1
0
mirror of https://github.com/trezor/trezor-firmware.git synced 2024-12-26 08:08:51 +00:00

embed/extmod/modtrezorcrypto: add secp256k1_zkp module

This includes the https://github.com/ElementsProject/secp256k1-zkp library
(which is a fork from sipa/secp256k1 used in Bitcoin Core) as a module. It
is currently not used in any app.

This commit the first step towards integrating Liquid (tracking issue #282).

Note that this creates a new 64 kiB read-only data section in .flash2 for
pre-computed tables (secp256k1_ecmult_static_context) which speed up
signature creation and related private key operations.

Co-authored-by: Roman Zeyde <me@romanzey.de>
Co-authored-by: Andrew Poelstra <apoelstra@wpsoftware.net>
Co-authored-by: Pavol Rusnak <pavol@rusnak.io>
This commit is contained in:
Tim Ruffing 2019-04-02 17:13:03 +02:00 committed by Jan Pochyla
parent 5321cb1890
commit 52d34955e7
10 changed files with 475 additions and 25 deletions

4
.gitmodules vendored
View File

@ -16,3 +16,7 @@
[submodule "vendor/QR-Code-generator"]
path = vendor/QR-Code-generator
url = https://github.com/nayuki/QR-Code-generator.git
[submodule "vendor/secp256k1-zkp"]
path = vendor/secp256k1-zkp
url = https://github.com/ElementsProject/secp256k1-zkp.git
branch = secp256k1-zkp

View File

@ -6,6 +6,7 @@ CCFLAGS_MOD = ''
CPPPATH_MOD = []
CPPDEFINES_MOD = []
SOURCE_MOD = []
SOURCE_MOD_SECP256K1_ZKP = []
PYOPT = '1'
@ -85,6 +86,32 @@ SOURCE_MOD += [
'vendor/trezor-crypto/sha3.c',
]
# libsecp256k1-zkp
CPPPATH_MOD += [
'vendor/secp256k1-zkp',
'vendor/secp256k1-zkp/src',
'vendor/secp256k1-zkp/include',
]
CPPDEFINES_MOD += [
'SECP256K1_BUILD',
'USE_ASM_ARM',
'USE_NUM_NONE',
'USE_FIELD_INV_BUILTIN',
'USE_SCALAR_INV_BUILTIN',
'USE_FIELD_10X26',
'USE_SCALAR_8X32',
'USE_ECMULT_STATIC_PRECOMPUTATION',
'USE_EXTERNAL_DEFAULT_CALLBACKS',
('ECMULT_WINDOW_SIZE', '8'),
'ENABLE_MODULE_GENERATOR',
'ENABLE_MODULE_RANGEPROOF',
'ENABLE_MODULE_RECOVERY',
'ENABLE_MODULE_ECDH',
]
SOURCE_MOD_SECP256K1_ZKP += [
'vendor/secp256k1-zkp/src/secp256k1.c',
]
# modtrezorio
SOURCE_MOD += [
'embed/extmod/modtrezorio/modtrezorio.c',
@ -403,12 +430,34 @@ source_mpyc = env.FrozenCFile(
env.Depends(source_mpyc, qstr_generated)
#
# static secp256-zkp ecmult context
#
host_env = Environment(ENV=os.environ)
host_env.Replace(
CC=os.getenv('CC_FOR_BUILD') or 'gcc',
COPT='-O2',
CPPPATH='vendor/secp256k1-zkp',
)
gen_context = host_env.Program(
target='vendor/secp256k1-zkp/gen_context',
source='vendor/secp256k1-zkp/src/gen_context.c',
)
secp256k1_zkp_ecmult_static_context = host_env.Command(
target='vendor/secp256k1-zkp/src/ecmult_static_context.h',
source='vendor/secp256k1-zkp/gen_context',
action='cd ${SOURCE.dir}; ./gen_context',
)
#
# Program objects
#
obj_program = []
obj_program.extend(env.Object(source=SOURCE_MOD))
obj_program.extend(env.Object(source=SOURCE_MOD_SECP256K1_ZKP, CCFLAGS='$CCFLAGS -Wno-unused-function'))
obj_program.extend(env.Object(source=SOURCE_FIRMWARE))
obj_program.extend(env.Object(source=SOURCE_MICROPYTHON))
obj_program.extend(env.Object(source=SOURCE_MICROPYTHON_SPEED, COPT='-O3'))
@ -435,6 +484,7 @@ obj_program.extend(
' $SOURCE $TARGET', ))
env.Depends(obj_program, qstr_generated)
env.Depends(obj_program, secp256k1_zkp_ecmult_static_context)
program_elf = env.Command(
target='firmware.elf',

View File

@ -5,6 +5,7 @@ import os
CCFLAGS_MOD = ''
CPPPATH_MOD = []
CPPDEFINES_MOD = []
SOURCE_MOD_SECP256K1_ZKP = []
SOURCE_MOD = []
LIBS_MOD = []
@ -82,6 +83,31 @@ SOURCE_MOD += [
'vendor/trezor-crypto/nem.c',
]
# libsecp256k1-zkp
CPPPATH_MOD += [
'vendor/secp256k1-zkp/',
'vendor/secp256k1-zkp/src',
'vendor/secp256k1-zkp/include',
]
CPPDEFINES_MOD += [
'SECP256K1_BUILD',
'USE_NUM_NONE',
'USE_FIELD_INV_BUILTIN',
'USE_SCALAR_INV_BUILTIN',
'USE_FIELD_10X26',
'USE_SCALAR_8X32',
'USE_ECMULT_STATIC_PRECOMPUTATION',
'USE_EXTERNAL_DEFAULT_CALLBACKS',
('ECMULT_WINDOW_SIZE', '8'),
'ENABLE_MODULE_GENERATOR',
'ENABLE_MODULE_RANGEPROOF',
'ENABLE_MODULE_RECOVERY',
'ENABLE_MODULE_ECDH',
]
SOURCE_MOD_SECP256K1_ZKP += [
'vendor/secp256k1-zkp/src/secp256k1.c',
]
# modtrezorio
SOURCE_MOD += [
'embed/extmod/modtrezorio/modtrezorio.c',
@ -347,16 +373,39 @@ qstr_generated = env.GenerateQstrDefs(
env.Ignore(qstr_collected, qstr_generated)
#
# static secp256-zkp ecmult context
#
host_env = Environment(ENV=os.environ)
host_env.Replace(
CC=os.getenv('CC_FOR_BUILD') or 'gcc',
COPT='-O2',
CPPPATH='vendor/secp256k1-zkp',
)
gen_context = host_env.Program(
target='vendor/secp256k1-zkp/gen_context',
source='vendor/secp256k1-zkp/src/gen_context.c',
)
secp256k1_zkp_ecmult_static_context = host_env.Command(
target='vendor/secp256k1-zkp/src/ecmult_static_context.h',
source='vendor/secp256k1-zkp/gen_context',
action='cd ${SOURCE.dir}; ./gen_context',
)
#
# Program objects
#
obj_program = []
obj_program += env.Object(source=SOURCE_MOD)
obj_program += env.Object(source=SOURCE_MOD_SECP256K1_ZKP, CCFLAGS='$CCFLAGS -Wno-unused-function')
obj_program += env.Object(source=SOURCE_MICROPYTHON)
obj_program += env.Object(source=SOURCE_UNIX)
env.Depends(obj_program, qstr_generated)
env.Depends(obj_program, secp256k1_zkp_ecmult_static_context)
program = env.Command(
target='micropython',

View File

@ -19,8 +19,8 @@
#include "py/objstr.h"
#include "ecdsa.h"
#include "secp256k1.h"
#include "vendor/trezor-crypto/ecdsa.h"
#include "vendor/trezor-crypto/secp256k1.h"
/// package: trezorcrypto.secp256k1

View File

@ -0,0 +1,306 @@
/*
* This file is part of the TREZOR project, https://trezor.io/
*
* Copyright (c) SatoshiLabs
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "common.h"
#include "py/objstr.h"
#include "vendor/secp256k1-zkp/include/secp256k1.h"
#include "vendor/secp256k1-zkp/include/secp256k1_ecdh.h"
#include "vendor/secp256k1-zkp/include/secp256k1_preallocated.h"
#include "vendor/secp256k1-zkp/include/secp256k1_recovery.h"
// The minimum buffer size can vary in future secp256k1-zkp revisions.
// It can always be determined by a call to
// secp256k1_context_preallocated_size(...) as below.
STATIC uint8_t g_buffer[(1UL << (ECMULT_WINDOW_SIZE + 4)) + 208] = {0};
void secp256k1_default_illegal_callback_fn(const char *str, void *data) {
(void)data;
mp_raise_ValueError(str);
return;
}
void secp256k1_default_error_callback_fn(const char *str, void *data) {
(void)data;
__fatal_error(NULL, str, __FILE__, __LINE__, __func__);
return;
}
STATIC const secp256k1_context *mod_trezorcrypto_secp256k1_context(void) {
static secp256k1_context *ctx;
if (ctx == NULL) {
size_t sz = secp256k1_context_preallocated_size(SECP256K1_CONTEXT_SIGN |
SECP256K1_CONTEXT_VERIFY);
if (sz > sizeof g_buffer) {
mp_raise_ValueError("secp256k1 context is too large");
}
void *buf = (void *)g_buffer;
ctx = secp256k1_context_preallocated_create(
buf, SECP256K1_CONTEXT_SIGN | SECP256K1_CONTEXT_VERIFY);
uint8_t rand[32];
random_buffer(rand, 32);
int ret = secp256k1_context_randomize(ctx, rand);
if (ret != 1) {
mp_raise_msg(&mp_type_RuntimeError, "secp256k1_context_randomize failed");
}
}
return ctx;
}
/// def generate_secret() -> bytes:
/// '''
/// Generate secret key.
/// '''
STATIC mp_obj_t mod_trezorcrypto_secp256k1_zkp_generate_secret() {
uint8_t out[32];
for (;;) {
random_buffer(out, 32);
// check whether secret > 0 && secret < curve_order
if (0 == memcmp(out,
"\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00"
"\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00"
"\x00\x00\x00\x00\x00\x00",
32))
continue;
if (0 <= memcmp(out,
"\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF"
"\xFF\xFF\xFE\xBA\xAE\xDC\xE6\xAF\x48\xA0\x3B\xBF\xD2"
"\x5E\x8C\xD0\x36\x41\x41",
32))
continue;
break;
}
return mp_obj_new_bytes(out, sizeof(out));
}
STATIC MP_DEFINE_CONST_FUN_OBJ_0(
mod_trezorcrypto_secp256k1_zkp_generate_secret_obj,
mod_trezorcrypto_secp256k1_zkp_generate_secret);
/// def publickey(secret_key: bytes, compressed: bool = True) -> bytes:
/// '''
/// Computes public key from secret key.
/// '''
STATIC mp_obj_t mod_trezorcrypto_secp256k1_zkp_publickey(size_t n_args,
const mp_obj_t *args) {
const secp256k1_context *ctx = mod_trezorcrypto_secp256k1_context();
mp_buffer_info_t sk;
mp_get_buffer_raise(args[0], &sk, MP_BUFFER_READ);
secp256k1_pubkey pk;
if (sk.len != 32) {
mp_raise_ValueError("Invalid length of secret key");
}
if (!secp256k1_ec_pubkey_create(ctx, &pk, (const unsigned char *)sk.buf)) {
mp_raise_ValueError("Invalid secret key");
}
bool compressed = n_args < 2 || args[1] == mp_const_true;
uint8_t out[65];
size_t outlen = sizeof(out);
secp256k1_ec_pubkey_serialize(
ctx, out, &outlen, &pk,
compressed ? SECP256K1_EC_COMPRESSED : SECP256K1_EC_UNCOMPRESSED);
return mp_obj_new_bytes(out, outlen);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(
mod_trezorcrypto_secp256k1_zkp_publickey_obj, 1, 2,
mod_trezorcrypto_secp256k1_zkp_publickey);
/// def sign(secret_key: bytes, digest: bytes, compressed: bool = True) ->
/// bytes:
/// '''
/// Uses secret key to produce the signature of the digest.
/// '''
STATIC mp_obj_t mod_trezorcrypto_secp256k1_zkp_sign(size_t n_args,
const mp_obj_t *args) {
const secp256k1_context *ctx = mod_trezorcrypto_secp256k1_context();
mp_buffer_info_t sk, dig;
mp_get_buffer_raise(args[0], &sk, MP_BUFFER_READ);
mp_get_buffer_raise(args[1], &dig, MP_BUFFER_READ);
bool compressed = n_args < 3 || args[2] == mp_const_true;
if (sk.len != 32) {
mp_raise_ValueError("Invalid length of secret key");
}
if (dig.len != 32) {
mp_raise_ValueError("Invalid length of digest");
}
secp256k1_ecdsa_recoverable_signature sig;
uint8_t out[65];
int pby;
if (!secp256k1_ecdsa_sign_recoverable(ctx, &sig, (const uint8_t *)dig.buf,
(const uint8_t *)sk.buf, NULL, NULL)) {
mp_raise_ValueError("Signing failed");
}
secp256k1_ecdsa_recoverable_signature_serialize_compact(ctx, &out[1], &pby,
&sig);
out[0] = 27 + pby + compressed * 4;
return mp_obj_new_bytes(out, sizeof(out));
}
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(
mod_trezorcrypto_secp256k1_zkp_sign_obj, 2, 3,
mod_trezorcrypto_secp256k1_zkp_sign);
/// def verify(public_key: bytes, signature: bytes, digest: bytes) -> bool:
/// '''
/// Uses public key to verify the signature of the digest.
/// Returns True on success.
/// '''
STATIC mp_obj_t mod_trezorcrypto_secp256k1_zkp_verify(mp_obj_t public_key,
mp_obj_t signature,
mp_obj_t digest) {
const secp256k1_context *ctx = mod_trezorcrypto_secp256k1_context();
mp_buffer_info_t pk, sig, dig;
mp_get_buffer_raise(public_key, &pk, MP_BUFFER_READ);
mp_get_buffer_raise(signature, &sig, MP_BUFFER_READ);
mp_get_buffer_raise(digest, &dig, MP_BUFFER_READ);
if (pk.len != 33 && pk.len != 65) {
mp_raise_ValueError("Invalid length of public key");
}
if (sig.len != 64 && sig.len != 65) {
mp_raise_ValueError("Invalid length of signature");
}
int offset = sig.len - 64;
if (dig.len != 32) {
mp_raise_ValueError("Invalid length of digest");
}
secp256k1_ecdsa_signature ec_sig;
if (!secp256k1_ecdsa_signature_parse_compact(
ctx, &ec_sig, (const uint8_t *)sig.buf + offset)) {
mp_raise_ValueError("Invalid signature");
}
secp256k1_pubkey ec_pk;
if (!secp256k1_ec_pubkey_parse(ctx, &ec_pk, (const uint8_t *)pk.buf,
pk.len)) {
mp_raise_ValueError("Invalid public key");
}
return mp_obj_new_bool(1 == secp256k1_ecdsa_verify(ctx, &ec_sig,
(const uint8_t *)dig.buf,
&ec_pk));
}
STATIC MP_DEFINE_CONST_FUN_OBJ_3(mod_trezorcrypto_secp256k1_zkp_verify_obj,
mod_trezorcrypto_secp256k1_zkp_verify);
/// def verify_recover(signature: bytes, digest: bytes) -> bytes:
/// '''
/// Uses signature of the digest to verify the digest and recover the public
/// key. Returns public key on success, None on failure.
/// '''
STATIC mp_obj_t mod_trezorcrypto_secp256k1_zkp_verify_recover(
mp_obj_t signature, mp_obj_t digest) {
const secp256k1_context *ctx = mod_trezorcrypto_secp256k1_context();
mp_buffer_info_t sig, dig;
mp_get_buffer_raise(signature, &sig, MP_BUFFER_READ);
mp_get_buffer_raise(digest, &dig, MP_BUFFER_READ);
if (sig.len != 65) {
mp_raise_ValueError("Invalid length of signature");
}
if (dig.len != 32) {
mp_raise_ValueError("Invalid length of digest");
}
int recid = ((const uint8_t *)sig.buf)[0] - 27;
if (recid >= 8) {
mp_raise_ValueError("Invalid recid in signature");
}
bool compressed = (recid >= 4);
recid &= 3;
secp256k1_ecdsa_recoverable_signature ec_sig;
if (!secp256k1_ecdsa_recoverable_signature_parse_compact(
ctx, &ec_sig, (const uint8_t *)sig.buf + 1, recid)) {
mp_raise_ValueError("Invalid signature");
}
secp256k1_pubkey pk;
if (!secp256k1_ecdsa_recover(ctx, &pk, &ec_sig, (const uint8_t *)dig.buf)) {
return mp_const_none;
}
uint8_t out[65];
size_t pklen = sizeof(out);
secp256k1_ec_pubkey_serialize(
ctx, out, &pklen, &pk,
compressed ? SECP256K1_EC_COMPRESSED : SECP256K1_EC_UNCOMPRESSED);
return mp_obj_new_bytes(out, pklen);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_2(
mod_trezorcrypto_secp256k1_zkp_verify_recover_obj,
mod_trezorcrypto_secp256k1_zkp_verify_recover);
static int secp256k1_ecdh_hash_passthrough(uint8_t *output, const uint8_t *x,
const uint8_t *y, void *data) {
output[0] = 0x04;
memcpy(&output[1], x, 32);
memcpy(&output[33], y, 32);
(void)data;
return 1;
}
/// def multiply(secret_key: bytes, public_key: bytes) -> bytes:
/// '''
/// Multiplies point defined by public_key with scalar defined by
/// secret_key. Useful for ECDH.
/// '''
STATIC mp_obj_t mod_trezorcrypto_secp256k1_zkp_multiply(mp_obj_t secret_key,
mp_obj_t public_key) {
const secp256k1_context *ctx = mod_trezorcrypto_secp256k1_context();
mp_buffer_info_t sk, pk;
mp_get_buffer_raise(secret_key, &sk, MP_BUFFER_READ);
mp_get_buffer_raise(public_key, &pk, MP_BUFFER_READ);
if (sk.len != 32) {
mp_raise_ValueError("Invalid length of secret key");
}
if (pk.len != 33 && pk.len != 65) {
mp_raise_ValueError("Invalid length of public key");
}
secp256k1_pubkey ec_pk;
if (!secp256k1_ec_pubkey_parse(ctx, &ec_pk, (const uint8_t *)pk.buf,
pk.len)) {
mp_raise_ValueError("Invalid public key");
}
uint8_t out[65];
if (!secp256k1_ecdh(ctx, out, &ec_pk, (const uint8_t *)sk.buf,
secp256k1_ecdh_hash_passthrough, NULL)) {
mp_raise_ValueError("Multiply failed");
}
return mp_obj_new_bytes(out, sizeof(out));
}
STATIC MP_DEFINE_CONST_FUN_OBJ_2(mod_trezorcrypto_secp256k1_zkp_multiply_obj,
mod_trezorcrypto_secp256k1_zkp_multiply);
STATIC const mp_rom_map_elem_t
mod_trezorcrypto_secp256k1_zkp_globals_table[] = {
{MP_ROM_QSTR(MP_QSTR___name__), MP_ROM_QSTR(MP_QSTR_secp256k1_zkp)},
{MP_ROM_QSTR(MP_QSTR_generate_secret),
MP_ROM_PTR(&mod_trezorcrypto_secp256k1_zkp_generate_secret_obj)},
{MP_ROM_QSTR(MP_QSTR_publickey),
MP_ROM_PTR(&mod_trezorcrypto_secp256k1_zkp_publickey_obj)},
{MP_ROM_QSTR(MP_QSTR_sign),
MP_ROM_PTR(&mod_trezorcrypto_secp256k1_zkp_sign_obj)},
{MP_ROM_QSTR(MP_QSTR_verify),
MP_ROM_PTR(&mod_trezorcrypto_secp256k1_zkp_verify_obj)},
{MP_ROM_QSTR(MP_QSTR_verify_recover),
MP_ROM_PTR(&mod_trezorcrypto_secp256k1_zkp_verify_recover_obj)},
{MP_ROM_QSTR(MP_QSTR_multiply),
MP_ROM_PTR(&mod_trezorcrypto_secp256k1_zkp_multiply_obj)},
};
STATIC MP_DEFINE_CONST_DICT(mod_trezorcrypto_secp256k1_zkp_globals,
mod_trezorcrypto_secp256k1_zkp_globals_table);
STATIC const mp_obj_module_t mod_trezorcrypto_secp256k1_zkp_module = {
.base = {&mp_type_module},
.globals = (mp_obj_dict_t *)&mod_trezorcrypto_secp256k1_zkp_globals,
};

View File

@ -44,6 +44,7 @@
#include "modtrezorcrypto-rfc6979.h"
#include "modtrezorcrypto-ripemd160.h"
#include "modtrezorcrypto-secp256k1.h"
#include "modtrezorcrypto-secp256k1_zkp.h"
#include "modtrezorcrypto-sha1.h"
#include "modtrezorcrypto-sha256.h"
#include "modtrezorcrypto-sha3-256.h"
@ -79,6 +80,8 @@ STATIC const mp_rom_map_elem_t mp_module_trezorcrypto_globals_table[] = {
MP_ROM_PTR(&mod_trezorcrypto_Ripemd160_type)},
{MP_ROM_QSTR(MP_QSTR_secp256k1),
MP_ROM_PTR(&mod_trezorcrypto_secp256k1_module)},
{MP_ROM_QSTR(MP_QSTR_secp256k1_zkp),
MP_ROM_PTR(&mod_trezorcrypto_secp256k1_zkp_module)},
{MP_ROM_QSTR(MP_QSTR_sha1), MP_ROM_PTR(&mod_trezorcrypto_Sha1_type)},
{MP_ROM_QSTR(MP_QSTR_sha256), MP_ROM_PTR(&mod_trezorcrypto_Sha256_type)},
{MP_ROM_QSTR(MP_QSTR_sha512), MP_ROM_PTR(&mod_trezorcrypto_Sha512_type)},

View File

@ -44,6 +44,7 @@ SECTIONS {
.flash2 : ALIGN(512) {
build/firmware/frozen_mpy.o(.rodata*);
build/firmware/vendor/secp256k1-zkp/src/secp256k1.o(.rodata*);
. = ALIGN(512);
} >FLASH2 AT>FLASH2

View File

@ -1 +1,7 @@
from trezorcrypto import curve25519, ed25519, nist256p1, secp256k1 # noqa: F401
from trezorcrypto import ( # noqa: F401
curve25519,
ed25519,
nist256p1,
secp256k1,
secp256k1_zkp,
)

View File

@ -1,10 +1,10 @@
from common import *
from trezor.crypto import random
from trezor.crypto.curve import secp256k1
from trezor.crypto.curve import secp256k1, secp256k1_zkp
class TestCryptoSecp256k1(unittest.TestCase):
class Secp256k1Common(object):
impl = None
# vectors from https://crypto.stackexchange.com/questions/784/are-there-any-secp256k1-ecdsa-test-examples-available
vectors = [
@ -57,7 +57,7 @@ class TestCryptoSecp256k1(unittest.TestCase):
def test_generate_secret(self):
for _ in range(100):
sk = secp256k1.generate_secret()
sk = self.impl.generate_secret()
self.assertTrue(len(sk) == 32)
self.assertTrue(sk != b'\x00' * 32)
self.assertTrue(sk < b'\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFE\xBA\xAE\xDC\xE6\xAF\x48\xA0\x3B\xBF\xD2\x5E\x8C\xD0\x36\x41\x41')
@ -68,48 +68,78 @@ class TestCryptoSecp256k1(unittest.TestCase):
if len(sk) < 64:
sk = '0' * (64 - len(sk)) + sk
pk = pk.lower()
pk65 = hexlify(secp256k1.publickey(unhexlify(sk), False)).decode() # uncompressed
pk65 = hexlify(self.impl.publickey(unhexlify(sk), False)).decode() # uncompressed
self.assertEqual(str(pk65), '04' + pk)
pk33 = hexlify(secp256k1.publickey(unhexlify(sk))).decode()
pk33 = hexlify(self.impl.publickey(unhexlify(sk))).decode()
if pk[-1] in '02468ace':
self.assertEqual(pk33, '02' + pk[:64])
else:
self.assertEqual(pk33, '03' + pk[:64])
def test_sign_verify_min_max(self):
sk = secp256k1.generate_secret()
pk = secp256k1.publickey(sk)
sk = self.impl.generate_secret()
pk = self.impl.publickey(sk)
dig = bytes([1] + [0] * 31)
sig = secp256k1.sign(sk, dig)
self.assertTrue(secp256k1.verify(pk, sig, dig))
sig = self.impl.sign(sk, dig)
self.assertTrue(self.impl.verify(pk, sig, dig))
dig = bytes([0] * 31 + [1])
sig = secp256k1.sign(sk, dig)
self.assertTrue(secp256k1.verify(pk, sig, dig))
sig = self.impl.sign(sk, dig)
self.assertTrue(self.impl.verify(pk, sig, dig))
dig = bytes([0xFF] * 32)
sig = secp256k1.sign(sk, dig)
self.assertTrue(secp256k1.verify(pk, sig, dig))
sig = self.impl.sign(sk, dig)
self.assertTrue(self.impl.verify(pk, sig, dig))
def test_sign_verify_random(self):
for _ in range(100):
sk = secp256k1.generate_secret()
pk = secp256k1.publickey(sk)
sk = self.impl.generate_secret()
pk = self.impl.publickey(sk)
dig = random.bytes(32)
sig = secp256k1.sign(sk, dig)
self.assertTrue(secp256k1.verify(pk, sig, dig))
sig = self.impl.sign(sk, dig)
self.assertTrue(self.impl.verify(pk, sig, dig))
def test_verify_recover(self):
for compressed in [False, True]:
for _ in range(100):
sk = secp256k1.generate_secret()
pk = secp256k1.publickey(sk, compressed)
sk = self.impl.generate_secret()
pk = self.impl.publickey(sk, compressed)
dig = random.bytes(32)
sig = secp256k1.sign(sk, dig, compressed)
pk2 = secp256k1.verify_recover(sig, dig)
sig = self.impl.sign(sk, dig, compressed)
pk2 = self.impl.verify_recover(sig, dig)
self.assertEqual(pk, pk2)
def test_ecdh(self):
for _ in range(100):
sk1 = self.impl.generate_secret()
pk1 = self.impl.publickey(sk1, False)
sk2 = self.impl.generate_secret()
pk2 = self.impl.publickey(sk2, True)
self.assertEqual(self.impl.multiply(sk1, pk2), self.impl.multiply(sk2, pk1))
(sk, pk) = self.vectors[0]
sk = hex(sk)[2:]
if len(sk) < 64:
sk = '0' * (64 - len(sk)) + sk
sk = unhexlify(sk)
pk = pk.lower()
pk33 = self.impl.publickey(sk)
pk65 = self.impl.publickey(sk, False)
fixed_vector_hex = b"0479be667ef9dcbbac55a06295ce870b07029bfcdb2dce28d959f2815b16f81798483ada7726a3c4655da4fbfc0e1108a8fd17b448a68554199c47d08ffb10d4b8"
fixed_vector1 = self.impl.multiply(sk, pk65)
fixed_vector2 = self.impl.multiply(sk, pk33)
self.assertEqual(fixed_vector1, fixed_vector2)
self.assertEqual(hexlify(fixed_vector1), fixed_vector_hex)
class TestCryptoSecp256k1(Secp256k1Common, unittest.TestCase):
def __init__(self):
self.impl = secp256k1
class TestCryptoSecp256k1Zkp(Secp256k1Common, unittest.TestCase):
def __init__(self):
self.impl = secp256k1_zkp
if __name__ == '__main__':
unittest.main()

1
vendor/secp256k1-zkp vendored Submodule

@ -0,0 +1 @@
Subproject commit 1c830b4c9ac30aa32e246ea3ab8ef9ef99acf664