mirror of
https://github.com/trezor/trezor-firmware.git
synced 2025-01-08 22:40:59 +00:00
add test_debuglink test
This commit is contained in:
parent
eeb6a847ea
commit
49cecb563d
25
tests/test_debuglink.py
Normal file
25
tests/test_debuglink.py
Normal file
@ -0,0 +1,25 @@
|
||||
import time
|
||||
import unittest
|
||||
import common
|
||||
import binascii
|
||||
|
||||
from trezorlib import messages_pb2 as proto
|
||||
from trezorlib import types_pb2 as types
|
||||
from trezorlib.client import PinException
|
||||
|
||||
class TestDebugLink(common.TrezorTest):
|
||||
|
||||
def test_layout(self):
|
||||
layout = self.client.debuglink.read_layout()
|
||||
print binascii.hexlify(layout)
|
||||
|
||||
def test_mnemonic(self):
|
||||
mnemonic = self.client.debuglink.read_mnemonic()
|
||||
print mnemonic
|
||||
|
||||
def test_node(self):
|
||||
node = self.client.debuglink.read_node()
|
||||
print node
|
||||
|
||||
if __name__ == '__main__':
|
||||
unittest.main()
|
@ -7,7 +7,6 @@ from ecdsa.util import string_to_number, number_to_string
|
||||
from ecdsa.curves import SECP256k1
|
||||
from ecdsa.ellipticcurve import Point, INFINITY
|
||||
|
||||
import msqrt
|
||||
import tools
|
||||
import types_pb2 as proto_types
|
||||
|
||||
@ -31,7 +30,7 @@ def sec_to_public_pair(pubkey):
|
||||
curve = generator.curve()
|
||||
p = curve.p()
|
||||
alpha = (pow(x, 3, p) + curve.a() * x + curve.b()) % p
|
||||
beta = msqrt.modular_sqrt(alpha, p)
|
||||
beta = ecdsa.number_theory.square_root_mod_prime(alpha, p)
|
||||
if is_even == bool(beta & 1):
|
||||
return (x, p - beta)
|
||||
return (x, beta)
|
||||
|
@ -6,36 +6,51 @@ def pin_info(pin):
|
||||
|
||||
def button_press(yes_no):
|
||||
print "User pressed", '"y"' if yes_no else '"n"'
|
||||
|
||||
|
||||
class DebugLink(object):
|
||||
def __init__(self, transport, pin_func=pin_info, button_func=button_press):
|
||||
self.transport = transport
|
||||
|
||||
self.pin_func = pin_func
|
||||
self.button_func = button_func
|
||||
|
||||
|
||||
def read_pin(self):
|
||||
self.transport.write(proto.DebugLinkGetState())
|
||||
obj = self.transport.read_blocking()
|
||||
print "Read PIN:", obj.pin
|
||||
print "Read matrix:", obj.matrix
|
||||
|
||||
|
||||
return (obj.pin, obj.matrix)
|
||||
|
||||
|
||||
def read_pin_encoded(self):
|
||||
pin, matrix = self.read_pin()
|
||||
|
||||
|
||||
# Now we have real PIN and PIN matrix.
|
||||
# We have to encode that into encoded pin,
|
||||
# because application must send back positions
|
||||
# on keypad, not a real PIN.
|
||||
pin_encoded = ''.join([ str(matrix.index(p) + 1) for p in pin])
|
||||
|
||||
|
||||
print "Encoded PIN:", pin_encoded
|
||||
self.pin_func(pin_encoded)
|
||||
|
||||
|
||||
return pin_encoded
|
||||
|
||||
|
||||
def read_layout(self):
|
||||
self.transport.write(proto.DebugLinkGetState())
|
||||
obj = self.transport.read_blocking()
|
||||
return obj.layout
|
||||
|
||||
def read_mnemonic(self):
|
||||
self.transport.write(proto.DebugLinkGetState())
|
||||
obj = self.transport.read_blocking()
|
||||
return obj.mnemonic
|
||||
|
||||
def read_node(self):
|
||||
self.transport.write(proto.DebugLinkGetState())
|
||||
obj = self.transport.read_blocking()
|
||||
return obj.node
|
||||
|
||||
def press_button(self, yes_no):
|
||||
print "Pressing", yes_no
|
||||
self.button_func(yes_no)
|
||||
@ -43,7 +58,7 @@ class DebugLink(object):
|
||||
|
||||
def press_yes(self):
|
||||
self.press_button(True)
|
||||
|
||||
|
||||
def press_no(self):
|
||||
self.press_button(False)
|
||||
|
||||
|
@ -1,94 +0,0 @@
|
||||
# from http://eli.thegreenplace.net/2009/03/07/computing-modular-square-roots-in-python/
|
||||
|
||||
def modular_sqrt(a, p):
|
||||
""" Find a quadratic residue (mod p) of 'a'. p
|
||||
must be an odd prime.
|
||||
|
||||
Solve the congruence of the form:
|
||||
x^2 = a (mod p)
|
||||
And returns x. Note that p - x is also a root.
|
||||
|
||||
0 is returned is no square root exists for
|
||||
these a and p.
|
||||
|
||||
The Tonelli-Shanks algorithm is used (except
|
||||
for some simple cases in which the solution
|
||||
is known from an identity). This algorithm
|
||||
runs in polynomial time (unless the
|
||||
generalized Riemann hypothesis is false).
|
||||
"""
|
||||
# Simple cases
|
||||
#
|
||||
if legendre_symbol(a, p) != 1:
|
||||
return 0
|
||||
elif a == 0:
|
||||
return 0
|
||||
elif p == 2:
|
||||
return p
|
||||
elif p % 4 == 3:
|
||||
return pow(a, (p + 1) / 4, p)
|
||||
|
||||
# Partition p-1 to s * 2^e for an odd s (i.e.
|
||||
# reduce all the powers of 2 from p-1)
|
||||
#
|
||||
s = p - 1
|
||||
e = 0
|
||||
while s % 2 == 0:
|
||||
s /= 2
|
||||
e += 1
|
||||
|
||||
# Find some 'n' with a legendre symbol n|p = -1.
|
||||
# Shouldn't take long.
|
||||
#
|
||||
n = 2
|
||||
while legendre_symbol(n, p) != -1:
|
||||
n += 1
|
||||
|
||||
# Here be dragons!
|
||||
# Read the paper "Square roots from 1; 24, 51,
|
||||
# 10 to Dan Shanks" by Ezra Brown for more
|
||||
# information
|
||||
#
|
||||
|
||||
# x is a guess of the square root that gets better
|
||||
# with each iteration.
|
||||
# b is the "fudge factor" - by how much we're off
|
||||
# with the guess. The invariant x^2 = ab (mod p)
|
||||
# is maintained throughout the loop.
|
||||
# g is used for successive powers of n to update
|
||||
# both a and b
|
||||
# r is the exponent - decreases with each update
|
||||
#
|
||||
x = pow(a, (s + 1) / 2, p)
|
||||
b = pow(a, s, p)
|
||||
g = pow(n, s, p)
|
||||
r = e
|
||||
|
||||
while True:
|
||||
t = b
|
||||
m = 0
|
||||
for m in xrange(r):
|
||||
if t == 1:
|
||||
break
|
||||
t = pow(t, 2, p)
|
||||
|
||||
if m == 0:
|
||||
return x
|
||||
|
||||
gs = pow(g, 2 ** (r - m - 1), p)
|
||||
g = (gs * gs) % p
|
||||
x = (x * gs) % p
|
||||
b = (b * g) % p
|
||||
r = m
|
||||
|
||||
def legendre_symbol(a, p):
|
||||
""" Compute the Legendre symbol a|p using
|
||||
Euler's criterion. p is a prime, a is
|
||||
relatively prime to p (if p divides
|
||||
a, then a|p = 0)
|
||||
|
||||
Returns 1 if a has a square root modulo
|
||||
p, -1 otherwise.
|
||||
"""
|
||||
ls = pow(a, (p - 1) / 2, p)
|
||||
return -1 if ls == p - 1 else ls
|
Loading…
Reference in New Issue
Block a user