mirror of
https://github.com/trezor/trezor-firmware.git
synced 2025-01-03 12:00:59 +00:00
tools: update ed25519{cosi,raw}.py to work in both py2 and py3
This commit is contained in:
parent
3db571f63a
commit
5884d1c03f
@ -1,5 +1,7 @@
|
||||
import sys
|
||||
from functools import reduce
|
||||
import binascii
|
||||
|
||||
import ed25519raw
|
||||
|
||||
|
||||
@ -19,6 +21,9 @@ def combine_sig(R, sigs):
|
||||
def get_nonce(sk, data, ctr):
|
||||
h = ed25519raw.H(sk)
|
||||
b = ed25519raw.b
|
||||
if sys.version_info.major < 3:
|
||||
r = ed25519raw.Hint(''.join([h[i] for i in range(b >> 3, b >> 2)]) + data + binascii.unhexlify('%08x' % ctr))
|
||||
else:
|
||||
r = ed25519raw.Hint(bytes([h[i] for i in range(b >> 3, b >> 2)]) + data + binascii.unhexlify('%08x' % ctr))
|
||||
R = ed25519raw.scalarmult(ed25519raw.B, r)
|
||||
return r, ed25519raw.encodepoint(R)
|
||||
@ -41,7 +46,7 @@ def self_test(digest):
|
||||
sigs = []
|
||||
for i in range(0, N):
|
||||
print('----- Key %d ------' % (i + 1))
|
||||
seckey = bytes([0x41 + i]) * 32
|
||||
seckey = (chr(0x41 + i) * 32).encode()
|
||||
pubkey = ed25519raw.publickey(seckey)
|
||||
print('Secret Key: %s' % to_hex(seckey))
|
||||
print('Public Key: %s' % to_hex(pubkey))
|
||||
@ -81,7 +86,6 @@ def self_test(digest):
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
import sys
|
||||
if len(sys.argv) > 1:
|
||||
self_test(digest=sys.argv[1])
|
||||
else:
|
||||
|
@ -1,11 +1,12 @@
|
||||
# orignal version downloaded from https://ed25519.cr.yp.to/python/ed25519.py
|
||||
# modified for Python 3 by Jochen Hoenicke <hoenicke@gmail.com>
|
||||
|
||||
import sys
|
||||
import hashlib
|
||||
|
||||
b = 256
|
||||
q = 2**255 - 19
|
||||
l = 2**252 + 27742317777372353535851937790883648493
|
||||
q = 2 ** 255 - 19
|
||||
l = 2 ** 252 + 27742317777372353535851937790883648493
|
||||
|
||||
|
||||
def H(m):
|
||||
@ -17,7 +18,7 @@ def expmod(b, e, m):
|
||||
raise Exception('negative exponent')
|
||||
if e == 0:
|
||||
return 1
|
||||
t = expmod(b, e >> 1, m)**2 % m
|
||||
t = expmod(b, e >> 1, m) ** 2 % m
|
||||
if e & 1:
|
||||
t = (t * b) % m
|
||||
return t
|
||||
@ -68,6 +69,9 @@ def scalarmult(P, e):
|
||||
|
||||
def encodeint(y):
|
||||
bits = [(y >> i) & 1 for i in range(b)]
|
||||
if sys.version_info.major < 3:
|
||||
return ''.join([chr(sum([bits[i * 8 + j] << j for j in range(8)])) for i in range(b >> 3)])
|
||||
else:
|
||||
return bytes([sum([bits[i * 8 + j] << j for j in range(8)]) for i in range(b >> 3)])
|
||||
|
||||
|
||||
@ -75,28 +79,34 @@ def encodepoint(P):
|
||||
x = P[0]
|
||||
y = P[1]
|
||||
bits = [(y >> i) & 1 for i in range(b - 1)] + [x & 1]
|
||||
if sys.version_info.major < 3:
|
||||
return ''.join([chr(sum([bits[i * 8 + j] << j for j in range(8)])) for i in range(b >> 3)])
|
||||
else:
|
||||
return bytes([sum([bits[i * 8 + j] << j for j in range(8)]) for i in range(b >> 3)])
|
||||
|
||||
|
||||
def bit(h, i):
|
||||
if sys.version_info.major < 3:
|
||||
return (ord(h[i >> 3]) >> (i & 7)) & 1
|
||||
else:
|
||||
return (h[i >> 3] >> (i & 7)) & 1
|
||||
|
||||
|
||||
def publickey(sk):
|
||||
h = H(sk)
|
||||
a = 2**(b - 2) + sum(2**i * bit(h, i) for i in range(3, b - 2))
|
||||
a = 2 ** (b - 2) + sum(2 ** i * bit(h, i) for i in range(3, b - 2))
|
||||
A = scalarmult(B, a)
|
||||
return encodepoint(A)
|
||||
|
||||
|
||||
def Hint(m):
|
||||
h = H(m)
|
||||
return sum(2**i * bit(h, i) for i in range(2 * b))
|
||||
return sum(2 ** i * bit(h, i) for i in range(2 * b))
|
||||
|
||||
|
||||
def signature(m, sk, pk):
|
||||
h = H(sk)
|
||||
a = 2**(b - 2) + sum(2**i * bit(h, i) for i in range(3, b - 2))
|
||||
a = 2 ** (b - 2) + sum(2 ** i * bit(h, i) for i in range(3, b - 2))
|
||||
r = Hint(bytes([h[i] for i in range(b >> 3, b >> 2)]) + m)
|
||||
R = scalarmult(B, r)
|
||||
S = (r + Hint(encodepoint(R) + pk + m) * a) % l
|
||||
@ -110,11 +120,11 @@ def isoncurve(P):
|
||||
|
||||
|
||||
def decodeint(s):
|
||||
return sum(2**i * bit(s, i) for i in range(0, b))
|
||||
return sum(2 ** i * bit(s, i) for i in range(0, b))
|
||||
|
||||
|
||||
def decodepoint(s):
|
||||
y = sum(2**i * bit(s, i) for i in range(0, b - 1))
|
||||
y = sum(2 ** i * bit(s, i) for i in range(0, b - 1))
|
||||
x = xrecover(y)
|
||||
if x & 1 != bit(s, b - 1):
|
||||
x = q - x
|
||||
|
Loading…
Reference in New Issue
Block a user