execute access conditions.
optiga_metadata_item meta_update; // D8 - Metadata update descriptor.
optiga_metadata_item algorithm; // E0 - Algorithm associated with the key.
optiga_metadata_item key_usage; // E1 - Key usage associated with the key.
optiga_metadata_item data_type; // E8 - Data object type.
optiga_metadata_item reset_type; // F0 - Factory reset type.
} optiga_metadata;
optiga_result optiga_parse_metadata(const uint8_t *serialized,
size_t serialized_size,
optiga_metadata *metadata);
optiga_result optiga_serialize_metadata(const optiga_metadata *metadata,
uint8_t *serialized,
size_t max_serialized,
size_t *serialized_size);
optiga_result optiga_open_application(void);
optiga_result optiga_get_error_code(uint8_t *error_code);
optiga_result optiga_get_data_object(uint16_t oid, bool get_metadata,
uint8_t *data, size_t max_data_size,
size_t *data_size);
optiga_result optiga_set_data_object(uint16_t oid, bool set_metadata,
const uint8_t *data, size_t data_size);
optiga_result optiga_get_random(uint8_t *random, size_t random_size);
optiga_result optiga_encrypt_sym(optiga_sym_mode mode, uint16_t oid,
const uint8_t *input, size_t input_size,
uint8_t *output, size_t max_output_size,
size_t *output_size);
optiga_result optiga_set_auto_state(uint16_t nonce_oid, uint16_t key_oid,
const uint8_t key[32]);
optiga_result optiga_clear_auto_state(uint16_t key_oid);
optiga_result optiga_calc_sign(uint16_t oid, const uint8_t *digest,
size_t digest_size, uint8_t *signature,
size_t max_sig_size, size_t *sig_size);
optiga_result optiga_gen_key_pair(optiga_curve curve, optiga_key_usage usage,
uint16_t oid, uint8_t *public_key,
size_t max_public_key_size,
size_t *public_key_size);
optiga_result optiga_gen_sym_key(optiga_aes algorithm, optiga_key_usage usage,
uint16_t oid);
optiga_result optiga_calc_ssec(optiga_curve curve, uint16_t oid,
const uint8_t *public_key,
size_t public_key_size, uint8_t *secret,
size_t max_secret_size, size_t *secret_size);
optiga_result optiga_derive_key(optiga_key_derivation deriv, uint16_t oid,
const uint8_t *salt, size_t salt_size,
uint8_t *info, size_t info_size, uint8_t *key,
size_t key_size);
optiga_result optiga_set_trust_anchor(void);
optiga_result optiga_set_priv_key(uint16_t oid, const uint8_t priv_key[32]);
#endif

View File

@ -0,0 +1,37 @@
/*
* This file is part of the Trezor project, https://trezor.io/
*
* Copyright (c) SatoshiLabs
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef TREZORHAL_OPTIGA_COMMON_H
#define TREZORHAL_OPTIGA_COMMON_H
typedef enum _optiga_result {
OPTIGA_SUCCESS = 0, // Operation completed successfully.
OPTIGA_ERR_I2C_WRITE, // HAL failed on I2C write.
OPTIGA_ERR_I2C_READ, // HAL failed on I2C read.
OPTIGA_ERR_BUSY, // Optiga is busy processing another command.
OPTIGA_ERR_TIMEOUT, // Optiga did not return data within the time limit.
OPTIGA_ERR_SIZE, // Input or output exceeds buffer size.
OPTIGA_ERR_CRC, // Invalid CRC.
OPTIGA_ERR_UNEXPECTED, // Optiga returned unexpected data.
OPTIGA_ERR_PROCESS, // Processing error.
OPTIGA_ERR_PARAM, // Invalid command parameters.
OPTIGA_ERR_CMD, // Command error. See error code data object 0xF1C2.
} optiga_result;
#endif

View File

@ -0,0 +1,12 @@
#ifndef CORE_OPTIGA_HAL_H
#define CORE_OPTIGA_HAL_H
#include <stdint.h>
#include "secbool.h"
void optiga_hal_init(void);
void optiga_reset(void);
#endif // CORE_OPTIGA_HAL_H

View File

@ -0,0 +1,46 @@
/*
* This file is part of the Trezor project, https://trezor.io/
*
* Copyright (c) SatoshiLabs
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef TREZORHAL_OPTIGA_TRANSPORT_H
#define TREZORHAL_OPTIGA_TRANSPORT_H
#include <stdbool.h>
#include <stddef.h>
#include <stdint.h>
#include "optiga_common.h"
// Maximum data register length supported by OPTIGA.
#define OPTIGA_DATA_REG_LEN 277
optiga_result optiga_init(void);
optiga_result optiga_execute_command(
bool presentation_layer, const uint8_t *command_data, size_t command_size,
uint8_t *response_data, size_t max_response_size, size_t *response_size);
optiga_result optiga_resync(void);
optiga_result optiga_soft_reset(void);
optiga_result optiga_set_data_reg_len(size_t size);
#ifndef NDEBUG
typedef void (*optiga_log_hex_t)(const char *prefix, const uint8_t *data,
size_t data_size);
void optiga_set_log_hex(optiga_log_hex_t f);
#endif
#endif

View File

@ -0,0 +1,22 @@
#include "optiga_hal.h"
#include "common.h"
#include TREZOR_BOARD
void optiga_hal_init(void) {
// init reset pin
GPIO_InitTypeDef GPIO_InitStructure;
GPIO_InitStructure.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStructure.Pull = GPIO_NOPULL;
GPIO_InitStructure.Speed = GPIO_SPEED_FREQ_LOW;
GPIO_InitStructure.Alternate = 0;
GPIO_InitStructure.Pin = GPIO_PIN_9;
HAL_GPIO_Init(GPIOD, &GPIO_InitStructure);
HAL_GPIO_WritePin(GPIOD, GPIO_PIN_9, GPIO_PIN_SET);
hal_delay(1);
}
void optiga_reset(void) {
HAL_GPIO_WritePin(GPIOD, GPIO_PIN_9, GPIO_PIN_RESET);
hal_delay(10);
HAL_GPIO_WritePin(GPIOD, GPIO_PIN_9, GPIO_PIN_SET);
}

View File

@ -66,6 +66,11 @@ def configure(
]
features_available.append("usb")
if "optiga" in features_wanted:
sources += ["embed/trezorhal/stm32f4/optiga_hal.c"]
sources += ["embed/trezorhal/optiga/optiga_commands.c"]
sources += ["embed/trezorhal/optiga/optiga_transport.c"]
env.get("ENV")["TREZOR_BOARD"] = board
env.get("ENV")["MCU_TYPE"] = mcu