1
0
mirror of https://github.com/trezor/trezor-firmware.git synced 2025-03-03 08:46:05 +00:00

Merge branch 'onvej-sl/explicit-initialization'

This commit is contained in:
Pavol Rusnak 2019-10-09 17:23:21 +02:00
commit 3222ffb554
No known key found for this signature in database
GPG Key ID: 91F3B339B9A02A3D
72 changed files with 808 additions and 792 deletions

View File

@ -66,11 +66,11 @@ void ethereum_address_checksum(const uint8_t *addr, char *address, bool rskip60,
}
address[40] = 0;
SHA3_CTX ctx;
uint8_t hash[32];
SHA3_CTX ctx = {0};
uint8_t hash[32] = {0};
keccak_256_Init(&ctx);
if (rskip60) {
char prefix[16];
char prefix[16] = {0};
int prefix_size = bn_format_uint64(chain_id, NULL, "0x", 0, 0, false,
prefix, sizeof(prefix));
keccak_Update(&ctx, (const uint8_t *)prefix, prefix_size);

View File

@ -108,7 +108,7 @@ aligned_array(unsigned long, dec_hybrid_table, 12, 16) = NEH_DEC_HYBRID_DATA;
AES_RETURN aes_test_alignment_detection(unsigned int n) /* 4 <= n <= 16 */
{ uint8_t p[16];
uint32_t i, count_eq = 0, count_neq = 0;
uint32_t i = 0, count_eq = 0, count_neq = 0;
if(n < 4 || n > 16)
return EXIT_FAILURE;
@ -156,7 +156,7 @@ AES_RETURN aes_ecb_encrypt(const unsigned char *ibuf, unsigned char *obuf,
}
else
{ aligned_auto(uint8_t, buf, BFR_BLOCKS * AES_BLOCK_SIZE, 16);
uint8_t *ip, *op;
uint8_t *ip = NULL, *op = NULL;
while(nb)
{
@ -218,7 +218,7 @@ AES_RETURN aes_ecb_decrypt(const unsigned char *ibuf, unsigned char *obuf,
}
else
{ aligned_auto(uint8_t, buf, BFR_BLOCKS * AES_BLOCK_SIZE, 16);
uint8_t *ip, *op;
uint8_t *ip = NULL, *op = NULL;
while(nb)
{
@ -287,7 +287,7 @@ AES_RETURN aes_cbc_encrypt(const unsigned char *ibuf, unsigned char *obuf,
}
else
{ aligned_auto(uint8_t, buf, BFR_BLOCKS * AES_BLOCK_SIZE, 16);
uint8_t *ip, *op;
uint8_t *ip = NULL, *op = NULL;
while(nb)
{
@ -385,7 +385,7 @@ AES_RETURN aes_cbc_decrypt(const unsigned char *ibuf, unsigned char *obuf,
}
else
{ aligned_auto(uint8_t, buf, BFR_BLOCKS * AES_BLOCK_SIZE, 16);
uint8_t *ip, *op;
uint8_t *ip = NULL, *op = NULL;
while(nb)
{
@ -497,7 +497,7 @@ AES_RETURN aes_cfb_encrypt(const unsigned char *ibuf, unsigned char *obuf,
}
else /* input, output or both are unaligned */
{ aligned_auto(uint8_t, buf, BFR_BLOCKS * AES_BLOCK_SIZE, 16);
uint8_t *ip, *op;
uint8_t *ip = NULL, *op = NULL;
while(nb)
{
@ -625,7 +625,7 @@ AES_RETURN aes_cfb_decrypt(const unsigned char *ibuf, unsigned char *obuf,
}
else /* input, output or both are unaligned */
{ aligned_auto(uint8_t, buf, BFR_BLOCKS * AES_BLOCK_SIZE, 16);
uint8_t *ip, *op;
uint8_t *ip = NULL, *op = NULL;
while(nb)
{
@ -763,7 +763,7 @@ AES_RETURN aes_ofb_crypt(const unsigned char *ibuf, unsigned char *obuf,
}
else /* input, output or both are unaligned */
{ aligned_auto(uint8_t, buf, BFR_BLOCKS * AES_BLOCK_SIZE, 16);
uint8_t *ip, *op;
uint8_t *ip = NULL, *op = NULL;
while(nb)
{
@ -850,14 +850,14 @@ AES_RETURN aes_ofb_crypt(const unsigned char *ibuf, unsigned char *obuf,
AES_RETURN aes_ctr_crypt(const unsigned char *ibuf, unsigned char *obuf,
int len, unsigned char *cbuf, cbuf_inc ctr_inc, aes_encrypt_ctx ctx[1])
{ unsigned char *ip;
int i, blen, b_pos = (int)(ctx->inf.b[2]);
int i = 0, blen = 0, b_pos = (int)(ctx->inf.b[2]);
#if defined( USE_VIA_ACE_IF_PRESENT )
aligned_auto(uint8_t, buf, BFR_LENGTH, 16);
if(ctx->inf.b[1] == 0xff && ALIGN_OFFSET( ctx, 16 ))
return EXIT_FAILURE;
#else
uint8_t buf[BFR_LENGTH];
uint8_t buf[BFR_LENGTH] = {0};
#endif
if(b_pos)

View File

@ -96,7 +96,7 @@ extern "C"
AES_RETURN aes_xi(encrypt)(const unsigned char *in, unsigned char *out, const aes_encrypt_ctx cx[1])
{ uint32_t locals(b0, b1);
const uint32_t *kp;
const uint32_t *kp = NULL;
#if defined( dec_fmvars )
dec_fmvars; /* declare variables for fwd_mcol() if needed */
#endif
@ -234,7 +234,7 @@ AES_RETURN aes_xi(decrypt)(const unsigned char *in, unsigned char *out, const ae
#if defined( dec_imvars )
dec_imvars; /* declare variables for inv_mcol() if needed */
#endif
const uint32_t *kp;
const uint32_t *kp = NULL;
if(cx->inf.b[0] != 10 * AES_BLOCK_SIZE && cx->inf.b[0] != 12 * AES_BLOCK_SIZE && cx->inf.b[0] != 14 * AES_BLOCK_SIZE)
return EXIT_FAILURE;

View File

@ -272,7 +272,7 @@ AES_RETURN aes_init(void)
#if defined(FF_TABLES)
uint8_t pow[512], log[256];
uint8_t pow[512] = {0}, log[256] = {0};
if(init)
return EXIT_SUCCESS;

View File

@ -77,7 +77,7 @@ void base32_encode_unsafe(const uint8_t *in, size_t inlen, uint8_t *out) {
uint8_t remainder = inlen % 5;
size_t limit = inlen - remainder;
size_t i, j;
size_t i = 0, j = 0;
for (i = 0, j = 0; i < limit; i += 5, j += 8) {
base32_5to8(&in[i], 5, &out[j]);
}
@ -90,7 +90,7 @@ bool base32_decode_unsafe(const uint8_t *in, size_t inlen, uint8_t *out,
uint8_t remainder = inlen % 8;
size_t limit = inlen - remainder;
size_t i, j;
size_t i = 0, j = 0;
for (i = 0, j = 0; i < limit; i += 8, j += 5) {
if (!base32_8to5(&in[i], 8, &out[j], alphabet)) {
return false;
@ -153,6 +153,7 @@ bool base32_8to5(const uint8_t *in, uint8_t length, uint8_t *out,
if (alphabet) {
uint8_t decoded[length];
memset(decoded, 0, sizeof(decoded));
for (size_t i = 0; i < length; i++) {
int ret = base32_decode_character(in[i], alphabet);

View File

@ -58,9 +58,9 @@ bool b58tobin(void *bin, size_t *binszp, const char *b58) {
size_t outisz =
(binsz + sizeof(b58_almostmaxint_t) - 1) / sizeof(b58_almostmaxint_t);
b58_almostmaxint_t outi[outisz];
b58_maxint_t t;
b58_almostmaxint_t c;
size_t i, j;
b58_maxint_t t = 0;
b58_almostmaxint_t c = 0;
size_t i = 0, j = 0;
uint8_t bytesleft = binsz % sizeof(b58_almostmaxint_t);
b58_almostmaxint_t zeromask =
bytesleft ? (b58_almostmaxint_mask << (bytesleft * 8)) : 0;
@ -128,9 +128,9 @@ bool b58tobin(void *bin, size_t *binszp, const char *b58) {
int b58check(const void *bin, size_t binsz, HasherType hasher_type,
const char *base58str) {
unsigned char buf[32];
unsigned char buf[32] = {0};
const uint8_t *binc = bin;
unsigned i;
unsigned i = 0;
if (binsz < 4) return -4;
hasher_Raw(hasher_type, bin, binsz - 4, buf);
if (memcmp(&binc[binsz - 4], buf, 4)) return -1;
@ -146,9 +146,9 @@ int b58check(const void *bin, size_t binsz, HasherType hasher_type,
bool b58enc(char *b58, size_t *b58sz, const void *data, size_t binsz) {
const uint8_t *bin = data;
int carry;
size_t i, j, high, zcount = 0;
size_t size;
int carry = 0;
size_t i = 0, j = 0, high = 0, zcount = 0;
size_t size = 0;
while (zcount < binsz && !bin[zcount]) ++zcount;
@ -190,6 +190,7 @@ int base58_encode_check(const uint8_t *data, int datalen,
return 0;
}
uint8_t buf[datalen + 32];
memset(buf, 0, sizeof(buf));
uint8_t *hash = buf + datalen;
memcpy(buf, data, datalen);
hasher_Raw(hasher_type, data, datalen, hash);
@ -205,6 +206,7 @@ int base58_decode_check(const char *str, HasherType hasher_type, uint8_t *data,
return 0;
}
uint8_t d[datalen + 4];
memset(d, 0, sizeof(d));
size_t res = datalen + 4;
if (b58tobin(d, &res, str) != true) {
return 0;
@ -219,9 +221,9 @@ int base58_decode_check(const char *str, HasherType hasher_type, uint8_t *data,
#if USE_GRAPHENE
int b58gphcheck(const void *bin, size_t binsz, const char *base58str) {
unsigned char buf[32];
unsigned char buf[32] = {0};
const uint8_t *binc = bin;
unsigned i;
unsigned i = 0;
if (binsz < 4) return -4;
ripemd160(bin, binsz - 4, buf); // No double SHA256, but a single RIPEMD160
if (memcmp(&binc[binsz - 4], buf, 4)) return -1;
@ -241,6 +243,7 @@ int base58gph_encode_check(const uint8_t *data, int datalen, char *str,
return 0;
}
uint8_t buf[datalen + 32];
memset(buf, 0, sizeof(buf));
uint8_t *hash = buf + datalen;
memcpy(buf, data, datalen);
ripemd160(data, datalen, hash); // No double SHA256, but a single RIPEMD160
@ -255,6 +258,7 @@ int base58gph_decode_check(const char *str, uint8_t *data, int datalen) {
return 0;
}
uint8_t d[datalen + 4];
memset(d, 0, sizeof(d));
size_t res = datalen + 4;
if (b58tobin(d, &res, str) != true) {
return 0;

View File

@ -127,7 +127,7 @@ int hdnode_from_xprv(uint32_t depth, uint32_t child_num,
if (info == 0) {
failed = true;
} else if (info->params) {
bignum256 a;
bignum256 a = {0};
bn_read_be(private_key, &a);
if (bn_is_zero(&a)) { // == 0
failed = true;
@ -170,7 +170,7 @@ int hdnode_from_seed(const uint8_t *seed, int seed_len, const char *curve,
hmac_sha512_Final(&ctx, I);
if (out->curve->params) {
bignum256 a;
bignum256 a = {0};
while (true) {
bn_read_be(I, &a);
if (!bn_is_zero(&a) // != 0
@ -192,8 +192,8 @@ int hdnode_from_seed(const uint8_t *seed, int seed_len, const char *curve,
}
uint32_t hdnode_fingerprint(HDNode *node) {
uint8_t digest[32];
uint32_t fingerprint;
uint8_t digest[32] = {0};
uint32_t fingerprint = 0;
hdnode_fill_public_key(node);
hasher_Raw(node->curve->hasher_pubkey, node->public_key, 33, digest);
@ -422,9 +422,9 @@ int hdnode_from_entropy_cardano_icarus(const uint8_t *pass, int pass_len,
int hdnode_public_ckd_cp(const ecdsa_curve *curve, const curve_point *parent,
const uint8_t *parent_chain_code, uint32_t i,
curve_point *child, uint8_t *child_chain_code) {
uint8_t data[1 + 32 + 4];
uint8_t I[32 + 32];
bignum256 c;
uint8_t data[(1 + 32) + 4] = {0};
uint8_t I[32 + 32] = {0};
bignum256 c = {0};
if (i & 0x80000000) { // private derivation
return 0;
@ -459,7 +459,7 @@ int hdnode_public_ckd_cp(const ecdsa_curve *curve, const curve_point *parent,
}
int hdnode_public_ckd(HDNode *inout, uint32_t i) {
curve_point parent, child;
curve_point parent = {0}, child = {0};
if (!ecdsa_read_pubkey(inout->curve->params, inout->public_key, &parent)) {
return 0;
@ -487,8 +487,8 @@ void hdnode_public_ckd_address_optimized(const curve_point *pub,
HasherType hasher_pubkey,
HasherType hasher_base58, char *addr,
int addrsize, int addrformat) {
uint8_t child_pubkey[33];
curve_point b;
uint8_t child_pubkey[33] = {0};
curve_point b = {0};
hdnode_public_ckd_cp(&secp256k1, pub, chain_code, i, &b, NULL);
child_pubkey[0] = 0x02 | (b.y.val[0] & 0x01);
@ -544,7 +544,7 @@ int hdnode_private_ckd_cached(HDNode *inout, const uint32_t *i, size_t i_count,
private_ckd_cache_root_set = true;
} else {
// try to find parent
int j;
int j = 0;
for (j = 0; j < BIP32_CACHE_SIZE; j++) {
if (private_ckd_cache[j].set &&
private_ckd_cache[j].depth == i_count - 1 &&
@ -560,7 +560,7 @@ int hdnode_private_ckd_cached(HDNode *inout, const uint32_t *i, size_t i_count,
// else derive parent
if (!found) {
size_t k;
size_t k = 0;
for (k = 0; k < i_count - 1; k++) {
if (hdnode_private_ckd(inout, i[k]) == 0) return 0;
}
@ -633,8 +633,8 @@ void hdnode_fill_public_key(HDNode *node) {
#if USE_ETHEREUM
int hdnode_get_ethereum_pubkeyhash(const HDNode *node, uint8_t *pubkeyhash) {
uint8_t buf[65];
SHA3_CTX ctx;
uint8_t buf[65] = {0};
SHA3_CTX ctx = {0};
/* get uncompressed public key */
ecdsa_get_public_key65(node->curve->params, node->private_key, buf);
@ -687,7 +687,7 @@ int hdnode_get_nem_shared_key(const HDNode *node,
int hdnode_nem_encrypt(const HDNode *node, const ed25519_public_key public_key,
const uint8_t *iv_immut, const uint8_t *salt,
const uint8_t *payload, size_t size, uint8_t *buffer) {
uint8_t last_block[AES_BLOCK_SIZE];
uint8_t last_block[AES_BLOCK_SIZE] = {0};
uint8_t remainder = size % AES_BLOCK_SIZE;
// Round down to last whole block
@ -699,15 +699,15 @@ int hdnode_nem_encrypt(const HDNode *node, const ed25519_public_key public_key,
AES_BLOCK_SIZE - remainder);
// the IV gets mutated, so we make a copy not to touch the original
uint8_t iv[AES_BLOCK_SIZE];
uint8_t iv[AES_BLOCK_SIZE] = {0};
memcpy(iv, iv_immut, AES_BLOCK_SIZE);
uint8_t shared_key[SHA3_256_DIGEST_LENGTH];
uint8_t shared_key[SHA3_256_DIGEST_LENGTH] = {0};
if (!hdnode_get_nem_shared_key(node, public_key, salt, NULL, shared_key)) {
return 0;
}
aes_encrypt_ctx ctx;
aes_encrypt_ctx ctx = {0};
int ret = aes_encrypt_key256(shared_key, &ctx);
memzero(shared_key, sizeof(shared_key));
@ -731,13 +731,13 @@ int hdnode_nem_encrypt(const HDNode *node, const ed25519_public_key public_key,
int hdnode_nem_decrypt(const HDNode *node, const ed25519_public_key public_key,
uint8_t *iv, const uint8_t *salt, const uint8_t *payload,
size_t size, uint8_t *buffer) {
uint8_t shared_key[SHA3_256_DIGEST_LENGTH];
uint8_t shared_key[SHA3_256_DIGEST_LENGTH] = {0};
if (!hdnode_get_nem_shared_key(node, public_key, salt, NULL, shared_key)) {
return 0;
}
aes_decrypt_ctx ctx;
aes_decrypt_ctx ctx = {0};
int ret = aes_decrypt_key256(shared_key, &ctx);
memzero(shared_key, sizeof(shared_key));
@ -822,7 +822,7 @@ int hdnode_get_shared_key(const HDNode *node, const uint8_t *peer_public_key,
static int hdnode_serialize(const HDNode *node, uint32_t fingerprint,
uint32_t version, char use_public, char *str,
int strsize) {
uint8_t node_data[78];
uint8_t node_data[78] = {0};
write_be(node_data, version);
node_data[4] = node->depth;
write_be(node_data + 5, fingerprint);
@ -854,7 +854,7 @@ int hdnode_serialize_private(const HDNode *node, uint32_t fingerprint,
int hdnode_deserialize(const char *str, uint32_t version_public,
uint32_t version_private, const char *curve,
HDNode *node, uint32_t *fingerprint) {
uint8_t node_data[78];
uint8_t node_data[78] = {0};
memzero(node, sizeof(HDNode));
node->curve = get_curve_by_name(curve);
if (base58_decode_check(str, node->curve->hasher_base58, node_data,

View File

@ -50,7 +50,7 @@ const char *mnemonic_generate(int strength) {
if (strength % 32 || strength < 128 || strength > 256) {
return 0;
}
uint8_t data[32];
uint8_t data[32] = {0};
random_buffer(data, 32);
const char *r = mnemonic_from_data(data, strength / 8);
memzero(data, sizeof(data));
@ -64,7 +64,7 @@ const char *mnemonic_from_data(const uint8_t *data, int len) {
return 0;
}
uint8_t bits[32 + 1];
uint8_t bits[32 + 1] = {0};
sha256_Raw(data, len, bits);
// checksum
@ -74,7 +74,7 @@ const char *mnemonic_from_data(const uint8_t *data, int len) {
int mlen = len * 3 / 4;
int i, j, idx;
int i = 0, j = 0, idx = 0;
char *p = mnemo;
for (i = 0; i < mlen; i++) {
idx = 0;
@ -114,9 +114,9 @@ int mnemonic_to_entropy(const char *mnemonic, uint8_t *entropy) {
return 0;
}
char current_word[10];
uint32_t j, k, ki, bi = 0;
uint8_t bits[32 + 1];
char current_word[10] = {0};
uint32_t j = 0, k = 0, ki = 0, bi = 0;
uint8_t bits[32 + 1] = {0};
memzero(bits, sizeof(bits));
i = 0;
@ -159,7 +159,7 @@ int mnemonic_to_entropy(const char *mnemonic, uint8_t *entropy) {
}
int mnemonic_check(const char *mnemonic) {
uint8_t bits[32 + 1];
uint8_t bits[32 + 1] = {0};
int seed_len = mnemonic_to_entropy(mnemonic, bits);
if (seed_len != (12 * 11) && seed_len != (18 * 11) && seed_len != (24 * 11)) {
return 0;
@ -198,7 +198,7 @@ void mnemonic_to_seed(const char *mnemonic, const char *passphrase,
}
}
#endif
uint8_t salt[8 + 256];
uint8_t salt[8 + 256] = {0};
memcpy(salt, "mnemonic", 8);
memcpy(salt + 8, passphrase, passphraselen);
static CONFIDENTIAL PBKDF2_HMAC_SHA512_CTX pctx;

View File

@ -64,7 +64,7 @@ static const uint8_t padding[129] =
static void blake256_compress( BLAKE256_CTX *S, const uint8_t *block )
{
uint32_t v[16], m[16], i;
uint32_t v[16] = {0}, m[16] = {0}, i = 0;
#define ROT(x,n) (((x)<<(32-n))|( (x)>>(n)))
#define G(a,b,c,d,e) \
v[a] += (m[sigma[i][e]] ^ u256[sigma[i][e+1]]) + v[b]; \
@ -177,7 +177,7 @@ void blake256_Update( BLAKE256_CTX *S, const uint8_t *in, size_t inlen )
void blake256_Final( BLAKE256_CTX *S, uint8_t *out )
{
uint8_t msglen[8], zo = 0x01, oo = 0x81;
uint8_t msglen[8] = {0}, zo = 0x01, oo = 0x81;
uint32_t lo = S->t[0] + ( S->buflen << 3 ), hi = S->t[1];
/* support for hashing more than 2^32 bits */
@ -228,7 +228,7 @@ void blake256_Final( BLAKE256_CTX *S, uint8_t *out )
void blake256( const uint8_t *in, size_t inlen, uint8_t *out )
{
BLAKE256_CTX S;
BLAKE256_CTX S = {0};
blake256_Init( &S );
blake256_Update( &S, in, inlen );
blake256_Final( &S, out );

View File

@ -86,7 +86,7 @@ static void blake2b_increment_counter( blake2b_state *S, const uint64_t inc )
static void blake2b_init0( blake2b_state *S )
{
size_t i;
size_t i = 0;
memzero( S, sizeof( blake2b_state ) );
for( i = 0; i < 8; ++i ) S->h[i] = blake2b_IV[i];
@ -96,7 +96,7 @@ static void blake2b_init0( blake2b_state *S )
int blake2b_init_param( blake2b_state *S, const blake2b_param *P )
{
const uint8_t *p = ( const uint8_t * )( P );
size_t i;
size_t i = 0;
blake2b_init0( S );
@ -112,7 +112,7 @@ int blake2b_init_param( blake2b_state *S, const blake2b_param *P )
/* Sequential blake2b initialization */
int blake2b_Init( blake2b_state *S, size_t outlen )
{
blake2b_param P[1];
blake2b_param P[1] = {0};
if ( ( !outlen ) || ( outlen > BLAKE2B_OUTBYTES ) ) return -1;
@ -133,7 +133,7 @@ int blake2b_Init( blake2b_state *S, size_t outlen )
int blake2b_InitPersonal( blake2b_state *S, size_t outlen, const void *personal, size_t personal_len)
{
blake2b_param P[1];
blake2b_param P[1] = {0};
if ( ( !outlen ) || ( outlen > BLAKE2B_OUTBYTES ) ) return -1;
if ( ( !personal ) || ( personal_len != BLAKE2B_PERSONALBYTES ) ) return -1;
@ -155,7 +155,7 @@ int blake2b_InitPersonal( blake2b_state *S, size_t outlen, const void *personal,
int blake2b_InitKey( blake2b_state *S, size_t outlen, const void *key, size_t keylen )
{
blake2b_param P[1];
blake2b_param P[1] = {0};
if ( ( !outlen ) || ( outlen > BLAKE2B_OUTBYTES ) ) return -1;
@ -177,7 +177,7 @@ int blake2b_InitKey( blake2b_state *S, size_t outlen, const void *key, size_t ke
if( blake2b_init_param( S, P ) < 0 ) return -1;
{
uint8_t block[BLAKE2B_BLOCKBYTES];
uint8_t block[BLAKE2B_BLOCKBYTES] = {0};
memzero( block, BLAKE2B_BLOCKBYTES );
memcpy( block, key, keylen );
blake2b_Update( S, block, BLAKE2B_BLOCKBYTES );
@ -212,9 +212,9 @@ int blake2b_InitKey( blake2b_state *S, size_t outlen, const void *key, size_t ke
static void blake2b_compress( blake2b_state *S, const uint8_t block[BLAKE2B_BLOCKBYTES] )
{
uint64_t m[16];
uint64_t v[16];
size_t i;
uint64_t m[16] = {0};
uint64_t v[16] = {0};
size_t i = 0;
for( i = 0; i < 16; ++i ) {
m[i] = load64( block + i * sizeof( m[i] ) );
@ -284,7 +284,7 @@ int blake2b_Update( blake2b_state *S, const void *pin, size_t inlen )
int blake2b_Final( blake2b_state *S, void *out, size_t outlen )
{
uint8_t buffer[BLAKE2B_OUTBYTES] = {0};
size_t i;
size_t i = 0;
if( out == NULL || outlen < S->outlen )
return -1;

View File

@ -81,7 +81,7 @@ static void blake2s_increment_counter( blake2s_state *S, const uint32_t inc )
static void blake2s_init0( blake2s_state *S )
{
size_t i;
size_t i = 0;
memzero( S, sizeof( blake2s_state ) );
for( i = 0; i < 8; ++i ) S->h[i] = blake2s_IV[i];
@ -91,7 +91,7 @@ static void blake2s_init0( blake2s_state *S )
int blake2s_init_param( blake2s_state *S, const blake2s_param *P )
{
const unsigned char *p = ( const unsigned char * )( P );
size_t i;
size_t i = 0;
blake2s_init0( S );
@ -107,7 +107,7 @@ int blake2s_init_param( blake2s_state *S, const blake2s_param *P )
/* Sequential blake2s initialization */
int blake2s_Init( blake2s_state *S, size_t outlen )
{
blake2s_param P[1];
blake2s_param P[1] = {0};
if ( ( !outlen ) || ( outlen > BLAKE2S_OUTBYTES ) ) return -1;
@ -128,7 +128,7 @@ int blake2s_Init( blake2s_state *S, size_t outlen )
int blake2s_InitPersonal( blake2s_state *S, size_t outlen, const void *personal, size_t personal_len)
{
blake2s_param P[1];
blake2s_param P[1] = {0};
if ( ( !outlen ) || ( outlen > BLAKE2S_OUTBYTES ) ) return -1;
if ( ( !personal ) || ( personal_len != BLAKE2S_PERSONALBYTES ) ) return -1;
@ -151,7 +151,7 @@ int blake2s_InitPersonal( blake2s_state *S, size_t outlen, const void *personal,
int blake2s_InitKey( blake2s_state *S, size_t outlen, const void *key, size_t keylen )
{
blake2s_param P[1];
blake2s_param P[1] = {0};
if ( ( !outlen ) || ( outlen > BLAKE2S_OUTBYTES ) ) return -1;
@ -173,7 +173,7 @@ int blake2s_InitKey( blake2s_state *S, size_t outlen, const void *key, size_t ke
if( blake2s_init_param( S, P ) < 0 ) return -1;
{
uint8_t block[BLAKE2S_BLOCKBYTES];
uint8_t block[BLAKE2S_BLOCKBYTES] = {0};
memzero( block, BLAKE2S_BLOCKBYTES );
memcpy( block, key, keylen );
blake2s_Update( S, block, BLAKE2S_BLOCKBYTES );
@ -208,9 +208,9 @@ int blake2s_InitKey( blake2s_state *S, size_t outlen, const void *key, size_t ke
static void blake2s_compress( blake2s_state *S, const uint8_t in[BLAKE2S_BLOCKBYTES] )
{
uint32_t m[16];
uint32_t v[16];
size_t i;
uint32_t m[16] = {0};
uint32_t v[16] = {0};
size_t i = 0;
for( i = 0; i < 16; ++i ) {
m[i] = load32( in + i * sizeof( m[i] ) );
@ -278,7 +278,7 @@ int blake2s_Update( blake2s_state *S, const void *pin, size_t inlen )
int blake2s_Final( blake2s_state *S, void *out, size_t outlen )
{
uint8_t buffer[BLAKE2S_OUTBYTES] = {0};
size_t i;
size_t i = 0;
if( out == NULL || outlen < S->outlen )
return -1;

View File

@ -87,9 +87,9 @@ int cash_encode(char* output, const char* hrp, const uint8_t* data,
int cash_decode(char* hrp, uint8_t* data, size_t* data_len, const char* input) {
uint64_t chk = 1;
size_t i;
size_t i = 0;
size_t input_len = strlen(input);
size_t hrp_len;
size_t hrp_len = 0;
int have_lower = 0, have_upper = 0;
if (input_len < CHECKSUM_SIZE || input_len > MAX_CASHADDR_SIZE) {
return 0;
@ -167,7 +167,7 @@ static int convert_bits(uint8_t* out, size_t* outlen, int outbits,
int cash_addr_encode(char* output, const char* hrp, const uint8_t* data,
size_t data_len) {
uint8_t base32[MAX_BASE32_SIZE];
uint8_t base32[MAX_BASE32_SIZE] = {0};
size_t base32len = 0;
if (data_len < 2 || data_len > MAX_DATA_SIZE) return 0;
convert_bits(base32, &base32len, 5, data, data_len, 8, 1);
@ -176,9 +176,9 @@ int cash_addr_encode(char* output, const char* hrp, const uint8_t* data,
int cash_addr_decode(uint8_t* witdata, size_t* witdata_len, const char* hrp,
const char* addr) {
uint8_t data[MAX_BASE32_SIZE];
char hrp_actual[MAX_HRP_SIZE + 1];
size_t data_len;
uint8_t data[MAX_BASE32_SIZE] = {0};
char hrp_actual[MAX_HRP_SIZE + 1] = {0};
size_t data_len = 0;
if (!cash_decode(hrp_actual, data, &data_len, addr)) return 0;
if (data_len == 0 || data_len > MAX_BASE32_SIZE) return 0;
if (strncmp(hrp, hrp_actual, MAX_HRP_SIZE + 1) != 0) return 0;

View File

@ -13,7 +13,7 @@ void hchacha20(ECRYPT_ctx *x,u8 *c);
void xchacha20poly1305_init(chacha20poly1305_ctx *ctx, const uint8_t key[32], const uint8_t nonce[24]) {
unsigned char subkey[32] = {0};
unsigned char block0[64] = {0};
ECRYPT_ctx tmp;
ECRYPT_ctx tmp = {0};
// Generate the Chacha20 key by applying HChaCha20 to the
// original key and the first 16 bytes of the nonce.

View File

@ -29,7 +29,7 @@ static const char tau[16] = "expand 16-byte k";
void ECRYPT_keysetup(ECRYPT_ctx *x,const u8 *k,u32 kbits,u32 ivbits)
{
(void)ivbits;
const char *constants;
const char *constants = NULL;
x->input[4] = U8TO32_LITTLE(k + 0);
x->input[5] = U8TO32_LITTLE(k + 4);
@ -61,11 +61,11 @@ void ECRYPT_ivsetup(ECRYPT_ctx *x,const u8 *iv)
void ECRYPT_encrypt_bytes(ECRYPT_ctx *x,const u8 *m,u8 *c,u32 bytes)
{
u32 x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12, x13, x14, x15;
u32 j0, j1, j2, j3, j4, j5, j6, j7, j8, j9, j10, j11, j12, j13, j14, j15;
u32 x0 = 0, x1 = 0, x2 = 0, x3 = 0, x4 = 0, x5 = 0, x6 = 0, x7 = 0, x8 = 0, x9 = 0, x10 = 0, x11 = 0, x12 = 0, x13 = 0, x14 = 0, x15 = 0;
u32 j0 = 0, j1 = 0, j2 = 0, j3 = 0, j4 = 0, j5 = 0, j6 = 0, j7 = 0, j8 = 0, j9 = 0, j10 = 0, j11 = 0, j12 = 0, j13 = 0, j14 = 0, j15 = 0;
u8 *ctarget = 0;
u8 tmp[64];
int i;
u8 tmp[64] = {0};
int i = 0;
if (!bytes) return;
@ -197,15 +197,15 @@ void ECRYPT_decrypt_bytes(ECRYPT_ctx *x,const u8 *c,u8 *m,u32 bytes)
void ECRYPT_keystream_bytes(ECRYPT_ctx *x,u8 *stream,u32 bytes)
{
u32 i;
u32 i = 0;
for (i = 0;i < bytes;++i) stream[i] = 0;
ECRYPT_encrypt_bytes(x,stream,stream,bytes);
}
void hchacha20(ECRYPT_ctx *x,u8 *c)
{
u32 x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12, x13, x14, x15;
int i;
u32 x0 = 0, x1 = 0, x2 = 0, x3 = 0, x4 = 0, x5 = 0, x6 = 0, x7 = 0, x8 = 0, x9 = 0, x10 = 0, x11 = 0, x12 = 0, x13 = 0, x14 = 0, x15 = 0;
int i = 0;
x0 = x->input[0];
x1 = x->input[1];

View File

@ -4,7 +4,7 @@
void
poly1305_update(poly1305_context *ctx, const unsigned char *m, size_t bytes) {
poly1305_state_internal_t *st = (poly1305_state_internal_t *)ctx;
size_t i;
size_t i = 0;
/* handle leftover */
if (st->leftover) {
@ -40,7 +40,7 @@ poly1305_update(poly1305_context *ctx, const unsigned char *m, size_t bytes) {
void
poly1305_auth(unsigned char mac[16], const unsigned char *m, size_t bytes, const unsigned char key[32]) {
poly1305_context ctx;
poly1305_context ctx = {0};
poly1305_init(&ctx, key);
poly1305_update(&ctx, m, bytes);
poly1305_finish(&ctx, mac);
@ -48,7 +48,7 @@ poly1305_auth(unsigned char mac[16], const unsigned char *m, size_t bytes, const
int
poly1305_verify(const unsigned char mac1[16], const unsigned char mac2[16]) {
size_t i;
size_t i = 0;
unsigned int dif = 0;
for (i = 0; i < 16; i++)
dif |= (mac1[i] ^ mac2[i]);
@ -127,12 +127,12 @@ poly1305_power_on_self_test(void) {
0xd2,0x87,0xf9,0x7c,0x44,0x62,0x3d,0x39
};
poly1305_context ctx;
poly1305_context total_ctx;
unsigned char all_key[32];
unsigned char all_msg[256];
unsigned char mac[16];
size_t i, j;
poly1305_context ctx = {0};
poly1305_context total_ctx = {0};
unsigned char all_key[32] = {0};
unsigned char all_msg[256] = {0};
unsigned char mac[16] = {0};
size_t i = 0, j = 0;
int result = 1;
for (i = 0; i < sizeof(mac); i++)

View File

@ -43,7 +43,7 @@ void point_copy(const curve_point *cp1, curve_point *cp2) { *cp2 = *cp1; }
// cp2 = cp1 + cp2
void point_add(const ecdsa_curve *curve, const curve_point *cp1,
curve_point *cp2) {
bignum256 lambda, inv, xr, yr;
bignum256 lambda = {0}, inv = {0}, xr = {0}, yr = {0};
if (point_is_infinity(cp1)) {
return;
@ -88,7 +88,7 @@ void point_add(const ecdsa_curve *curve, const curve_point *cp1,
// cp = cp + cp
void point_double(const ecdsa_curve *curve, curve_point *cp) {
bignum256 lambda, xr, yr;
bignum256 lambda = {0}, xr = {0}, yr = {0};
if (point_is_infinity(cp)) {
return;
@ -165,7 +165,7 @@ int point_is_negative_of(const curve_point *p, const curve_point *q) {
// Negate a (modulo prime) if cond is 0xffffffff, keep it if cond is 0.
// The timing of this function does not depend on cond.
void conditional_negate(uint32_t cond, bignum256 *a, const bignum256 *prime) {
int j;
int j = 0;
uint32_t tmp = 1;
assert(a->val[8] < 0x20000);
for (j = 0; j < 8; j++) {
@ -185,7 +185,7 @@ typedef struct jacobian_curve_point {
// generate random K for signing/side-channel noise
static void generate_k_random(bignum256 *k, const bignum256 *prime) {
do {
int i;
int i = 0;
for (i = 0; i < 8; i++) {
k->val[i] = random32() & 0x3FFFFFFF;
}
@ -230,10 +230,10 @@ void jacobian_to_curve(const jacobian_curve_point *jp, curve_point *p,
void point_jacobian_add(const curve_point *p1, jacobian_curve_point *p2,
const ecdsa_curve *curve) {
bignum256 r, h, r2;
bignum256 hcby, hsqx;
bignum256 xz, yz, az;
int is_doubling;
bignum256 r = {0}, h = {0}, r2 = {0};
bignum256 hcby = {0}, hsqx = {0};
bignum256 xz = {0}, yz = {0}, az = {0};
int is_doubling = 0;
const bignum256 *prime = &curve->prime;
int a = curve->a;
@ -348,7 +348,7 @@ void point_jacobian_add(const curve_point *p1, jacobian_curve_point *p2,
}
void point_jacobian_double(jacobian_curve_point *p, const ecdsa_curve *curve) {
bignum256 az4, m, msq, ysq, xysq;
bignum256 az4 = {0}, m = {0}, msq = {0}, ysq = {0}, xysq = {0};
const bignum256 *prime = &curve->prime;
assert(-3 <= curve->a && curve->a <= 0);
@ -424,15 +424,15 @@ void point_multiply(const ecdsa_curve *curve, const bignum256 *k,
// Side Channel Attacks.
assert(bn_is_less(k, &curve->order));
int i, j;
int i = 0, j = 0;
static CONFIDENTIAL bignum256 a;
uint32_t *aptr;
uint32_t abits;
int ashift;
uint32_t *aptr = NULL;
uint32_t abits = 0;
int ashift = 0;
uint32_t is_even = (k->val[0] & 1) - 1;
uint32_t bits, sign, nsign;
uint32_t bits = {0}, sign = {0}, nsign = {0};
static CONFIDENTIAL jacobian_curve_point jres;
curve_point pmult[8];
curve_point pmult[8] = {0};
const bignum256 *prime = &curve->prime;
// is_even = 0xffffffff if k is even, 0 otherwise.
@ -545,10 +545,10 @@ void scalar_multiply(const ecdsa_curve *curve, const bignum256 *k,
curve_point *res) {
assert(bn_is_less(k, &curve->order));
int i, j;
int i = {0}, j = {0};
static CONFIDENTIAL bignum256 a;
uint32_t is_even = (k->val[0] & 1) - 1;
uint32_t lowbits;
uint32_t lowbits = 0;
static CONFIDENTIAL jacobian_curve_point jres;
const bignum256 *prime = &curve->prime;
@ -636,12 +636,12 @@ void scalar_multiply(const ecdsa_curve *curve, const bignum256 *k,
int ecdh_multiply(const ecdsa_curve *curve, const uint8_t *priv_key,
const uint8_t *pub_key, uint8_t *session_key) {
curve_point point;
curve_point point = {0};
if (!ecdsa_read_pubkey(curve, pub_key, &point)) {
return 1;
}
bignum256 k;
bignum256 k = {0};
bn_read_be(priv_key, &k);
point_multiply(curve, &k, &point, &point);
memzero(&k, sizeof(k));
@ -660,7 +660,7 @@ int ecdsa_sign(const ecdsa_curve *curve, HasherType hasher_sign,
const uint8_t *priv_key, const uint8_t *msg, uint32_t msg_len,
uint8_t *sig, uint8_t *pby,
int (*is_canonical)(uint8_t by, uint8_t sig[64])) {
uint8_t hash[32];
uint8_t hash[32] = {0};
hasher_Raw(hasher_sign, msg, msg_len, hash);
int res = ecdsa_sign_digest(curve, priv_key, hash, sig, pby, is_canonical);
memzero(hash, sizeof(hash));
@ -676,14 +676,14 @@ int ecdsa_sign(const ecdsa_curve *curve, HasherType hasher_sign,
int ecdsa_sign_digest(const ecdsa_curve *curve, const uint8_t *priv_key,
const uint8_t *digest, uint8_t *sig, uint8_t *pby,
int (*is_canonical)(uint8_t by, uint8_t sig[64])) {
int i;
curve_point R;
bignum256 k, z, randk;
int i = 0;
curve_point R = {0};
bignum256 k = {0}, z = {0}, randk = {0};
bignum256 *s = &R.y;
uint8_t by; // signature recovery byte
#if USE_RFC6979
rfc6979_state rng;
rfc6979_state rng = {0};
init_rfc6979(priv_key, digest, &rng);
#endif
@ -768,8 +768,8 @@ int ecdsa_sign_digest(const ecdsa_curve *curve, const uint8_t *priv_key,
void ecdsa_get_public_key33(const ecdsa_curve *curve, const uint8_t *priv_key,
uint8_t *pub_key) {
curve_point R;
bignum256 k;
curve_point R = {0};
bignum256 k = {0};
bn_read_be(priv_key, &k);
// compute k*G
@ -782,8 +782,8 @@ void ecdsa_get_public_key33(const ecdsa_curve *curve, const uint8_t *priv_key,
void ecdsa_get_public_key65(const ecdsa_curve *curve, const uint8_t *priv_key,
uint8_t *pub_key) {
curve_point R;
bignum256 k;
curve_point R = {0};
bignum256 k = {0};
bn_read_be(priv_key, &k);
// compute k*G
@ -797,7 +797,7 @@ void ecdsa_get_public_key65(const ecdsa_curve *curve, const uint8_t *priv_key,
int ecdsa_uncompress_pubkey(const ecdsa_curve *curve, const uint8_t *pub_key,
uint8_t *uncompressed) {
curve_point pub;
curve_point pub = {0};
if (!ecdsa_read_pubkey(curve, pub_key, &pub)) {
return 0;
@ -812,7 +812,7 @@ int ecdsa_uncompress_pubkey(const ecdsa_curve *curve, const uint8_t *pub_key,
void ecdsa_get_pubkeyhash(const uint8_t *pub_key, HasherType hasher_pubkey,
uint8_t *pubkeyhash) {
uint8_t h[HASHER_DIGEST_LENGTH];
uint8_t h[HASHER_DIGEST_LENGTH] = {0};
if (pub_key[0] == 0x04) { // uncompressed format
hasher_Raw(hasher_pubkey, pub_key, 65, h);
} else if (pub_key[0] == 0x00) { // point at infinity
@ -834,7 +834,7 @@ void ecdsa_get_address_raw(const uint8_t *pub_key, uint32_t version,
void ecdsa_get_address(const uint8_t *pub_key, uint32_t version,
HasherType hasher_pubkey, HasherType hasher_base58,
char *addr, int addrsize) {
uint8_t raw[MAX_ADDR_RAW_SIZE];
uint8_t raw[MAX_ADDR_RAW_SIZE] = {0};
size_t prefix_len = address_prefix_bytes_len(version);
ecdsa_get_address_raw(pub_key, version, hasher_pubkey, raw);
base58_encode_check(raw, 20 + prefix_len, hasher_base58, addr, addrsize);
@ -845,7 +845,7 @@ void ecdsa_get_address(const uint8_t *pub_key, uint32_t version,
void ecdsa_get_address_segwit_p2sh_raw(const uint8_t *pub_key, uint32_t version,
HasherType hasher_pubkey,
uint8_t *addr_raw) {
uint8_t buf[32 + 2];
uint8_t buf[32 + 2] = {0};
buf[0] = 0; // version byte
buf[1] = 20; // push 20 bytes
ecdsa_get_pubkeyhash(pub_key, hasher_pubkey, buf + 2);
@ -858,7 +858,7 @@ void ecdsa_get_address_segwit_p2sh(const uint8_t *pub_key, uint32_t version,
HasherType hasher_pubkey,
HasherType hasher_base58, char *addr,
int addrsize) {
uint8_t raw[MAX_ADDR_RAW_SIZE];
uint8_t raw[MAX_ADDR_RAW_SIZE] = {0};
size_t prefix_len = address_prefix_bytes_len(version);
ecdsa_get_address_segwit_p2sh_raw(pub_key, version, hasher_pubkey, raw);
base58_encode_check(raw, prefix_len + 20, hasher_base58, addr, addrsize);
@ -867,7 +867,7 @@ void ecdsa_get_address_segwit_p2sh(const uint8_t *pub_key, uint32_t version,
void ecdsa_get_wif(const uint8_t *priv_key, uint32_t version,
HasherType hasher_base58, char *wif, int wifsize) {
uint8_t wif_raw[MAX_WIF_RAW_SIZE];
uint8_t wif_raw[MAX_WIF_RAW_SIZE] = {0};
size_t prefix_len = address_prefix_bytes_len(version);
address_write_prefix_bytes(version, wif_raw);
memcpy(wif_raw + prefix_len, priv_key, 32);
@ -931,7 +931,7 @@ int ecdsa_read_pubkey(const ecdsa_curve *curve, const uint8_t *pub_key,
// - pub is on the curve.
int ecdsa_validate_pubkey(const ecdsa_curve *curve, const curve_point *pub) {
bignum256 y_2, x3_ax_b;
bignum256 y_2 = {0}, x3_ax_b = {0};
if (point_is_infinity(pub)) {
return 0;
@ -972,7 +972,7 @@ int ecdsa_validate_pubkey(const ecdsa_curve *curve, const curve_point *pub) {
int ecdsa_verify(const ecdsa_curve *curve, HasherType hasher_sign,
const uint8_t *pub_key, const uint8_t *sig, const uint8_t *msg,
uint32_t msg_len) {
uint8_t hash[32];
uint8_t hash[32] = {0};
hasher_Raw(hasher_sign, msg, msg_len, hash);
int res = ecdsa_verify_digest(curve, pub_key, sig, hash);
memzero(hash, sizeof(hash));
@ -984,8 +984,8 @@ int ecdsa_verify(const ecdsa_curve *curve, HasherType hasher_sign,
int ecdsa_recover_pub_from_sig(const ecdsa_curve *curve, uint8_t *pub_key,
const uint8_t *sig, const uint8_t *digest,
int recid) {
bignum256 r, s, e;
curve_point cp, cp2;
bignum256 r = {0}, s = {0}, e = {0};
curve_point cp = {0}, cp2 = {0};
// read r and s
bn_read_be(sig, &r);
@ -1033,8 +1033,8 @@ int ecdsa_recover_pub_from_sig(const ecdsa_curve *curve, uint8_t *pub_key,
// returns 0 if verification succeeded
int ecdsa_verify_digest(const ecdsa_curve *curve, const uint8_t *pub_key,
const uint8_t *sig, const uint8_t *digest) {
curve_point pub, res;
bignum256 r, s, z;
curve_point pub = {0}, res = {0};
bignum256 r = {0}, s = {0}, z = {0};
if (!ecdsa_read_pubkey(curve, pub_key, &pub)) {
return 1;
@ -1087,8 +1087,8 @@ int ecdsa_verify_digest(const ecdsa_curve *curve, const uint8_t *pub_key,
}
int ecdsa_sig_to_der(const uint8_t *sig, uint8_t *der) {
int i;
uint8_t *p = der, *len, *len1, *len2;
int i = 0;
uint8_t *p = der, *len = NULL, *len1 = NULL, *len2 = NULL;
*p = 0x30;
p++; // sequence
*p = 0x00;

View File

@ -39,7 +39,7 @@ void curve25519_add(bignum25519 out, const bignum25519 a, const bignum25519 b) {
}
void curve25519_add_after_basic(bignum25519 out, const bignum25519 a, const bignum25519 b) {
uint32_t c;
uint32_t c = 0;
out[0] = a[0] + b[0] ; c = (out[0] >> 26); out[0] &= reduce_mask_26;
out[1] = a[1] + b[1] + c; c = (out[1] >> 25); out[1] &= reduce_mask_25;
out[2] = a[2] + b[2] + c; c = (out[2] >> 26); out[2] &= reduce_mask_26;
@ -54,7 +54,7 @@ void curve25519_add_after_basic(bignum25519 out, const bignum25519 a, const bign
}
void curve25519_add_reduce(bignum25519 out, const bignum25519 a, const bignum25519 b) {
uint32_t c;
uint32_t c = 0;
out[0] = a[0] + b[0] ; c = (out[0] >> 26); out[0] &= reduce_mask_26;
out[1] = a[1] + b[1] + c; c = (out[1] >> 25); out[1] &= reduce_mask_25;
out[2] = a[2] + b[2] + c; c = (out[2] >> 26); out[2] &= reduce_mask_26;
@ -78,7 +78,7 @@ static const uint32_t fourP2468 = 0x0ffffffc;
/* out = a - b */
void curve25519_sub(bignum25519 out, const bignum25519 a, const bignum25519 b) {
uint32_t c;
uint32_t c = 0;
out[0] = twoP0 + a[0] - b[0] ; c = (out[0] >> 26); out[0] &= reduce_mask_26;
out[1] = twoP13579 + a[1] - b[1] + c; c = (out[1] >> 25); out[1] &= reduce_mask_25;
out[2] = twoP2468 + a[2] - b[2] + c; c = (out[2] >> 26); out[2] &= reduce_mask_26;
@ -93,8 +93,8 @@ void curve25519_sub(bignum25519 out, const bignum25519 a, const bignum25519 b) {
/* out = in * scalar */
void curve25519_scalar_product(bignum25519 out, const bignum25519 in, const uint32_t scalar) {
uint64_t a;
uint32_t c;
uint64_t a = 0;
uint32_t c = 0;
a = mul32x32_64(in[0], scalar); out[0] = (uint32_t)a & reduce_mask_26; c = (uint32_t)(a >> 26);
a = mul32x32_64(in[1], scalar) + c; out[1] = (uint32_t)a & reduce_mask_25; c = (uint32_t)(a >> 25);
a = mul32x32_64(in[2], scalar) + c; out[2] = (uint32_t)a & reduce_mask_26; c = (uint32_t)(a >> 26);
@ -110,7 +110,7 @@ void curve25519_scalar_product(bignum25519 out, const bignum25519 in, const uint
/* out = a - b, where a is the result of a basic op (add,sub) */
void curve25519_sub_after_basic(bignum25519 out, const bignum25519 a, const bignum25519 b) {
uint32_t c;
uint32_t c = 0;
out[0] = fourP0 + a[0] - b[0] ; c = (out[0] >> 26); out[0] &= reduce_mask_26;
out[1] = fourP13579 + a[1] - b[1] + c; c = (out[1] >> 25); out[1] &= reduce_mask_25;
out[2] = fourP2468 + a[2] - b[2] + c; c = (out[2] >> 26); out[2] &= reduce_mask_26;
@ -125,7 +125,7 @@ void curve25519_sub_after_basic(bignum25519 out, const bignum25519 a, const bign
}
void curve25519_sub_reduce(bignum25519 out, const bignum25519 a, const bignum25519 b) {
uint32_t c;
uint32_t c = 0;
out[0] = fourP0 + a[0] - b[0] ; c = (out[0] >> 26); out[0] &= reduce_mask_26;
out[1] = fourP13579 + a[1] - b[1] + c; c = (out[1] >> 25); out[1] &= reduce_mask_25;
out[2] = fourP2468 + a[2] - b[2] + c; c = (out[2] >> 26); out[2] &= reduce_mask_26;
@ -141,7 +141,7 @@ void curve25519_sub_reduce(bignum25519 out, const bignum25519 a, const bignum255
/* out = -a */
void curve25519_neg(bignum25519 out, const bignum25519 a) {
uint32_t c;
uint32_t c = 0;
out[0] = twoP0 - a[0] ; c = (out[0] >> 26); out[0] &= reduce_mask_26;
out[1] = twoP13579 - a[1] + c; c = (out[1] >> 25); out[1] &= reduce_mask_25;
out[2] = twoP2468 - a[2] + c; c = (out[2] >> 26); out[2] &= reduce_mask_26;
@ -158,10 +158,10 @@ void curve25519_neg(bignum25519 out, const bignum25519 a) {
/* out = a * b */
#define curve25519_mul_noinline curve25519_mul
void curve25519_mul(bignum25519 out, const bignum25519 a, const bignum25519 b) {
uint32_t r0,r1,r2,r3,r4,r5,r6,r7,r8,r9;
uint32_t s0,s1,s2,s3,s4,s5,s6,s7,s8,s9;
uint64_t m0,m1,m2,m3,m4,m5,m6,m7,m8,m9,c;
uint32_t p;
uint32_t r0 = 0, r1 = 0, r2 = 0, r3 = 0, r4 = 0, r5 = 0, r6 = 0, r7 = 0, r8 = 0, r9 = 0;
uint32_t s0 = 0, s1 = 0, s2 = 0, s3 = 0, s4 = 0, s5 = 0, s6 = 0, s7 = 0, s8 = 0, s9 = 0;
uint64_t m0 = 0, m1 = 0, m2 = 0, m3 = 0, m4 = 0, m5 = 0, m6 = 0, m7 = 0, m8 = 0, m9 = 0, c = 0;
uint32_t p = 0;
r0 = b[0];
r1 = b[1];
@ -255,10 +255,10 @@ void curve25519_mul(bignum25519 out, const bignum25519 a, const bignum25519 b) {
/* out = in * in */
void curve25519_square(bignum25519 out, const bignum25519 in) {
uint32_t r0,r1,r2,r3,r4,r5,r6,r7,r8,r9;
uint32_t d6,d7,d8,d9;
uint64_t m0,m1,m2,m3,m4,m5,m6,m7,m8,m9,c;
uint32_t p;
uint32_t r0 = 0, r1 = 0, r2 = 0, r3 = 0, r4 = 0, r5 = 0, r6 = 0, r7 = 0, r8 = 0, r9 = 0;
uint32_t d6 = 0, d7 = 0, d8 = 0, d9 = 0;
uint64_t m0 = 0, m1 = 0, m2 = 0, m3 = 0, m4 = 0, m5 = 0, m6 = 0, m7 = 0, m8 = 0, m9 = 0, c = 0;
uint32_t p = 0;
r0 = in[0];
r1 = in[1];
@ -328,10 +328,10 @@ void curve25519_square(bignum25519 out, const bignum25519 in) {
/* out = in ^ (2 * count) */
void curve25519_square_times(bignum25519 out, const bignum25519 in, int count) {
uint32_t r0,r1,r2,r3,r4,r5,r6,r7,r8,r9;
uint32_t d6,d7,d8,d9;
uint64_t m0,m1,m2,m3,m4,m5,m6,m7,m8,m9,c;
uint32_t p;
uint32_t r0 = 0, r1 = 0, r2 = 0, r3 = 0, r4 = 0, r5 = 0, r6 = 0, r7 = 0, r8 = 0, r9 = 0;
uint32_t d6 = 0, d7 = 0, d8 = 0, d9 = 0;
uint64_t m0 = 0, m1 = 0, m2 = 0, m3 = 0, m4 = 0, m5 = 0, m6 = 0, m7 = 0, m8 = 0, m9 = 0, c = 0;
uint32_t p = 0;
r0 = in[0];
r1 = in[1];
@ -403,7 +403,7 @@ void curve25519_square_times(bignum25519 out, const bignum25519 in, int count) {
/* Take a little-endian, 32-byte number and expand it into polynomial form */
void curve25519_expand(bignum25519 out, const unsigned char in[32]) {
uint32_t x0,x1,x2,x3,x4,x5,x6,x7;
uint32_t x0 = 0, x1 = 0, x2 = 0, x3 = 0, x4 = 0, x5 = 0, x6 = 0, x7 = 0;
#define F(s) \
((((uint32_t)in[s + 0]) ) | \
(((uint32_t)in[s + 1]) << 8) | \
@ -435,7 +435,7 @@ void curve25519_expand(bignum25519 out, const unsigned char in[32]) {
* little-endian, 32-byte array
*/
void curve25519_contract(unsigned char out[32], const bignum25519 in) {
bignum25519 f;
bignum25519 f = {0};
curve25519_copy(f, in);
#define carry_pass() \
@ -517,7 +517,7 @@ void curve25519_contract(unsigned char out[32], const bignum25519 in) {
/* if (iswap) swap(a, b) */
void curve25519_swap_conditional(bignum25519 a, bignum25519 b, uint32_t iswap) {
const uint32_t swap = (uint32_t)(-(int32_t)iswap);
uint32_t x0,x1,x2,x3,x4,x5,x6,x7,x8,x9;
uint32_t x0 = 0, x1 = 0, x2 = 0, x3 = 0, x4 = 0, x5 = 0, x6 = 0, x7 = 0, x8 = 0, x9 = 0;
x0 = swap & (a[0] ^ b[0]); a[0] ^= x0; b[0] ^= x0;
x1 = swap & (a[1] ^ b[1]); a[1] ^= x1; b[1] ^= x1;
@ -557,13 +557,13 @@ void curve25519_set_sqrtneg1(bignum25519 r){
}
int curve25519_isnegative(const bignum25519 f) {
unsigned char s[32];
unsigned char s[32] = {0};
curve25519_contract(s, f);
return s[0] & 1;
}
int curve25519_isnonzero(const bignum25519 f) {
unsigned char s[32];
unsigned char s[32] = {0};
curve25519_contract(s, f);
return ((((int) (s[0] | s[1] | s[2] | s[3] | s[4] | s[5] | s[6] | s[7] | s[8] |
s[9] | s[10] | s[11] | s[12] | s[13] | s[14] | s[15] | s[16] | s[17] |
@ -572,7 +572,7 @@ int curve25519_isnonzero(const bignum25519 f) {
}
void curve25519_reduce(bignum25519 out, const bignum25519 in) {
uint32_t c;
uint32_t c = 0;
out[0] = in[0] ; c = (out[0] >> 26); out[0] &= reduce_mask_26;
out[1] = in[1] + c; c = (out[1] >> 25); out[1] &= reduce_mask_25;
out[2] = in[2] + c; c = (out[2] >> 26); out[2] &= reduce_mask_26;
@ -588,7 +588,7 @@ void curve25519_reduce(bignum25519 out, const bignum25519 in) {
void curve25519_divpowm1(bignum25519 r, const bignum25519 u, const bignum25519 v) {
bignum25519 v3={0}, uv7={0}, t0={0}, t1={0}, t2={0};
int i;
int i = 0;
curve25519_square(v3, v);
curve25519_mul(v3, v3, v); /* v3 = v^3 */
@ -650,7 +650,7 @@ void curve25519_divpowm1(bignum25519 r, const bignum25519 u, const bignum25519 v
}
void curve25519_expand_reduce(bignum25519 out, const unsigned char in[32]) {
uint32_t x0,x1,x2,x3,x4,x5,x6,x7;
uint32_t x0 = 0, x1 = 0, x2 = 0, x3 = 0, x4 = 0, x5 = 0, x6 = 0, x7 = 0;
#define F(s) \
((((uint32_t)in[s + 0]) ) | \
(((uint32_t)in[s + 1]) << 8) | \

View File

@ -9,10 +9,10 @@
*/
void curve25519_scalarmult_donna(curve25519_key mypublic, const curve25519_key n, const curve25519_key basepoint) {
bignum25519 nqpqx = {1}, nqpqz = {0}, nqz = {1}, nqx;
bignum25519 q, qx, qpqx, qqx, zzz, zmone;
size_t bit, lastbit;
int32_t i;
bignum25519 nqpqx = {1}, nqpqz = {0}, nqz = {1}, nqx = {0};
bignum25519 q = {0}, qx = {0}, qpqx = {0}, qqx = {0}, zzz = {0}, zmone = {0};
size_t bit = 0, lastbit = 0;
int32_t i = 0;
curve25519_expand(q, basepoint);
curve25519_copy(nqx, q);

View File

@ -67,7 +67,7 @@ void ge25519_full_to_pniels(ge25519_pniels *p, const ge25519 *r) {
*/
void ge25519_double_p1p1(ge25519_p1p1 *r, const ge25519 *p) {
bignum25519 a,b,c;
bignum25519 a = {0}, b = {0}, c = {0};
curve25519_square(a, p->x);
curve25519_square(b, p->y);
@ -85,7 +85,7 @@ void ge25519_double_p1p1(ge25519_p1p1 *r, const ge25519 *p) {
void ge25519_nielsadd2_p1p1(ge25519_p1p1 *r, const ge25519 *p, const ge25519_niels *q, unsigned char signbit) {
const bignum25519 *qb = (const bignum25519 *)q;
bignum25519 *rb = (bignum25519 *)r;
bignum25519 a,b,c;
bignum25519 a = {0}, b = {0}, c = {0};
curve25519_sub(a, p->y, p->x);
curve25519_add(b, p->y, p->x);
@ -104,7 +104,7 @@ void ge25519_nielsadd2_p1p1(ge25519_p1p1 *r, const ge25519 *p, const ge25519_nie
void ge25519_pnielsadd_p1p1(ge25519_p1p1 *r, const ge25519 *p, const ge25519_pniels *q, unsigned char signbit) {
const bignum25519 *qb = (const bignum25519 *)q;
bignum25519 *rb = (bignum25519 *)r;
bignum25519 a,b,c;
bignum25519 a = {0}, b = {0}, c = {0};
curve25519_sub(a, p->y, p->x);
curve25519_add(b, p->y, p->x);
@ -121,19 +121,19 @@ void ge25519_pnielsadd_p1p1(ge25519_p1p1 *r, const ge25519 *p, const ge25519_pni
}
void ge25519_double_partial(ge25519 *r, const ge25519 *p) {
ge25519_p1p1 t;
ge25519_p1p1 t = {0};
ge25519_double_p1p1(&t, p);
ge25519_p1p1_to_partial(r, &t);
}
void ge25519_double(ge25519 *r, const ge25519 *p) {
ge25519_p1p1 t;
ge25519_p1p1 t = {0};
ge25519_double_p1p1(&t, p);
ge25519_p1p1_to_full(r, &t);
}
void ge25519_nielsadd2(ge25519 *r, const ge25519_niels *q) {
bignum25519 a,b,c,e,f,g,h;
bignum25519 a = {0}, b = {0}, c = {0}, e = {0}, f = {0}, g = {0}, h = {0};
curve25519_sub(a, r->y, r->x);
curve25519_add(b, r->y, r->x);
@ -152,7 +152,7 @@ void ge25519_nielsadd2(ge25519 *r, const ge25519_niels *q) {
}
void ge25519_pnielsadd(ge25519_pniels *r, const ge25519 *p, const ge25519_pniels *q) {
bignum25519 a,b,c,x,y,z,t;
bignum25519 a = {0}, b = {0}, c = {0}, x = {0}, y = {0}, z = {0}, t = {0};
curve25519_sub(a, p->y, p->x);
curve25519_add(b, p->y, p->x);
@ -181,8 +181,8 @@ void ge25519_pnielsadd(ge25519_pniels *r, const ge25519 *p, const ge25519_pniels
*/
void ge25519_pack(unsigned char r[32], const ge25519 *p) {
bignum25519 tx, ty, zi;
unsigned char parity[32];
bignum25519 tx = {0}, ty = {0}, zi = {0};
unsigned char parity[32] = {0};
curve25519_recip(zi, p->z);
curve25519_mul(tx, p->x, zi);
curve25519_mul(ty, p->y, zi);
@ -195,8 +195,8 @@ int ge25519_unpack_negative_vartime(ge25519 *r, const unsigned char p[32]) {
const unsigned char zero[32] = {0};
const bignum25519 one = {1};
unsigned char parity = p[31] >> 7;
unsigned char check[32];
bignum25519 t, root, num, den, d3;
unsigned char check[32] = {0};
bignum25519 t = {0}, root = {0}, num = {0}, den = {0}, d3 = {0};
curve25519_expand(r->y, p);
curve25519_copy(r->z, one);
@ -262,14 +262,14 @@ void ge25519_set_neutral(ge25519 *r)
/* computes [s1]p1 + [s2]base */
void ge25519_double_scalarmult_vartime(ge25519 *r, const ge25519 *p1, const bignum256modm s1, const bignum256modm s2) {
signed char slide1[256], slide2[256];
ge25519_pniels pre1[S1_TABLE_SIZE];
signed char slide1[256] = {0}, slide2[256] = {0};
ge25519_pniels pre1[S1_TABLE_SIZE] = {0};
#ifdef ED25519_NO_PRECOMP
ge25519_pniels pre2[S2_TABLE_SIZE];
ge25519_pniels pre2[S2_TABLE_SIZE] = {0};
#endif
ge25519 dp;
ge25519_p1p1 t;
int32_t i;
ge25519 dp = {0};
ge25519_p1p1 t = {0};
int32_t i = 0;
memzero(&t, sizeof(ge25519_p1p1));
contract256_slidingwindow_modm(slide1, s1, S1_SWINDOWSIZE);
@ -320,12 +320,12 @@ void ge25519_double_scalarmult_vartime(ge25519 *r, const ge25519 *p1, const bign
/* computes [s1]p1 + [s2]p2 */
#if USE_MONERO
void ge25519_double_scalarmult_vartime2(ge25519 *r, const ge25519 *p1, const bignum256modm s1, const ge25519 *p2, const bignum256modm s2) {
signed char slide1[256], slide2[256];
ge25519_pniels pre1[S1_TABLE_SIZE];
ge25519_pniels pre2[S1_TABLE_SIZE];
ge25519 dp;
ge25519_p1p1 t;
int32_t i;
signed char slide1[256] = {0}, slide2[256] = {0};
ge25519_pniels pre1[S1_TABLE_SIZE] = {0};
ge25519_pniels pre2[S1_TABLE_SIZE] = {0};
ge25519 dp = {0};
ge25519_p1p1 t = {0};
int32_t i = 0;
memzero(&t, sizeof(ge25519_p1p1));
contract256_slidingwindow_modm(slide1, s1, S1_SWINDOWSIZE);
@ -378,7 +378,7 @@ void ge25519_double_scalarmult_vartime2(ge25519 *r, const ge25519 *p1, const big
* with less than i686 on x86
*/
static void ge25519_cmove_stride4(long * r, long * p, long * pos, long * n, int stride) {
long x0=r[0], x1=r[1], x2=r[2], x3=r[3], y0, y1, y2, y3;
long x0=r[0], x1=r[1], x2=r[2], x3=r[3], y0 = 0, y1 = 0, y2 = 0, y3 = 0;
for(; p<n; p+=stride) {
volatile int flag=(p==pos);
y0 = p[0];
@ -398,7 +398,7 @@ static void ge25519_cmove_stride4(long * r, long * p, long * pos, long * n, int
#define HAS_CMOVE_STRIDE4
static void ge25519_cmove_stride4b(long * r, long * p, long * pos, long * n, int stride) {
long x0=p[0], x1=p[1], x2=p[2], x3=p[3], y0, y1, y2, y3;
long x0=p[0], x1=p[1], x2=p[2], x3=p[3], y0 = 0, y1 = 0, y2 = 0, y3 = 0;
for(p+=stride; p<n; p+=stride) {
volatile int flag=(p==pos);
y0 = p[0];
@ -419,7 +419,7 @@ static void ge25519_cmove_stride4b(long * r, long * p, long * pos, long * n, int
void ge25519_move_conditional_pniels_array(ge25519_pniels * r, const ge25519_pniels * p, int pos, int n) {
#ifdef HAS_CMOVE_STRIDE4B
size_t i;
size_t i = 0;
for(i=0; i<sizeof(ge25519_pniels)/sizeof(long); i+=4) {
ge25519_cmove_stride4b(((long*)r)+i,
((long*)p)+i,
@ -428,7 +428,7 @@ void ge25519_move_conditional_pniels_array(ge25519_pniels * r, const ge25519_pni
sizeof(ge25519_pniels)/sizeof(long));
}
#else
size_t i;
size_t i = 0;
for(i=0; i<n; i++) {
ge25519_move_conditional_pniels(r, p+i, pos==i);
}
@ -436,7 +436,7 @@ void ge25519_move_conditional_pniels_array(ge25519_pniels * r, const ge25519_pni
}
void ge25519_move_conditional_niels_array(ge25519_niels * r, const uint8_t p[8][96], int pos, int n) {
size_t i;
size_t i = 0;
for(i=0; i<96/sizeof(long); i+=4) {
ge25519_cmove_stride4(((long*)r)+i,
((long*)p)+i,
@ -448,12 +448,12 @@ void ge25519_move_conditional_niels_array(ge25519_niels * r, const uint8_t p[8][
/* computes [s1]p1, constant time */
void ge25519_scalarmult(ge25519 *r, const ge25519 *p1, const bignum256modm s1) {
signed char slide1[64];
ge25519_pniels pre1[9];
ge25519_pniels pre;
ge25519 d1;
ge25519_p1p1 t;
int32_t i;
signed char slide1[64] = {0};
ge25519_pniels pre1[9] = {0};
ge25519_pniels pre = {0};
ge25519 d1 = {0};
ge25519_p1p1 t = {0};
int32_t i = 0;
contract256_window4_modm(slide1, s1);
@ -484,7 +484,7 @@ void ge25519_scalarmult(ge25519 *r, const ge25519 *p1, const bignum256modm s1) {
}
void ge25519_scalarmult_base_choose_niels(ge25519_niels *t, const uint8_t table[256][96], uint32_t pos, signed char b) {
bignum25519 neg;
bignum25519 neg = {0};
uint32_t sign = (uint32_t)((unsigned char)b >> 7);
uint32_t mask = ~(sign - 1);
uint32_t u = (b + mask) ^ mask;
@ -509,9 +509,9 @@ void ge25519_scalarmult_base_choose_niels(ge25519_niels *t, const uint8_t table[
/* computes [s]basepoint */
void ge25519_scalarmult_base_niels(ge25519 *r, const uint8_t basepoint_table[256][96], const bignum256modm s) {
signed char b[64];
uint32_t i;
ge25519_niels t;
signed char b[64] = {0};
uint32_t i = 0;
ge25519_niels t = {0};
contract256_window4_modm(b, s);
@ -620,7 +620,7 @@ void ge25519_reduce(ge25519 *r, const ge25519 *t){
}
void ge25519_norm(ge25519 *r, const ge25519 * t){
bignum25519 zinv;
bignum25519 zinv = {0};
curve25519_recip(zinv, t->z);
curve25519_mul(r->x, t->x, zinv);
curve25519_mul(r->y, t->y, zinv);
@ -629,8 +629,8 @@ void ge25519_norm(ge25519 *r, const ge25519 * t){
}
void ge25519_add(ge25519 *r, const ge25519 *p, const ge25519 *q, unsigned char signbit) {
ge25519_pniels P_ni;
ge25519_p1p1 P_11;
ge25519_pniels P_ni = {0};
ge25519_p1p1 P_11 = {0};
ge25519_full_to_pniels(&P_ni, q);
ge25519_pnielsadd_p1p1(&P_11, p, &P_ni, signbit);
@ -639,7 +639,7 @@ void ge25519_add(ge25519 *r, const ge25519 *p, const ge25519 *q, unsigned char s
void ge25519_fromfe_frombytes_vartime(ge25519 *r, const unsigned char *s){
bignum25519 u={0}, v={0}, w={0}, x={0}, y={0}, z={0};
unsigned char sign;
unsigned char sign = 0;
curve25519_expand_reduce(u, s);

View File

@ -42,9 +42,9 @@ ed25519_hram(hash_512bits hram, const ed25519_signature RS, const ed25519_public
void
ED25519_FN(ed25519_publickey) (const ed25519_secret_key sk, ed25519_public_key pk) {
bignum256modm a;
bignum256modm a = {0};
ge25519 ALIGN(16) A;
hash_512bits extsk;
hash_512bits extsk = {0};
/* A = aB */
ed25519_extsk(extsk, sk);
@ -57,9 +57,9 @@ ED25519_FN(ed25519_publickey) (const ed25519_secret_key sk, ed25519_public_key p
#if USE_CARDANO
void
ED25519_FN(ed25519_publickey_ext) (const ed25519_secret_key sk, const ed25519_secret_key skext, ed25519_public_key pk) {
bignum256modm a;
bignum256modm a = {0};
ge25519 ALIGN(16) A;
hash_512bits extsk;
hash_512bits extsk = {0};
/* we don't stretch the key through hashing first since its already 64 bytes */
@ -73,8 +73,8 @@ ED25519_FN(ed25519_publickey_ext) (const ed25519_secret_key sk, const ed25519_se
void
ED25519_FN(ed25519_cosi_sign) (const unsigned char *m, size_t mlen, const ed25519_secret_key sk, const ed25519_secret_key nonce, const ed25519_public_key R, const ed25519_public_key pk, ed25519_cosi_signature sig) {
bignum256modm r, S, a;
hash_512bits extsk, extnonce, hram;
bignum256modm r = {0}, S = {0}, a = {0};
hash_512bits extsk = {0}, extnonce = {0}, hram = {0};
ed25519_extsk(extsk, sk);
ed25519_extsk(extnonce, nonce);
@ -100,9 +100,9 @@ ED25519_FN(ed25519_cosi_sign) (const unsigned char *m, size_t mlen, const ed2551
void
ED25519_FN(ed25519_sign) (const unsigned char *m, size_t mlen, const ed25519_secret_key sk, const ed25519_public_key pk, ed25519_signature RS) {
ed25519_hash_context ctx;
bignum256modm r, S, a;
ge25519 ALIGN(16) R;
hash_512bits extsk, hashr, hram;
bignum256modm r = {0}, S = {0}, a = {0};
ge25519 ALIGN(16) R = {0};
hash_512bits extsk = {0}, hashr = {0}, hram = {0};
ed25519_extsk(extsk, sk);
@ -137,9 +137,9 @@ ED25519_FN(ed25519_sign) (const unsigned char *m, size_t mlen, const ed25519_sec
void
ED25519_FN(ed25519_sign_ext) (const unsigned char *m, size_t mlen, const ed25519_secret_key sk, const ed25519_secret_key skext, const ed25519_public_key pk, ed25519_signature RS) {
ed25519_hash_context ctx;
bignum256modm r, S, a;
ge25519 ALIGN(16) R;
hash_512bits extsk, hashr, hram;
bignum256modm r = {0}, S = {0}, a = {0};
ge25519 ALIGN(16) R = {0};
hash_512bits extsk = {0}, hashr = {0}, hram = {0};
/* we don't stretch the key through hashing first since its already 64 bytes */
@ -177,9 +177,9 @@ ED25519_FN(ed25519_sign_ext) (const unsigned char *m, size_t mlen, const ed25519
int
ED25519_FN(ed25519_sign_open) (const unsigned char *m, size_t mlen, const ed25519_public_key pk, const ed25519_signature RS) {
ge25519 ALIGN(16) R, A;
hash_512bits hash;
bignum256modm hram, S;
unsigned char checkR[32];
hash_512bits hash = {0};
bignum256modm hram = {0}, S = {0};
unsigned char checkR[32] = {0};
if ((RS[63] & 224) || !ge25519_unpack_negative_vartime(&A, pk))
return -1;
@ -203,9 +203,9 @@ ED25519_FN(ed25519_sign_open) (const unsigned char *m, size_t mlen, const ed2551
int
ED25519_FN(ed25519_scalarmult) (ed25519_public_key res, const ed25519_secret_key sk, const ed25519_public_key pk) {
bignum256modm a;
bignum256modm a = {0};
ge25519 ALIGN(16) A, P;
hash_512bits extsk;
hash_512bits extsk = {0};
ed25519_extsk(extsk, sk);
expand256_modm(a, extsk, 32);
@ -228,9 +228,9 @@ ED25519_FN(ed25519_scalarmult) (ed25519_public_key res, const ed25519_secret_key
int
ed25519_cosi_combine_publickeys(ed25519_public_key res, CONST ed25519_public_key *pks, size_t n) {
size_t i = 0;
ge25519 P;
ge25519_pniels sump;
ge25519_p1p1 sump1;
ge25519 P = {0};
ge25519_pniels sump = {0};
ge25519_p1p1 sump1 = {0};
if (n == 1) {
memcpy(res, pks, sizeof(ed25519_public_key));
@ -258,7 +258,7 @@ ed25519_cosi_combine_publickeys(ed25519_public_key res, CONST ed25519_public_key
void
ed25519_cosi_combine_signatures(ed25519_signature res, const ed25519_public_key R, CONST ed25519_cosi_signature *sigs, size_t n) {
bignum256modm s, t;
bignum256modm s = {0}, t = {0};
size_t i = 0;
expand256_modm(s, sigs[i++], 32);
@ -275,11 +275,11 @@ ed25519_cosi_combine_signatures(ed25519_signature res, const ed25519_public_key
*/
void
curve25519_scalarmult_basepoint(curve25519_key pk, const curve25519_key e) {
curve25519_key ec;
bignum256modm s;
curve25519_key ec = {0};
bignum256modm s = {0};
bignum25519 ALIGN(16) yplusz, zminusy;
ge25519 ALIGN(16) p;
size_t i;
size_t i = 0;
/* clamp */
for (i = 0; i < 32; i++) ec[i] = e[i];
@ -302,8 +302,8 @@ curve25519_scalarmult_basepoint(curve25519_key pk, const curve25519_key e) {
void
curve25519_scalarmult(curve25519_key mypublic, const curve25519_key secret, const curve25519_key basepoint) {
curve25519_key e;
size_t i;
curve25519_key e = {0};
size_t i = 0;
for (i = 0;i < 32;++i) e[i] = secret[i];
e[0] &= 0xf8;

View File

@ -32,8 +32,8 @@ lt_modm(bignum256modm_element_t a, bignum256modm_element_t b) {
/* see HAC, Alg. 14.42 Step 4 */
void reduce256_modm(bignum256modm r) {
bignum256modm t;
bignum256modm_element_t b = 0, pb, mask;
bignum256modm t = {0};
bignum256modm_element_t b = 0, pb = 0, mask = 0;
/* t = r - m */
pb = 0;
@ -66,9 +66,9 @@ void reduce256_modm(bignum256modm r) {
Instead of passing in x, pre-process in to q1 and r1 for efficiency
*/
void barrett_reduce256_modm(bignum256modm r, const bignum256modm q1, const bignum256modm r1) {
bignum256modm q3, r2;
uint64_t c;
bignum256modm_element_t f, b, pb;
bignum256modm q3 = {0}, r2 = {0};
uint64_t c = 0;
bignum256modm_element_t f = 0, b = 0, pb = 0;
/* q1 = x >> 248 = 264 bits = 9 30 bit elements
q2 = mu * q1
@ -134,7 +134,7 @@ void barrett_reduce256_modm(bignum256modm r, const bignum256modm q1, const bignu
/* addition modulo m */
void add256_modm(bignum256modm r, const bignum256modm x, const bignum256modm y) {
bignum256modm_element_t c;
bignum256modm_element_t c = 0;
c = x[0] + y[0]; r[0] = c & 0x3fffffff; c >>= 30;
c += x[1] + y[1]; r[1] = c & 0x3fffffff; c >>= 30;
@ -151,7 +151,7 @@ void add256_modm(bignum256modm r, const bignum256modm x, const bignum256modm y)
/* -x modulo m */
void neg256_modm(bignum256modm r, const bignum256modm x) {
bignum256modm_element_t b = 0, pb;
bignum256modm_element_t b = 0, pb = 0;
/* r = m - x */
pb = 0;
@ -191,9 +191,9 @@ void sub256_modm(bignum256modm r, const bignum256modm x, const bignum256modm y)
/* multiplication modulo m */
void mul256_modm(bignum256modm r, const bignum256modm x, const bignum256modm y) {
bignum256modm r1, q1;
uint64_t c;
bignum256modm_element_t f;
bignum256modm r1 = {0}, q1 = {0};
uint64_t c = 0;
bignum256modm_element_t f = 0;
/* r1 = (x mod 256^(32+1)) = x mod (2^8)(31+1) = x & ((1 << 264) - 1)
q1 = x >> 248 = 264 bits = 9 30 bit elements */
@ -237,8 +237,8 @@ void mul256_modm(bignum256modm r, const bignum256modm x, const bignum256modm y)
void expand256_modm(bignum256modm out, const unsigned char *in, size_t len) {
unsigned char work[64] = {0};
bignum256modm_element_t x[16];
bignum256modm q1;
bignum256modm_element_t x[16] = {0};
bignum256modm q1 = {0};
memcpy(work, in, len);
x[0] = U8TO32_LE(work + 0);
@ -288,7 +288,7 @@ void expand256_modm(bignum256modm out, const unsigned char *in, size_t len) {
}
void expand_raw256_modm(bignum256modm out, const unsigned char in[32]) {
bignum256modm_element_t x[8];
bignum256modm_element_t x[8] = {0};
x[0] = U8TO32_LE(in + 0);
x[1] = U8TO32_LE(in + 4);
@ -312,7 +312,7 @@ void expand_raw256_modm(bignum256modm out, const unsigned char in[32]) {
int is_reduced256_modm(const bignum256modm in)
{
int i;
int i = 0;
uint32_t res1 = 0;
uint32_t res2 = 0;
for (i = 8; i >= 0; i--) {
@ -334,9 +334,9 @@ void contract256_modm(unsigned char out[32], const bignum256modm in) {
}
void contract256_window4_modm(signed char r[64], const bignum256modm in) {
char carry;
char carry = 0;
signed char *quads = r;
bignum256modm_element_t i, j, v;
bignum256modm_element_t i = 0, j = 0, v = 0;
for (i = 0; i < 8; i += 2) {
v = in[i];
@ -369,10 +369,10 @@ void contract256_window4_modm(signed char r[64], const bignum256modm in) {
}
void contract256_slidingwindow_modm(signed char r[256], const bignum256modm s, int windowsize) {
int i,j,k,b;
int i = 0, j = 0, k = 0, b = 0;
int m = (1 << (windowsize - 1)) - 1, soplen = 256;
signed char *bits = r;
bignum256modm_element_t v;
bignum256modm_element_t v = 0;
/* first put the binary expansion into r */
for (i = 0; i < 8; i++) {

View File

@ -350,7 +350,7 @@ static const sph_u32 T1dn[] = {
};
#define DECL_STATE_SMALL \
sph_u32 H[16];
sph_u32 H[16] = {0};
#define READ_STATE_SMALL(sc) do { \
memcpy(H, (sc)->state.narrow, sizeof H); \
@ -476,7 +476,7 @@ static const sph_u32 T1dn[] = {
} while (0)
#define DECL_STATE_BIG \
sph_u32 H[32];
sph_u32 H[32] = {0};
#define READ_STATE_BIG(sc) do { \
memcpy(H, (sc)->state.narrow, sizeof H); \
@ -675,7 +675,7 @@ static const sph_u32 T1dn[] = {
static void
groestl_big_init(sph_groestl_big_context *sc, unsigned out_size)
{
size_t u;
size_t u = 0;
sc->ptr = 0;
for (u = 0; u < 31; u ++)
@ -688,8 +688,8 @@ groestl_big_init(sph_groestl_big_context *sc, unsigned out_size)
static void
groestl_big_core(sph_groestl_big_context *sc, const void *data, size_t len)
{
unsigned char *buf;
size_t ptr;
unsigned char *buf = NULL;
size_t ptr = 0;
DECL_STATE_BIG
buf = sc->buf;
@ -703,7 +703,7 @@ groestl_big_core(sph_groestl_big_context *sc, const void *data, size_t len)
READ_STATE_BIG(sc);
while (len > 0) {
size_t clen;
size_t clen = 0;
clen = (sizeof sc->buf) - ptr;
if (clen > len)
@ -726,10 +726,10 @@ static void
groestl_big_close(sph_groestl_big_context *sc,
unsigned ub, unsigned n, void *dst, size_t out_len)
{
unsigned char pad[136];
size_t ptr, pad_len, u2;
sph_u64 count;
unsigned z;
unsigned char pad[136] = {0};
size_t ptr = 0, pad_len = 0, u2 = 0;
sph_u64 count = 0;
unsigned z = 0;
DECL_STATE_BIG
ptr = sc->ptr;
@ -774,7 +774,7 @@ groestl512_Final(void *cc, void *dst)
void
groestl512_DoubleTrunc(void *cc, void *dst)
{
char buf[64];
char buf[64] = {0};
groestl512_Final(cc, buf);
groestl512_Update(cc, buf, sizeof(buf));

View File

@ -139,7 +139,7 @@ void hasher_Final(Hasher *hasher, uint8_t hash[HASHER_DIGEST_LENGTH]) {
void hasher_Raw(HasherType type, const uint8_t *data, size_t length,
uint8_t hash[HASHER_DIGEST_LENGTH]) {
Hasher hasher;
Hasher hasher = {0};
hasher_Init(&hasher, type);
hasher_Update(&hasher, data, length);

View File

@ -83,7 +83,7 @@ void hmac_sha256_prepare(const uint8_t *key, const uint32_t keylen,
/* compute o_key_pad and its digest */
for (int i = 0; i < SHA256_BLOCK_LENGTH / (int)sizeof(uint32_t); i++) {
uint32_t data;
uint32_t data = 0;
#if BYTE_ORDER == LITTLE_ENDIAN
REVERSE32(key_pad[i], data);
#else
@ -135,7 +135,7 @@ void hmac_sha512_Final(HMAC_SHA512_CTX *hctx, uint8_t *hmac) {
void hmac_sha512(const uint8_t *key, const uint32_t keylen, const uint8_t *msg,
const uint32_t msglen, uint8_t *hmac) {
HMAC_SHA512_CTX hctx;
HMAC_SHA512_CTX hctx = {0};
hmac_sha512_Init(&hctx, key, keylen);
hmac_sha512_Update(&hctx, msg, msglen);
hmac_sha512_Final(&hctx, hmac);
@ -157,7 +157,7 @@ void hmac_sha512_prepare(const uint8_t *key, const uint32_t keylen,
/* compute o_key_pad and its digest */
for (int i = 0; i < SHA512_BLOCK_LENGTH / (int)sizeof(uint64_t); i++) {
uint64_t data;
uint64_t data = 0;
#if BYTE_ORDER == LITTLE_ENDIAN
REVERSE64(key_pad[i], data);
#else

View File

@ -38,7 +38,7 @@ static void update_k(HMAC_DRBG_CTX *ctx, uint8_t domain, const uint8_t *data1,
ctx->v[8] = 0x80000000;
ctx->v[15] = (SHA256_BLOCK_LENGTH + SHA256_DIGEST_LENGTH) * 8;
} else {
SHA256_CTX sha_ctx;
SHA256_CTX sha_ctx = {0};
memcpy(sha_ctx.state, ctx->idig, SHA256_DIGEST_LENGTH);
for (size_t i = 0; i < SHA256_DIGEST_LENGTH / sizeof(uint32_t); i++) {
#if BYTE_ORDER == LITTLE_ENDIAN
@ -86,7 +86,7 @@ static void update_v(HMAC_DRBG_CTX *ctx) {
void hmac_drbg_init(HMAC_DRBG_CTX *ctx, const uint8_t *entropy,
size_t entropy_len, const uint8_t *nonce,
size_t nonce_len) {
uint32_t h[SHA256_BLOCK_LENGTH / sizeof(uint32_t)];
uint32_t h[SHA256_BLOCK_LENGTH / sizeof(uint32_t)] = {0};
// Precompute the inner digest and outer digest of K = 0x00 ... 0x00.
memset(h, 0x36, sizeof(h));

View File

@ -106,7 +106,7 @@ bool decode_block(const char* block, size_t size, char* res)
if (digit < 0)
return false; // Invalid symbol
uint64_t product_hi;
uint64_t product_hi = 0;
uint64_t tmp = res_num + mul128(order, (uint64_t) digit, &product_hi);
if (tmp < res_num || 0 != product_hi)
return false; // Overflow
@ -199,7 +199,8 @@ int xmr_base58_addr_encode_check(uint64_t tag, const uint8_t *data, size_t binsz
}
size_t b58size = b58sz;
uint8_t buf[binsz + 1 + HASHER_DIGEST_LENGTH];
uint8_t buf[(binsz + 1) + HASHER_DIGEST_LENGTH];
memset(buf, 0, sizeof(buf));
uint8_t *hash = buf + binsz + 1;
buf[0] = (uint8_t) tag;
memcpy(buf + 1, data, binsz);
@ -213,7 +214,8 @@ int xmr_base58_addr_decode_check(const char *addr, size_t sz, uint64_t *tag, voi
{
size_t buflen = 1 + 64 + addr_checksum_size;
uint8_t buf[buflen];
uint8_t hash[HASHER_DIGEST_LENGTH];
memset(buf, 0, sizeof(buf));
uint8_t hash[HASHER_DIGEST_LENGTH] = {0};
if (!xmr_base58_decode(addr, sz, buf, &buflen)){
return 0;

View File

@ -5,15 +5,15 @@
#include "range_proof.h"
static void xmr_hash_ge25519_to_scalar(bignum256modm r, const ge25519 *p) {
unsigned char buff[32];
unsigned char buff[32] = {0};
ge25519_pack(buff, p);
xmr_hash_to_scalar(r, buff, sizeof(buff));
}
void xmr_gen_range_sig(xmr_range_sig_t *sig, ge25519 *C, bignum256modm mask,
xmr_amount amount, bignum256modm *last_mask) {
bignum256modm ai[64];
bignum256modm alpha[64];
bignum256modm ai[64] = {0};
bignum256modm alpha[64] = {0};
xmr_gen_range_sig_ex(sig, C, mask, amount, last_mask, ai, alpha);
}
@ -25,16 +25,16 @@ void xmr_gen_range_sig_ex(xmr_range_sig_t *sig, ge25519 *C, bignum256modm mask,
bignum256modm si = {0};
bignum256modm c = {0};
bignum256modm ee = {0};
unsigned char buff[32];
unsigned char buff[32] = {0};
Hasher kck;
Hasher kck = {0};
xmr_hasher_init(&kck);
ge25519 C_acc;
ge25519 C_h;
ge25519 C_tmp;
ge25519 L;
ge25519 Zero;
ge25519 C_acc = {0};
ge25519 C_h = {0};
ge25519 C_tmp = {0};
ge25519 L = {0};
ge25519 Zero = {0};
ge25519_set_neutral(&Zero);
ge25519_set_neutral(&C_acc);

View File

@ -44,14 +44,14 @@ void xmr_hasher_copy(Hasher *dst, const Hasher *src) {
}
void xmr_hash_to_scalar(bignum256modm r, const void *data, size_t length) {
uint8_t hash[HASHER_DIGEST_LENGTH];
uint8_t hash[HASHER_DIGEST_LENGTH] = {0};
hasher_Raw(HASHER_SHA3K, data, length, hash);
expand256_modm(r, hash, HASHER_DIGEST_LENGTH);
}
void xmr_hash_to_ec(ge25519 *P, const void *data, size_t length) {
ge25519 point2;
uint8_t hash[HASHER_DIGEST_LENGTH];
ge25519 point2 = {0};
uint8_t hash[HASHER_DIGEST_LENGTH] = {0};
hasher_Raw(HASHER_SHA3K, data, length, hash);
ge25519_fromfe_frombytes_vartime(&point2, hash);
@ -60,7 +60,7 @@ void xmr_hash_to_ec(ge25519 *P, const void *data, size_t length) {
void xmr_derivation_to_scalar(bignum256modm s, const ge25519 *p,
uint32_t output_index) {
uint8_t buff[32 + 8];
uint8_t buff[32 + 8] = {0};
ge25519_pack(buff, p);
int written = xmr_write_varint(buff + 32, 8, output_index);
xmr_hash_to_scalar(s, buff, 32u + written);
@ -68,7 +68,7 @@ void xmr_derivation_to_scalar(bignum256modm s, const ge25519 *p,
void xmr_generate_key_derivation(ge25519 *r, const ge25519 *A,
const bignum256modm b) {
ge25519 bA;
ge25519 bA = {0};
ge25519_scalarmult(&bA, A, b);
ge25519_mul8(r, &bA);
}
@ -82,7 +82,7 @@ void xmr_derive_private_key(bignum256modm s, const ge25519 *deriv, uint32_t idx,
void xmr_derive_public_key(ge25519 *r, const ge25519 *deriv, uint32_t idx,
const ge25519 *base) {
bignum256modm s = {0};
ge25519 p2;
ge25519 p2 = {0};
xmr_derivation_to_scalar(s, deriv, idx);
ge25519_scalarmult_base_niels(&p2, ge25519_niels_base_multiples, s);
@ -92,7 +92,7 @@ void xmr_derive_public_key(ge25519 *r, const ge25519 *deriv, uint32_t idx,
void xmr_add_keys2(ge25519 *r, const bignum256modm a, const bignum256modm b,
const ge25519 *B) {
// aG + bB, G is basepoint
ge25519 aG, bB;
ge25519 aG = {0}, bB = {0};
ge25519_scalarmult_base_niels(&aG, ge25519_niels_base_multiples, a);
ge25519_scalarmult(&bB, B, b);
ge25519_add(r, &aG, &bB, 0);
@ -107,7 +107,7 @@ void xmr_add_keys2_vartime(ge25519 *r, const bignum256modm a,
void xmr_add_keys3(ge25519 *r, const bignum256modm a, const ge25519 *A,
const bignum256modm b, const ge25519 *B) {
// aA + bB
ge25519 aA, bB;
ge25519 aA = {0}, bB = {0};
ge25519_scalarmult(&aA, A, a);
ge25519_scalarmult(&bB, B, b);
ge25519_add(r, &aA, &bB, 0);
@ -122,10 +122,10 @@ void xmr_add_keys3_vartime(ge25519 *r, const bignum256modm a, const ge25519 *A,
void xmr_get_subaddress_secret_key(bignum256modm r, uint32_t major,
uint32_t minor, const bignum256modm m) {
const char prefix[] = "SubAddr";
unsigned char buff[32];
unsigned char buff[32] = {0};
contract256_modm(buff, m);
char data[sizeof(prefix) + sizeof(buff) + 2 * sizeof(uint32_t)];
char data[sizeof(prefix) + sizeof(buff) + 2 * sizeof(uint32_t)] = {0};
memcpy(data, prefix, sizeof(prefix));
memcpy(data + sizeof(prefix), buff, sizeof(buff));
memcpy(data + sizeof(prefix) + sizeof(buff), &major, sizeof(uint32_t));

View File

@ -116,7 +116,7 @@ static inline bool nem_write_mosaic_bool(nem_transaction_ctx *ctx,
static inline bool nem_write_mosaic_u64(nem_transaction_ctx *ctx,
const char *name, uint64_t value) {
char buffer[21];
char buffer[21] = {0};
if (bn_format_uint64(value, NULL, NULL, 0, 0, false, buffer,
sizeof(buffer)) == 0) {
@ -128,7 +128,7 @@ static inline bool nem_write_mosaic_u64(nem_transaction_ctx *ctx,
void nem_get_address_raw(const ed25519_public_key public_key, uint8_t version,
uint8_t *address) {
uint8_t hash[SHA3_256_DIGEST_LENGTH];
uint8_t hash[SHA3_256_DIGEST_LENGTH] = {0};
/* 1. Perform 256-bit Sha3 on the public key */
keccak_256(public_key, sizeof(ed25519_public_key), hash);
@ -151,7 +151,7 @@ void nem_get_address_raw(const ed25519_public_key public_key, uint8_t version,
bool nem_get_address(const ed25519_public_key public_key, uint8_t version,
char *address) {
uint8_t pubkeyhash[NEM_ADDRESS_SIZE_RAW];
uint8_t pubkeyhash[NEM_ADDRESS_SIZE_RAW] = {0};
nem_get_address_raw(public_key, version, pubkeyhash);
@ -167,7 +167,7 @@ bool nem_validate_address_raw(const uint8_t *address, uint8_t network) {
return false;
}
uint8_t hash[SHA3_256_DIGEST_LENGTH];
uint8_t hash[SHA3_256_DIGEST_LENGTH] = {0};
keccak_256(address, 1 + RIPEMD160_DIGEST_LENGTH, hash);
bool valid = (memcmp(&address[1 + RIPEMD160_DIGEST_LENGTH], hash, 4) == 0);
@ -177,7 +177,7 @@ bool nem_validate_address_raw(const uint8_t *address, uint8_t network) {
}
bool nem_validate_address(const char *address, uint8_t network) {
uint8_t pubkeyhash[NEM_ADDRESS_SIZE_RAW];
uint8_t pubkeyhash[NEM_ADDRESS_SIZE_RAW] = {0};
if (strlen(address) != NEM_ADDRESS_SIZE) {
return false;
@ -314,10 +314,10 @@ bool nem_transaction_create_multisig_signature(
timestamp, signer, fee, deadline);
if (!ret) return false;
char address[NEM_ADDRESS_SIZE + 1];
char address[NEM_ADDRESS_SIZE + 1] = {0};
nem_get_address(inner->public_key, network, address);
uint8_t hash[SHA3_256_DIGEST_LENGTH];
uint8_t hash[SHA3_256_DIGEST_LENGTH] = {0};
keccak_256(inner->buffer, inner->offset, hash);
SERIALIZE_U32(sizeof(uint32_t) + SHA3_256_DIGEST_LENGTH);
@ -379,7 +379,7 @@ bool nem_transaction_create_mosaic_creation(
sizeof(uint32_t) + namespace_length + sizeof(uint32_t) + mosaic_length;
// This length will be rewritten later on
nem_transaction_ctx state;
nem_transaction_ctx state = {0};
memcpy(&state, ctx, sizeof(state));
SERIALIZE_U32(0);

View File

@ -30,7 +30,7 @@
void pbkdf2_hmac_sha256_Init(PBKDF2_HMAC_SHA256_CTX *pctx, const uint8_t *pass,
int passlen, const uint8_t *salt, int saltlen,
uint32_t blocknr) {
SHA256_CTX ctx;
SHA256_CTX ctx = {0};
#if BYTE_ORDER == LITTLE_ENDIAN
REVERSE32(blocknr, blocknr);
#endif
@ -88,10 +88,10 @@ void pbkdf2_hmac_sha256(const uint8_t *pass, int passlen, const uint8_t *salt,
last_block_size = SHA256_DIGEST_LENGTH;
}
for (uint32_t blocknr = 1; blocknr <= blocks_count; blocknr++) {
PBKDF2_HMAC_SHA256_CTX pctx;
PBKDF2_HMAC_SHA256_CTX pctx = {0};
pbkdf2_hmac_sha256_Init(&pctx, pass, passlen, salt, saltlen, blocknr);
pbkdf2_hmac_sha256_Update(&pctx, iterations);
uint8_t digest[SHA256_DIGEST_LENGTH];
uint8_t digest[SHA256_DIGEST_LENGTH] = {0};
pbkdf2_hmac_sha256_Final(&pctx, digest);
uint32_t key_offset = (blocknr - 1) * SHA256_DIGEST_LENGTH;
if (blocknr < blocks_count) {
@ -105,7 +105,7 @@ void pbkdf2_hmac_sha256(const uint8_t *pass, int passlen, const uint8_t *salt,
void pbkdf2_hmac_sha512_Init(PBKDF2_HMAC_SHA512_CTX *pctx, const uint8_t *pass,
int passlen, const uint8_t *salt, int saltlen,
uint32_t blocknr) {
SHA512_CTX ctx;
SHA512_CTX ctx = {0};
#if BYTE_ORDER == LITTLE_ENDIAN
REVERSE32(blocknr, blocknr);
#endif
@ -164,10 +164,10 @@ void pbkdf2_hmac_sha512(const uint8_t *pass, int passlen, const uint8_t *salt,
last_block_size = SHA512_DIGEST_LENGTH;
}
for (uint32_t blocknr = 1; blocknr <= blocks_count; blocknr++) {
PBKDF2_HMAC_SHA512_CTX pctx;
PBKDF2_HMAC_SHA512_CTX pctx = {0};
pbkdf2_hmac_sha512_Init(&pctx, pass, passlen, salt, saltlen, blocknr);
pbkdf2_hmac_sha512_Update(&pctx, iterations);
uint8_t digest[SHA512_DIGEST_LENGTH];
uint8_t digest[SHA512_DIGEST_LENGTH] = {0};
pbkdf2_hmac_sha512_Final(&pctx, digest);
uint32_t key_offset = (blocknr - 1) * SHA512_DIGEST_LENGTH;
if (blocknr < blocks_count) {

View File

@ -65,7 +65,7 @@ void __attribute__((weak)) random_buffer(uint8_t *buf, size_t len) {
}
uint32_t random_uniform(uint32_t n) {
uint32_t x, max = 0xFFFFFFFF - (0xFFFFFFFF % n);
uint32_t x = 0, max = 0xFFFFFFFF - (0xFFFFFFFF % n);
while ((x = random32()) >= max)
;
return x / (max / n);

View File

@ -39,7 +39,7 @@ void generate_rfc6979(uint8_t rnd[32], rfc6979_state *state) {
// generate K in a deterministic way, according to RFC6979
// http://tools.ietf.org/html/rfc6979
void generate_k_rfc6979(bignum256 *k, rfc6979_state *state) {
uint8_t buf[32];
uint8_t buf[32] = {0};
generate_rfc6979(buf, state);
bn_read_be(buf, k);
memzero(buf, sizeof(buf));

View File

@ -74,7 +74,7 @@ void ripemd160_Init(RIPEMD160_CTX *ctx)
*/
void ripemd160_process( RIPEMD160_CTX *ctx, const uint8_t data[RIPEMD160_BLOCK_LENGTH] )
{
uint32_t A, B, C, D, E, Ap, Bp, Cp, Dp, Ep, X[16];
uint32_t A = 0, B = 0, C = 0, D = 0, E = 0, Ap = 0, Bp = 0, Cp = 0, Dp = 0, Ep = 0, X[16] = {0};
GET_UINT32_LE( X[ 0], data, 0 );
GET_UINT32_LE( X[ 1], data, 4 );
@ -255,8 +255,8 @@ void ripemd160_process( RIPEMD160_CTX *ctx, const uint8_t data[RIPEMD160_BLOCK_L
*/
void ripemd160_Update( RIPEMD160_CTX *ctx, const uint8_t *input, uint32_t ilen )
{
uint32_t fill;
uint32_t left;
uint32_t fill = 0;
uint32_t left = 0;
if( ilen == 0 )
return;
@ -305,9 +305,9 @@ static const uint8_t ripemd160_padding[RIPEMD160_BLOCK_LENGTH] =
*/
void ripemd160_Final( RIPEMD160_CTX *ctx, uint8_t output[RIPEMD160_DIGEST_LENGTH] )
{
uint32_t last, padn;
uint32_t high, low;
uint8_t msglen[8];
uint32_t last = 0; uint32_t padn = 0;
uint32_t high = 0; uint32_t low = 0;
uint8_t msglen[8] = {0};
high = ( ctx->total[0] >> 29 )
| ( ctx->total[1] << 3 );
@ -336,7 +336,7 @@ void ripemd160_Final( RIPEMD160_CTX *ctx, uint8_t output[RIPEMD160_DIGEST_LENGTH
*/
void ripemd160(const uint8_t *msg, uint32_t msg_len, uint8_t hash[RIPEMD160_DIGEST_LENGTH])
{
RIPEMD160_CTX ctx;
RIPEMD160_CTX ctx = {0};
ripemd160_Init( &ctx );
ripemd160_Update( &ctx, msg, msg_len );
ripemd160_Final( &ctx, hash );

View File

@ -26,7 +26,7 @@
int script_output_to_address(const uint8_t *script, int scriptlen, char *addr,
int addrsize) {
uint8_t raw[35];
uint8_t raw[35] = {0};
// P2PKH
if (scriptlen == 25 && script[0] == 0x76 && script[1] == 0xA9 &&

View File

@ -85,9 +85,9 @@ int bech32_encode(char *output, const char *hrp, const uint8_t *data, size_t dat
int bech32_decode(char* hrp, uint8_t *data, size_t *data_len, const char *input) {
uint32_t chk = 1;
size_t i;
size_t i = 0;
size_t input_len = strlen(input);
size_t hrp_len;
size_t hrp_len = 0;
int have_lower = 0, have_upper = 0;
if (input_len < 8 || input_len > 90) {
return 0;
@ -163,7 +163,7 @@ static int convert_bits(uint8_t* out, size_t* outlen, int outbits, const uint8_t
}
int segwit_addr_encode(char *output, const char *hrp, int witver, const uint8_t *witprog, size_t witprog_len) {
uint8_t data[65];
uint8_t data[65] = {0};
size_t datalen = 0;
if (witver > 16) return 0;
if (witver == 0 && witprog_len != 20 && witprog_len != 32) return 0;
@ -175,9 +175,9 @@ int segwit_addr_encode(char *output, const char *hrp, int witver, const uint8_t
}
int segwit_addr_decode(int* witver, uint8_t* witdata, size_t* witdata_len, const char* hrp, const char* addr) {
uint8_t data[84];
char hrp_actual[84];
size_t data_len;
uint8_t data[84] = {0};
char hrp_actual[84] = {0};
size_t data_len = 0;
if (!bech32_decode(hrp_actual, data, &data_len, addr)) return 0;
if (data_len == 0 || data_len > 65) return 0;
if (strncmp(hrp, hrp_actual, 84) != 0) return 0;

View File

@ -321,10 +321,10 @@ void sha1_Init(SHA1_CTX* context) {
j++;
void sha1_Transform(const sha2_word32* state_in, const sha2_word32* data, sha2_word32* state_out) {
sha2_word32 a, b, c, d, e;
sha2_word32 T1;
sha2_word32 W1[16];
int j;
sha2_word32 a = 0, b = 0, c = 0, d = 0, e = 0;
sha2_word32 T1 = 0;
sha2_word32 W1[16] = {0};
int j = 0;
/* Initialize registers with the prev. intermediate value */
a = state_in[0];
@ -439,10 +439,10 @@ void sha1_Transform(const sha2_word32* state_in, const sha2_word32* data, sha2_w
#else /* SHA2_UNROLL_TRANSFORM */
void sha1_Transform(const sha2_word32* state_in, const sha2_word32* data, sha2_word32* state_out) {
sha2_word32 a, b, c, d, e;
sha2_word32 T1;
sha2_word32 W1[16];
int j;
sha2_word32 a = 0, b = 0, c = 0, d = 0, e = 0;
sha2_word32 T1 = 0;
sha2_word32 W1[16] = {0};
int j = 0;
/* Initialize registers with the prev. intermediate value */
a = state_in[0];
@ -520,7 +520,7 @@ void sha1_Transform(const sha2_word32* state_in, const sha2_word32* data, sha2_w
#endif /* SHA2_UNROLL_TRANSFORM */
void sha1_Update(SHA1_CTX* context, const sha2_byte *data, size_t len) {
unsigned int freespace, usedspace;
unsigned int freespace = 0, usedspace = 0;
if (len == 0) {
/* Calling with no data is valid - we do nothing */
@ -578,7 +578,7 @@ void sha1_Update(SHA1_CTX* context, const sha2_byte *data, size_t len) {
}
void sha1_Final(SHA1_CTX* context, sha2_byte digest[]) {
unsigned int usedspace;
unsigned int usedspace = 0;
/* If no digest buffer is passed, we don't bother doing this: */
if (digest != (sha2_byte*)0) {
@ -632,8 +632,8 @@ void sha1_Final(SHA1_CTX* context, sha2_byte digest[]) {
}
char *sha1_End(SHA1_CTX* context, char buffer[]) {
sha2_byte digest[SHA1_DIGEST_LENGTH], *d = digest;
int i;
sha2_byte digest[SHA1_DIGEST_LENGTH] = {0}, *d = digest;
int i = 0;
if (buffer != (char*)0) {
sha1_Final(context, digest);
@ -652,14 +652,14 @@ char *sha1_End(SHA1_CTX* context, char buffer[]) {
}
void sha1_Raw(const sha2_byte* data, size_t len, uint8_t digest[SHA1_DIGEST_LENGTH]) {
SHA1_CTX context;
SHA1_CTX context = {0};
sha1_Init(&context);
sha1_Update(&context, data, len);
sha1_Final(&context, digest);
}
char* sha1_Data(const sha2_byte* data, size_t len, char digest[SHA1_DIGEST_STRING_LENGTH]) {
SHA1_CTX context;
SHA1_CTX context = {0};
sha1_Init(&context);
sha1_Update(&context, data, len);
@ -699,10 +699,10 @@ void sha256_Init(SHA256_CTX* context) {
j++
void sha256_Transform(const sha2_word32* state_in, const sha2_word32* data, sha2_word32* state_out) {
sha2_word32 a, b, c, d, e, f, g, h, s0, s1;
sha2_word32 T1;
sha2_word32 W256[16];
int j;
sha2_word32 a = 0, b = 0, c = 0, d = 0, e = 0, f = 0, g = 0, h = 0, s0 = 0, s1 = 0;
sha2_word32 T1 = 0;
sha2_word32 W256[16] = {0};
int j = 0;
/* Initialize registers with the prev. intermediate value */
a = state_in[0];
@ -756,9 +756,9 @@ void sha256_Transform(const sha2_word32* state_in, const sha2_word32* data, sha2
#else /* SHA2_UNROLL_TRANSFORM */
void sha256_Transform(const sha2_word32* state_in, const sha2_word32* data, sha2_word32* state_out) {
sha2_word32 a, b, c, d, e, f, g, h, s0, s1;
sha2_word32 T1, T2, W256[16];
int j;
sha2_word32 a = 0, b = 0, c = 0, d = 0, e = 0, f = 0, g = 0, h = 0, s0 = 0, s1 = 0;
sha2_word32 T1 = 0, T2 = 0 , W256[16] = {0};
int j = 0;
/* Initialize registers with the prev. intermediate value */
a = state_in[0];
@ -827,7 +827,7 @@ void sha256_Transform(const sha2_word32* state_in, const sha2_word32* data, sha2
#endif /* SHA2_UNROLL_TRANSFORM */
void sha256_Update(SHA256_CTX* context, const sha2_byte *data, size_t len) {
unsigned int freespace, usedspace;
unsigned int freespace = 0, usedspace = 0;
if (len == 0) {
/* Calling with no data is valid - we do nothing */
@ -885,7 +885,7 @@ void sha256_Update(SHA256_CTX* context, const sha2_byte *data, size_t len) {
}
void sha256_Final(SHA256_CTX* context, sha2_byte digest[]) {
unsigned int usedspace;
unsigned int usedspace = 0;
/* If no digest buffer is passed, we don't bother doing this: */
if (digest != (sha2_byte*)0) {
@ -939,8 +939,8 @@ void sha256_Final(SHA256_CTX* context, sha2_byte digest[]) {
}
char *sha256_End(SHA256_CTX* context, char buffer[]) {
sha2_byte digest[SHA256_DIGEST_LENGTH], *d = digest;
int i;
sha2_byte digest[SHA256_DIGEST_LENGTH] = {0}, *d = digest;
int i = 0;
if (buffer != (char*)0) {
sha256_Final(context, digest);
@ -959,14 +959,14 @@ char *sha256_End(SHA256_CTX* context, char buffer[]) {
}
void sha256_Raw(const sha2_byte* data, size_t len, uint8_t digest[SHA256_DIGEST_LENGTH]) {
SHA256_CTX context;
SHA256_CTX context = {0};
sha256_Init(&context);
sha256_Update(&context, data, len);
sha256_Final(&context, digest);
}
char* sha256_Data(const sha2_byte* data, size_t len, char digest[SHA256_DIGEST_STRING_LENGTH]) {
SHA256_CTX context;
SHA256_CTX context = {0};
sha256_Init(&context);
sha256_Update(&context, data, len);
@ -1006,9 +1006,9 @@ void sha512_Init(SHA512_CTX* context) {
j++
void sha512_Transform(const sha2_word64* state_in, const sha2_word64* data, sha2_word64* state_out) {
sha2_word64 a, b, c, d, e, f, g, h, s0, s1;
sha2_word64 T1, W512[16];
int j;
sha2_word64 a = 0, b = 0, c = 0, d = 0, e = 0, f = 0, g = 0, h = 0, s0 = 0, s1 = 0;
sha2_word64 T1 = 0, W512[16] = {0};
int j = 0;
/* Initialize registers with the prev. intermediate value */
a = state_in[0];
@ -1061,9 +1061,9 @@ void sha512_Transform(const sha2_word64* state_in, const sha2_word64* data, sha2
#else /* SHA2_UNROLL_TRANSFORM */
void sha512_Transform(const sha2_word64* state_in, const sha2_word64* data, sha2_word64* state_out) {
sha2_word64 a, b, c, d, e, f, g, h, s0, s1;
sha2_word64 T1, T2, W512[16];
int j;
sha2_word64 a = 0, b = 0, c = 0, d = 0, e = 0, f = 0, g = 0, h = 0, s0 = 0, s1 = 0;
sha2_word64 T1 = 0, T2 = 0, W512[16] = {0};
int j = 0;
/* Initialize registers with the prev. intermediate value */
a = state_in[0];
@ -1132,7 +1132,7 @@ void sha512_Transform(const sha2_word64* state_in, const sha2_word64* data, sha2
#endif /* SHA2_UNROLL_TRANSFORM */
void sha512_Update(SHA512_CTX* context, const sha2_byte *data, size_t len) {
unsigned int freespace, usedspace;
unsigned int freespace = 0, usedspace = 0;
if (len == 0) {
/* Calling with no data is valid - we do nothing */
@ -1190,7 +1190,7 @@ void sha512_Update(SHA512_CTX* context, const sha2_byte *data, size_t len) {
}
static void sha512_Last(SHA512_CTX* context) {
unsigned int usedspace;
unsigned int usedspace = 0;
usedspace = (context->bitcount[0] >> 3) % SHA512_BLOCK_LENGTH;
/* Begin padding with a 1 bit: */
@ -1248,8 +1248,8 @@ void sha512_Final(SHA512_CTX* context, sha2_byte digest[]) {
}
char *sha512_End(SHA512_CTX* context, char buffer[]) {
sha2_byte digest[SHA512_DIGEST_LENGTH], *d = digest;
int i;
sha2_byte digest[SHA512_DIGEST_LENGTH] = {0}, *d = digest;
int i = 0;
if (buffer != (char*)0) {
sha512_Final(context, digest);
@ -1268,14 +1268,14 @@ char *sha512_End(SHA512_CTX* context, char buffer[]) {
}
void sha512_Raw(const sha2_byte* data, size_t len, uint8_t digest[SHA512_DIGEST_LENGTH]) {
SHA512_CTX context;
SHA512_CTX context = {0};
sha512_Init(&context);
sha512_Update(&context, data, len);
sha512_Final(&context, digest);
}
char* sha512_Data(const sha2_byte* data, size_t len, char digest[SHA512_DIGEST_STRING_LENGTH]) {
SHA512_CTX context;
SHA512_CTX context = {0};
sha512_Init(&context);
sha512_Update(&context, data, len);

View File

@ -96,8 +96,8 @@ void sha3_512_Init(SHA3_CTX *ctx)
/* Keccak theta() transformation */
static void keccak_theta(uint64_t *A)
{
unsigned int x;
uint64_t C[5], D[5];
unsigned int x = 0;
uint64_t C[5] = {0}, D[5] = {0};
for (x = 0; x < 5; x++) {
C[x] = A[x] ^ A[x + 5] ^ A[x + 10] ^ A[x + 15] ^ A[x + 20];
@ -120,7 +120,7 @@ static void keccak_theta(uint64_t *A)
/* Keccak pi() transformation */
static void keccak_pi(uint64_t *A)
{
uint64_t A1;
uint64_t A1 = 0;
A1 = A[1];
A[ 1] = A[ 6];
A[ 6] = A[ 9];
@ -152,7 +152,7 @@ static void keccak_pi(uint64_t *A)
/* Keccak chi() transformation */
static void keccak_chi(uint64_t *A)
{
int i;
int i = 0;
for (i = 0; i < 25; i += 5) {
uint64_t A0 = A[0 + i], A1 = A[1 + i];
A[0 + i] ^= ~A1 & A[2 + i];
@ -165,7 +165,7 @@ static void keccak_chi(uint64_t *A)
static void sha3_permutation(uint64_t *state)
{
int round;
int round = 0;
for (round = 0; round < NumberOfRounds; round++)
{
keccak_theta(state);
@ -287,7 +287,7 @@ void sha3_Update(SHA3_CTX *ctx, const unsigned char *msg, size_t size)
size -= left;
}
while (size >= block_size) {
uint64_t* aligned_message_block;
uint64_t *aligned_message_block = NULL;
if (IS_ALIGNED_64(msg)) {
/* the most common case is processing of an already aligned message
without copying it */
@ -365,7 +365,7 @@ void keccak_Final(SHA3_CTX *ctx, unsigned char* result)
void keccak_256(const unsigned char* data, size_t len, unsigned char* digest)
{
SHA3_CTX ctx;
SHA3_CTX ctx = {0};
keccak_256_Init(&ctx);
keccak_Update(&ctx, data, len);
keccak_Final(&ctx, digest);
@ -373,7 +373,7 @@ void keccak_256(const unsigned char* data, size_t len, unsigned char* digest)
void keccak_512(const unsigned char* data, size_t len, unsigned char* digest)
{
SHA3_CTX ctx;
SHA3_CTX ctx = {0};
keccak_512_Init(&ctx);
keccak_Update(&ctx, data, len);
keccak_Final(&ctx, digest);
@ -382,7 +382,7 @@ void keccak_512(const unsigned char* data, size_t len, unsigned char* digest)
void sha3_256(const unsigned char* data, size_t len, unsigned char* digest)
{
SHA3_CTX ctx;
SHA3_CTX ctx = {0};
sha3_256_Init(&ctx);
sha3_Update(&ctx, data, len);
sha3_Final(&ctx, digest);
@ -390,7 +390,7 @@ void sha3_256(const unsigned char* data, size_t len, unsigned char* digest)
void sha3_512(const unsigned char* data, size_t len, unsigned char* digest)
{
SHA3_CTX ctx;
SHA3_CTX ctx = {0};
sha3_512_Init(&ctx);
sha3_Update(&ctx, data, len);
sha3_Final(&ctx, digest);

View File

@ -41,8 +41,8 @@
#include "memzero.h"
static void bitslice(uint32_t r[8], const uint8_t *x, size_t len) {
size_t bit_idx, arr_idx;
uint32_t cur;
size_t bit_idx = 0, arr_idx = 0;
uint32_t cur = 0;
memset(r, 0, sizeof(uint32_t[8]));
for (arr_idx = 0; arr_idx < len; arr_idx++) {
@ -54,8 +54,8 @@ static void bitslice(uint32_t r[8], const uint8_t *x, size_t len) {
}
static void unbitslice(uint8_t *r, const uint32_t x[8], size_t len) {
size_t bit_idx, arr_idx;
uint32_t cur;
size_t bit_idx = 0, arr_idx = 0;
uint32_t cur = 0;
memset(r, 0, sizeof(uint8_t) * len);
for (bit_idx = 0; bit_idx < 8; bit_idx++) {
@ -67,7 +67,7 @@ static void unbitslice(uint8_t *r, const uint32_t x[8], size_t len) {
}
static void bitslice_setall(uint32_t r[8], const uint8_t x) {
size_t idx;
size_t idx = 0;
for (idx = 0; idx < 8; idx++) {
r[idx] = -((x >> idx) & 1);
}
@ -77,7 +77,7 @@ static void bitslice_setall(uint32_t r[8], const uint8_t x) {
* Add (XOR) `r` with `x` and store the result in `r`.
*/
static void gf256_add(uint32_t r[8], const uint32_t x[8]) {
size_t idx;
size_t idx = 0;
for (idx = 0; idx < 8; idx++) r[idx] ^= x[idx];
}
@ -97,7 +97,7 @@ static void gf256_mul(uint32_t r[8], const uint32_t a[8], const uint32_t b[8]) {
* However, some compilers seem to fail in optimizing these kinds of
* loops. So we will just have to do this by hand.
*/
uint32_t a2[8];
uint32_t a2[8] = {0};
memcpy(a2, a, sizeof(uint32_t[8]));
r[0] = a2[0] & b[0]; /* add (assignment, because r is 0) */
@ -200,7 +200,7 @@ static void gf256_mul(uint32_t r[8], const uint32_t a[8], const uint32_t b[8]) {
* Square `x` in GF(2^8) and write the result to `r`. `r` and `x` may overlap.
*/
static void gf256_square(uint32_t r[8], const uint32_t x[8]) {
uint32_t r8, r10, r12, r14;
uint32_t r8 = 0, r10 = 0, r12 = 0, r14 = 0;
/* Use the Freshman's Dream rule to square the polynomial
* Assignments are done from 7 downto 0, because this allows the user
* to execute this function in-place (e.g. `gf256_square(r, r);`).
@ -242,7 +242,7 @@ static void gf256_square(uint32_t r[8], const uint32_t x[8]) {
* Invert `x` in GF(2^8) and write the result to `r`
*/
static void gf256_inv(uint32_t r[8], uint32_t x[8]) {
uint32_t y[8], z[8];
uint32_t y[8] = {0}, z[8] = {0};
gf256_square(y, x); // y = x^2
gf256_square(y, y); // y = x^4
@ -264,13 +264,15 @@ bool shamir_interpolate(uint8_t *result, uint8_t result_index,
const uint8_t *share_indices,
const uint8_t **share_values, uint8_t share_count,
size_t len) {
size_t i, j;
uint32_t x[8];
size_t i = 0, j = 0;
uint32_t x[8] = {0};
uint32_t xs[share_count][8];
memset(xs, 0, sizeof(xs));
uint32_t ys[share_count][8];
memset(ys, 0, sizeof(ys));
uint32_t num[8] = {~0}; /* num is the numerator (=1) */
uint32_t denom[8];
uint32_t tmp[8];
uint32_t denom[8] = {0};
uint32_t tmp[8] = {0};
uint32_t secret[8] = {0};
bool ret = true;

View File

@ -35,7 +35,7 @@
#include "util.h"
void layoutFirmwareFingerprint(const uint8_t *hash) {
char str[4][17];
char str[4][17] = {0};
for (int i = 0; i < 4; i++) {
data2hex(hash + i * 8, 8, str[i]);
}
@ -129,7 +129,7 @@ int main(void) {
const image_header *hdr =
(const image_header *)FLASH_PTR(FLASH_FWHEADER_START);
uint8_t fingerprint[32];
uint8_t fingerprint[32] = {0};
int signed_firmware = signatures_new_ok(hdr, fingerprint);
if (SIG_OK != signed_firmware) {
show_unofficial_warning(fingerprint);

View File

@ -79,7 +79,7 @@ int signatures_old_ok(void) {
return false;
}
uint8_t hash[32];
uint8_t hash[32] = {0};
sha256_Raw(FLASH_PTR(FLASH_OLD_APP_START), codelen, hash);
if (sigindex1 < 1 || sigindex1 > PUBKEYS) return SIG_FAIL; // invalid index
@ -110,7 +110,7 @@ int signatures_old_ok(void) {
}
void compute_firmware_fingerprint(const image_header *hdr, uint8_t hash[32]) {
image_header copy;
image_header copy = {0};
memcpy(&copy, hdr, sizeof(image_header));
memzero(copy.sig1, sizeof(copy.sig1));
memzero(copy.sig2, sizeof(copy.sig2));
@ -137,7 +137,7 @@ bool firmware_present_new(void) {
}
int signatures_new_ok(const image_header *hdr, uint8_t store_fingerprint[32]) {
uint8_t hash[32];
uint8_t hash[32] = {0};
compute_firmware_fingerprint(hdr, hash);
if (store_fingerprint) {
@ -179,7 +179,7 @@ int mem_is_empty(const uint8_t *src, uint32_t len) {
}
int check_firmware_hashes(const image_header *hdr) {
uint8_t hash[32];
uint8_t hash[32] = {0};
// check hash of the first code chunk
sha256_Raw(FLASH_PTR(FLASH_APP_START), (64 - 1) * 1024, hash);
if (0 != memcmp(hash, hdr->hashes, 32)) return SIG_FAIL;

View File

@ -66,8 +66,8 @@ static void check_and_write_chunk(void) {
if (chunk_pos == 0) {
chunk_pos = FW_CHUNK_SIZE;
}
uint8_t hash[32];
SHA256_CTX ctx;
uint8_t hash[32] = {0};
SHA256_CTX ctx = {0};
sha256_Init(&ctx);
sha256_Update(&ctx, (const uint8_t *)FW_CHUNK + offset, chunk_pos - offset);
if (chunk_pos < 64 * 1024) {
@ -329,7 +329,7 @@ static void rx_callback(usbd_device *dev, uint8_t ep) {
if (msg_id != 0x001B) { // ButtonAck message (id 27)
return;
}
uint8_t hash[32];
uint8_t hash[32] = {0};
compute_firmware_fingerprint(hdr, hash);
layoutFirmwareFingerprint(hash);
hash_check_ok = get_button_response();
@ -347,7 +347,7 @@ static void rx_callback(usbd_device *dev, uint8_t ep) {
// erase storage
erase_storage();
// check erasure
uint8_t hash[32];
uint8_t hash[32] = {0};
sha256_Raw(FLASH_PTR(FLASH_STORAGE_START), FLASH_STORAGE_LEN, hash);
if (memcmp(hash,
"\x2d\x86\x4c\x0b\x78\x9a\x43\x21\x4e\xee\x85\x24\xd3\x18\x20"

View File

@ -103,7 +103,7 @@ void wait_random(void) {
}
void drbg_init() {
uint8_t entropy[48];
uint8_t entropy[48] = {0};
random_buffer(entropy, sizeof(entropy));
hmac_drbg_init(&drbg_ctx, entropy, sizeof(entropy), NULL, 0);
}
@ -117,7 +117,7 @@ void drbg_generate(uint8_t *buf, size_t len) {
}
uint32_t drbg_random32(void) {
uint32_t value;
uint32_t value = 0;
drbg_generate((uint8_t *)&value, sizeof(value));
return value;
}

View File

@ -35,9 +35,9 @@ int frame = 0;
uint8_t seed[128];
uint8_t *pass = (uint8_t *)"meadow";
uint32_t passlen;
uint32_t passlen = 0;
uint8_t *salt = (uint8_t *)"TREZOR";
uint32_t saltlen;
uint32_t saltlen = 0;
static const struct usb_device_descriptor dev_descr = {
.bLength = USB_DT_DEVICE_SIZE,

View File

@ -21,7 +21,7 @@
uint32_t random32(void) {
static uint32_t last = 0;
uint32_t new;
uint32_t new = 0;
do {
emulatorRandom(&new, sizeof(new));

View File

@ -57,7 +57,7 @@ void __attribute__((noreturn)) shutdown(void) {
}
void emulatorRandom(void *buffer, size_t size) {
ssize_t n, len = 0;
ssize_t n = 0, len = 0;
do {
n = read(random_fd, (char *)buffer + len, size - len);
if (n < 0) {

View File

@ -24,7 +24,7 @@
void timer_init(void) {}
uint32_t timer_ms(void) {
struct timespec t;
struct timespec t = {0};
clock_gettime(CLOCK_MONOTONIC, &t);
uint32_t msec = t.tv_sec * 1000 + (t.tv_nsec / 1000000);

View File

@ -42,7 +42,7 @@ static int socket_setup(int port) {
exit(1);
}
struct sockaddr_in addr;
struct sockaddr_in addr = {0};
addr.sin_family = AF_INET;
addr.sin_port = htons(port);
addr.sin_addr.s_addr = htonl(INADDR_LOOPBACK);

View File

@ -132,7 +132,7 @@ static int known_bootloader(int r, const uint8_t *hash) {
void check_bootloader(void) {
#if MEMORY_PROTECT
uint8_t hash[32];
uint8_t hash[32] = {0};
int r = memory_bootloader_hash(hash);
if (!known_bootloader(r, hash)) {

View File

@ -54,7 +54,7 @@ const CoinInfo *coinBySlip44(uint32_t coin_type) {
bool coinExtractAddressType(const CoinInfo *coin, const char *addr,
uint32_t *address_type) {
if (!addr) return false;
uint8_t addr_raw[MAX_ADDR_RAW_SIZE];
uint8_t addr_raw[MAX_ADDR_RAW_SIZE] = {0};
int len = base58_decode_check(addr, coin->curve->hasher_base58, addr_raw,
MAX_ADDR_RAW_SIZE);
if (len >= 21) {

View File

@ -85,7 +85,7 @@ static const uint32_t PIN_EMPTY = 1;
static uint32_t config_uuid[UUID_SIZE / sizeof(uint32_t)];
_Static_assert(sizeof(config_uuid) == UUID_SIZE, "config_uuid has wrong size");
char config_uuid_str[2 * UUID_SIZE + 1];
char config_uuid_str[2 * UUID_SIZE + 1] = {0};
/*
Old storage layout:
@ -439,7 +439,7 @@ static void config_compute_u2froot(const char *mnemonic,
}
static void config_setNode(const HDNodeType *node) {
StorageHDNode storageHDNode;
StorageHDNode storageHDNode = {0};
memzero(&storageHDNode, sizeof(storageHDNode));
storageHDNode.depth = node->depth;
@ -463,7 +463,7 @@ static void config_setNode(const HDNodeType *node) {
bool config_dumpNode(HDNodeType *node) {
memzero(node, sizeof(HDNodeType));
StorageHDNode storageNode;
StorageHDNode storageNode = {0};
uint16_t len = 0;
if (sectrue !=
storage_get(KEY_NODE, &storageNode, sizeof(storageNode), &len) ||
@ -571,7 +571,7 @@ const uint8_t *config_getSeed(bool usePassphrase) {
}
// if storage has mnemonic, convert it to node and use it
char mnemonic[MAX_MNEMONIC_LEN + 1];
char mnemonic[MAX_MNEMONIC_LEN + 1] = {0};
if (config_getMnemonic(mnemonic, sizeof(mnemonic))) {
if (usePassphrase && !protectPassphrase()) {
memzero(mnemonic, sizeof(mnemonic));
@ -607,7 +607,7 @@ static bool config_loadNode(const StorageHDNode *node, const char *curve,
}
bool config_getU2FRoot(HDNode *node) {
StorageHDNode u2fNode;
StorageHDNode u2fNode = {0};
uint16_t len = 0;
if (sectrue != storage_get(KEY_U2F_ROOT, &u2fNode, sizeof(u2fNode), &len) ||
len != sizeof(StorageHDNode)) {
@ -621,7 +621,7 @@ bool config_getU2FRoot(HDNode *node) {
bool config_getRootNode(HDNode *node, const char *curve, bool usePassphrase) {
// if storage has node, decrypt and use it
StorageHDNode storageHDNode;
StorageHDNode storageHDNode = {0};
uint16_t len = 0;
if (strcmp(curve, SECP256K1_NAME) == 0 &&
sectrue ==
@ -640,8 +640,8 @@ bool config_getRootNode(HDNode *node, const char *curve, bool usePassphrase) {
if (passphrase_protection && sectrue == sessionPassphraseCached &&
sessionPassphrase[0] != '\0') {
// decrypt hd node
uint8_t secret[64];
PBKDF2_HMAC_SHA512_CTX pctx;
uint8_t secret[64] = {0};
PBKDF2_HMAC_SHA512_CTX pctx = {0};
char oldTiny = usbTiny(1);
pbkdf2_hmac_sha512_Init(&pctx, (const uint8_t *)sessionPassphrase,
strlen(sessionPassphrase),
@ -654,7 +654,7 @@ bool config_getRootNode(HDNode *node, const char *curve, bool usePassphrase) {
}
pbkdf2_hmac_sha512_Final(&pctx, secret);
usbTiny(oldTiny);
aes_decrypt_ctx ctx;
aes_decrypt_ctx ctx = {0};
aes_decrypt_key256(secret, &ctx);
aes_cbc_decrypt(node->chain_code, node->chain_code, 32, secret + 32,
&ctx);
@ -700,7 +700,7 @@ bool config_setMnemonic(const char *mnemonic) {
return false;
}
StorageHDNode u2fNode;
StorageHDNode u2fNode = {0};
memzero(&u2fNode, sizeof(u2fNode));
config_compute_u2froot(mnemonic, &u2fNode);
secbool ret = storage_set(KEY_U2F_ROOT, &u2fNode, sizeof(u2fNode));
@ -730,18 +730,18 @@ bool config_getMnemonic(char *dest, uint16_t dest_size) {
*/
bool config_containsMnemonic(const char *mnemonic) {
uint16_t len = 0;
uint8_t stored_mnemonic[MAX_MNEMONIC_LEN];
uint8_t stored_mnemonic[MAX_MNEMONIC_LEN] = {0};
if (sectrue != storage_get(KEY_MNEMONIC, stored_mnemonic,
sizeof(stored_mnemonic), &len)) {
return false;
}
// Compare the digests to mitigate side-channel attacks.
uint8_t digest_stored[SHA256_DIGEST_LENGTH];
uint8_t digest_stored[SHA256_DIGEST_LENGTH] = {0};
sha256_Raw(stored_mnemonic, len, digest_stored);
memzero(stored_mnemonic, sizeof(stored_mnemonic));
uint8_t digest_input[SHA256_DIGEST_LENGTH];
uint8_t digest_input[SHA256_DIGEST_LENGTH] = {0};
sha256_Raw((const uint8_t *)mnemonic, strnlen(mnemonic, MAX_MNEMONIC_LEN),
digest_input);
@ -823,7 +823,7 @@ bool session_getState(const uint8_t *salt, uint8_t *state,
}
// state[0:32] = salt
// state[32:64] = HMAC(passphrase, salt || device_id)
HMAC_SHA256_CTX ctx;
HMAC_SHA256_CTX ctx = {0};
hmac_sha256_Init(&ctx, (const uint8_t *)passphrase, strlen(passphrase));
hmac_sha256_Update(&ctx, state, 32);
hmac_sha256_Update(&ctx, (const uint8_t *)config_uuid, sizeof(config_uuid));

View File

@ -124,11 +124,11 @@ int signifyMessageSign(HDNode *node, const uint8_t *message, size_t message_len,
static void cryptoMessageHash(const CoinInfo *coin, const uint8_t *message,
size_t message_len,
uint8_t hash[HASHER_DIGEST_LENGTH]) {
Hasher hasher;
Hasher hasher = {0};
hasher_Init(&hasher, coin->curve->hasher_sign);
hasher_Update(&hasher, (const uint8_t *)coin->signed_message_header,
strlen(coin->signed_message_header));
uint8_t varint[5];
uint8_t varint[5] = {0};
uint32_t l = ser_length(message_len, varint);
hasher_Update(&hasher, varint, l);
hasher_Update(&hasher, message, message_len);
@ -138,10 +138,10 @@ static void cryptoMessageHash(const CoinInfo *coin, const uint8_t *message,
int cryptoMessageSign(const CoinInfo *coin, HDNode *node,
InputScriptType script_type, const uint8_t *message,
size_t message_len, uint8_t *signature) {
uint8_t hash[HASHER_DIGEST_LENGTH];
uint8_t hash[HASHER_DIGEST_LENGTH] = {0};
cryptoMessageHash(coin, message, message_len, hash);
uint8_t pby;
uint8_t pby = 0;
int result = hdnode_sign_digest(node, hash, signature + 1, &pby, NULL);
if (result == 0) {
switch (script_type) {
@ -170,14 +170,14 @@ int cryptoMessageVerify(const CoinInfo *coin, const uint8_t *message,
return 1;
}
uint8_t hash[HASHER_DIGEST_LENGTH];
uint8_t hash[HASHER_DIGEST_LENGTH] = {0};
cryptoMessageHash(coin, message, message_len, hash);
uint8_t recid = (signature[0] - 27) % 4;
bool compressed = signature[0] >= 31;
// check if signature verifies the digest and recover the public key
uint8_t pubkey[65];
uint8_t pubkey[65] = {0};
if (ecdsa_recover_pub_from_sig(coin->curve->params, pubkey, signature + 1,
hash, recid) != 0) {
return 3;
@ -188,12 +188,12 @@ int cryptoMessageVerify(const CoinInfo *coin, const uint8_t *message,
}
// check if the address is correct
uint8_t addr_raw[MAX_ADDR_RAW_SIZE];
uint8_t recovered_raw[MAX_ADDR_RAW_SIZE];
uint8_t addr_raw[MAX_ADDR_RAW_SIZE] = {0};
uint8_t recovered_raw[MAX_ADDR_RAW_SIZE] = {0};
// p2pkh
if (signature[0] >= 27 && signature[0] <= 34) {
size_t len;
size_t len = 0;
if (coin->cashaddr_prefix) {
if (!cash_addr_decode(addr_raw, &len, coin->cashaddr_prefix, address)) {
return 2;
@ -223,8 +223,8 @@ int cryptoMessageVerify(const CoinInfo *coin, const uint8_t *message,
} else
// segwit
if (signature[0] >= 39 && signature[0] <= 42) {
int witver;
size_t len;
int witver = 0;
size_t len = 0;
if (!coin->bech32_prefix ||
!segwit_addr_decode(&witver, recovered_raw, &len, coin->bech32_prefix,
address)) {
@ -248,7 +248,7 @@ msg_size, bool display_only, uint8_t *nonce, size_t *nonce_len, uint8_t
*privkey, const uint8_t *address_raw)
{
if (privkey && address_raw) { // signing == true
HDNode node;
HDNode node = {0};
payload[0] = display_only ? 0x81 : 0x01;
uint32_t l = ser_length(msg_size, payload + 1);
memcpy(payload + 1 + l, msg, msg_size);
@ -265,8 +265,8 @@ msg_size, bool display_only, uint8_t *nonce, size_t *nonce_len, uint8_t
*payload_len = 1 + l + msg_size;
}
// generate random nonce
curve_point R;
bignum256 k;
curve_point R = {0};
bignum256 k = {0};
if (generate_k_random(&secp256k1, &k) != 0) {
return 2;
}
@ -277,23 +277,23 @@ msg_size, bool display_only, uint8_t *nonce, size_t *nonce_len, uint8_t
*nonce_len = 33;
// compute shared secret
point_multiply(&secp256k1, &k, pubkey, &R);
uint8_t shared_secret[33];
uint8_t shared_secret[33] = {0};
shared_secret[0] = 0x02 | (R.y.val[0] & 0x01);
bn_write_be(&R.x, shared_secret + 1);
// generate keying bytes
uint8_t keying_bytes[80];
uint8_t salt[22 + 33];
uint8_t keying_bytes[80] = {0};
uint8_t salt[22 + 33] = {0};
memcpy(salt, "Bitcoin Secure Message", 22);
memcpy(salt + 22, nonce, 33);
pbkdf2_hmac_sha256(shared_secret, 33, salt, 22 + 33, 2048, keying_bytes,
80);
// encrypt payload
aes_encrypt_ctx ctx;
aes_encrypt_ctx ctx = {0};
aes_encrypt_key256(keying_bytes, &ctx);
aes_cfb_encrypt(payload, payload, *payload_len, keying_bytes + 64,
&ctx);
// compute hmac
uint8_t out[32];
uint8_t out[32] = {0};
hmac_sha256(keying_bytes + 32, 32, payload, *payload_len, out);
memcpy(hmac, out, 8);
*hmac_len = 8;
@ -310,29 +310,29 @@ uint8_t *msg, size_t *msg_len, bool *display_only, bool *signing, uint8_t
return 1;
}
// compute shared secret
curve_point R;
bignum256 k;
curve_point R = {0};
bignum256 k = {0};
bn_read_be(privkey, &k);
point_multiply(&secp256k1, &k, nonce, &R);
uint8_t shared_secret[33];
uint8_t shared_secret[33] = {0};
shared_secret[0] = 0x02 | (R.y.val[0] & 0x01);
bn_write_be(&R.x, shared_secret + 1);
// generate keying bytes
uint8_t keying_bytes[80];
uint8_t salt[22 + 33];
uint8_t keying_bytes[80] = {0};
uint8_t salt[22 + 33] = {0};
memcpy(salt, "Bitcoin Secure Message", 22);
salt[22] = 0x02 | (nonce->y.val[0] & 0x01);
bn_write_be(&(nonce->x), salt + 23);
pbkdf2_hmac_sha256(shared_secret, 33, salt, 22 + 33, 2048, keying_bytes,
80);
// compute hmac
uint8_t out[32];
uint8_t out[32] = {0};
hmac_sha256(keying_bytes + 32, 32, payload, payload_len, out);
if (memcmp(hmac, out, 8) != 0) {
return 2;
}
// decrypt payload
aes_encrypt_ctx ctx;
aes_encrypt_ctx ctx = {0};
aes_encrypt_key256(keying_bytes, &ctx);
aes_cfb_decrypt(payload, payload, payload_len, keying_bytes + 64, &ctx);
// check first byte
@ -341,7 +341,7 @@ payload[0] != 0x81) { return 3;
}
*signing = payload[0] & 0x01;
*display_only = payload[0] & 0x80;
uint32_t l, o;
uint32_t l = 0; uint32_t o = 0;
l = deser_length(payload + 1, &o);
if (*signing) {
// FIXME: assumes a raw address is 21 bytes (also below).
@ -367,9 +367,9 @@ payload + 1 + l + o + 21) != 0) { return 5;
const HDNode *cryptoMultisigPubkey(const CoinInfo *coin,
const MultisigRedeemScriptType *multisig,
uint32_t index) {
const HDNodeType *node_ptr;
const uint32_t *address_n;
uint32_t address_n_count;
const HDNodeType *node_ptr = NULL;
const uint32_t *address_n = NULL;
uint32_t address_n_count = 0;
if (multisig->nodes_count) { // use multisig->nodes
if (index >= multisig->nodes_count) {
return 0;
@ -458,7 +458,7 @@ int cryptoMultisigFingerprint(const MultisigRedeemScriptType *multisig,
}
}
// hash sorted nodes
SHA256_CTX ctx;
SHA256_CTX ctx = {0};
sha256_Init(&ctx);
sha256_Update(&ctx, (const uint8_t *)&(multisig->m), sizeof(uint32_t));
for (uint32_t i = 0; i < n; i++) {
@ -478,7 +478,7 @@ int cryptoMultisigFingerprint(const MultisigRedeemScriptType *multisig,
}
int cryptoIdentityFingerprint(const IdentityType *identity, uint8_t *hash) {
SHA256_CTX ctx;
SHA256_CTX ctx = {0};
sha256_Init(&ctx);
sha256_Update(&ctx, (const uint8_t *)&(identity->index), sizeof(uint32_t));
if (identity->has_proto && identity->proto[0]) {

View File

@ -46,7 +46,7 @@ static EthereumTxRequest msg_tx_request;
static CONFIDENTIAL uint8_t privkey[32];
static uint32_t chain_id;
static uint32_t tx_type;
struct SHA3_CTX keccak_ctx;
struct SHA3_CTX keccak_ctx = {0};
static inline void hash_data(const uint8_t *buf, size_t size) {
sha3_Update(&keccak_ctx, buf, size);
@ -56,7 +56,7 @@ static inline void hash_data(const uint8_t *buf, size_t size) {
* Push an RLP encoded length to the hash buffer.
*/
static void hash_rlp_length(uint32_t length, uint8_t firstbyte) {
uint8_t buf[4];
uint8_t buf[4] = {0};
if (length == 1 && firstbyte <= 0x7f) {
/* empty length header */
} else if (length <= 55) {
@ -84,7 +84,7 @@ static void hash_rlp_length(uint32_t length, uint8_t firstbyte) {
* Push an RLP encoded list length to the hash buffer.
*/
static void hash_rlp_list_length(uint32_t length) {
uint8_t buf[4];
uint8_t buf[4] = {0};
if (length <= 55) {
buf[0] = 0xc0 + length;
hash_data(buf, 1);
@ -122,7 +122,7 @@ static void hash_rlp_number(uint32_t number) {
if (!number) {
return;
}
uint8_t data[4];
uint8_t data[4] = {0};
data[0] = (number >> 24) & 0xff;
data[1] = (number >> 16) & 0xff;
data[2] = (number >> 8) & 0xff;
@ -182,8 +182,8 @@ static int ethereum_is_canonic(uint8_t v, uint8_t signature[64]) {
}
static void send_signature(void) {
uint8_t hash[32], sig[64];
uint8_t v;
uint8_t hash[32] = {0}, sig[64] = {0};
uint8_t v = 0;
layoutProgress(_("Signing"), 1000);
/* eip-155 replay protection */
@ -234,7 +234,7 @@ static void send_signature(void) {
*/
static void ethereumFormatAmount(const bignum256 *amnt, const TokenType *token,
char *buf, int buflen) {
bignum256 bn1e9;
bignum256 bn1e9 = {0};
bn_read_uint32(1000000000, &bn1e9);
const char *suffix = NULL;
int decimals = 18;
@ -260,13 +260,13 @@ static void ethereumFormatAmount(const bignum256 *amnt, const TokenType *token,
static void layoutEthereumConfirmTx(const uint8_t *to, uint32_t to_len,
const uint8_t *value, uint32_t value_len,
const TokenType *token) {
bignum256 val;
uint8_t pad_val[32];
bignum256 val = {0};
uint8_t pad_val[32] = {0};
memzero(pad_val, sizeof(pad_val));
memcpy(pad_val + (32 - value_len), value, value_len);
bn_read_be(pad_val, &val);
char amount[32];
char amount[32] = {0};
if (token == NULL) {
if (bn_is_zero(&val)) {
strcpy(amount, _("message"));
@ -282,7 +282,7 @@ static void layoutEthereumConfirmTx(const uint8_t *to, uint32_t to_len,
char _to3[] = "_______________?";
if (to_len) {
char to_str[41];
char to_str[41] = {0};
bool rskip60 = false;
// constants from trezor-common/defs/ethereum/networks.json
@ -311,8 +311,8 @@ static void layoutEthereumConfirmTx(const uint8_t *to, uint32_t to_len,
static void layoutEthereumData(const uint8_t *data, uint32_t len,
uint32_t total_len) {
char hexdata[3][17];
char summary[20];
char hexdata[3][17] = {0};
char summary[20] = {0};
uint32_t printed = 0;
for (int i = 0; i < 3; i++) {
uint32_t linelen = len - printed;
@ -343,10 +343,10 @@ static void layoutEthereumFee(const uint8_t *value, uint32_t value_len,
const uint8_t *gas_price, uint32_t gas_price_len,
const uint8_t *gas_limit, uint32_t gas_limit_len,
bool is_token) {
bignum256 val, gas;
uint8_t pad_val[32];
char tx_value[32];
char gas_value[32];
bignum256 val = {0}, gas = {0};
uint8_t pad_val[32] = {0};
char tx_value[32] = {0};
char gas_value[32] = {0};
memzero(tx_value, sizeof(tx_value));
memzero(gas_value, sizeof(gas_value));
@ -421,7 +421,7 @@ void ethereum_signing_init(EthereumSignTx *msg, const HDNode *node) {
if (!msg->has_value) msg->value.size = 0;
if (!msg->has_data_initial_chunk) msg->data_initial_chunk.size = 0;
bool toset;
uint8_t pubkeyhash[20];
uint8_t pubkeyhash[20] = {0};
if (msg->has_to && ethereum_parse(msg->to, pubkeyhash)) {
toset = true;
} else {
@ -626,10 +626,10 @@ void ethereum_signing_abort(void) {
static void ethereum_message_hash(const uint8_t *message, size_t message_len,
uint8_t hash[32]) {
struct SHA3_CTX ctx;
struct SHA3_CTX ctx = {0};
sha3_256_Init(&ctx);
sha3_Update(&ctx, (const uint8_t *)"\x19" "Ethereum Signed Message:\n", 26);
uint8_t c;
uint8_t c = 0;
if (message_len >= 1000000000) {
c = '0' + message_len / 1000000000 % 10;
sha3_Update(&ctx, &c, 1);
@ -674,7 +674,7 @@ static void ethereum_message_hash(const uint8_t *message, size_t message_len,
void ethereum_message_sign(const EthereumSignMessage *msg, const HDNode *node,
EthereumMessageSignature *resp) {
uint8_t pubkeyhash[20];
uint8_t pubkeyhash[20] = {0};
if (!hdnode_get_ethereum_pubkeyhash(node, pubkeyhash)) {
return;
}
@ -685,10 +685,10 @@ void ethereum_message_sign(const EthereumSignMessage *msg, const HDNode *node,
ethereum_address_checksum(pubkeyhash, resp->address + 2, false, 0);
// ethereum_address_checksum adds trailing zero
uint8_t hash[32];
uint8_t hash[32] = {0};
ethereum_message_hash(msg->message.bytes, msg->message.size, hash);
uint8_t v;
uint8_t v = 0;
if (ecdsa_sign_digest(&secp256k1, node->private_key, hash,
resp->signature.bytes, &v, ethereum_is_canonic) != 0) {
fsm_sendFailure(FailureType_Failure_ProcessError, _("Signing failed"));
@ -707,14 +707,14 @@ int ethereum_message_verify(const EthereumVerifyMessage *msg) {
return 1;
}
uint8_t pubkeyhash[20];
uint8_t pubkeyhash[20] = {0};
if (!ethereum_parse(msg->address, pubkeyhash)) {
fsm_sendFailure(FailureType_Failure_DataError, _("Malformed address"));
return 1;
}
uint8_t pubkey[65];
uint8_t hash[32];
uint8_t pubkey[65] = {0};
uint8_t hash[32] = {0};
ethereum_message_hash(msg->message.bytes, msg->message.size, hash);
@ -730,7 +730,7 @@ int ethereum_message_verify(const EthereumVerifyMessage *msg) {
return 2;
}
struct SHA3_CTX ctx;
struct SHA3_CTX ctx = {0};
sha3_256_Init(&ctx);
sha3_Update(&ctx, pubkey + 1, 64);
keccak_Final(&ctx, hash);

View File

@ -188,7 +188,7 @@ void fsm_sendFailure(FailureType code, const char *text)
}
static const CoinInfo *fsm_getCoin(bool has_name, const char *name) {
const CoinInfo *coin;
const CoinInfo *coin = NULL;
if (has_name) {
coin = coinByName(name);
} else {

View File

@ -128,7 +128,7 @@ static const char *address_n_str(const uint32_t *address_n,
} else {
strlcat(path, " account #", sizeof(path));
}
char acc[3];
char acc[3] = {0};
memzero(acc, sizeof(acc));
if (accnum < 10) {
acc[0] = '0' + accnum;
@ -207,7 +207,7 @@ const char **split_message(const uint8_t *msg, uint32_t len, uint32_t rowlen) {
}
const char **split_message_hex(const uint8_t *msg, uint32_t len) {
char hex[32 * 2 + 1];
char hex[32 * 2 + 1] = {0};
memzero(hex, sizeof(hex));
uint32_t size = len;
if (len > 32) {
@ -262,9 +262,9 @@ void layoutHome(void) {
config_getLabel(label, sizeof(label));
}
uint8_t homescreen[HOMESCREEN_SIZE];
uint8_t homescreen[HOMESCREEN_SIZE] = {0};
if (config_getHomescreen(homescreen, sizeof(homescreen))) {
BITMAP b;
BITMAP b = {0};
b.width = 128;
b.height = 64;
b.data = homescreen;
@ -345,7 +345,7 @@ static void render_address_dialog(const CoinInfo *coin, const char *address,
}
void layoutConfirmOutput(const CoinInfo *coin, const TxOutputType *out) {
char str_out[32 + 3];
char str_out[32 + 3] = {0};
bn_format_uint64(out->amount, NULL, coin->coin_shortcut, BITCOIN_DIVISIBILITY,
0, false, str_out, sizeof(str_out) - 3);
strlcat(str_out, " to", sizeof(str_out));
@ -359,9 +359,9 @@ void layoutConfirmOutput(const CoinInfo *coin, const TxOutputType *out) {
}
void layoutConfirmOmni(const uint8_t *data, uint32_t size) {
const char *desc;
char str_out[32];
uint32_t tx_type, currency;
const char *desc = NULL;
char str_out[32] = {0};
uint32_t tx_type = 0, currency = 0;
REVERSE32(*(const uint32_t *)(data + 4), tx_type);
if (tx_type == 0x00000000 && size == 20) { // OMNI simple send
desc = _("Simple send of ");
@ -386,7 +386,7 @@ void layoutConfirmOmni(const uint8_t *data, uint32_t size) {
divisible = true;
break;
}
uint64_t amount_be, amount;
uint64_t amount_be = 0, amount = 0;
memcpy(&amount_be, data + 12, sizeof(uint64_t));
REVERSE64(amount_be, amount);
bn_format_uint64(amount, NULL, suffix, divisible ? BITCOIN_DIVISIBILITY : 0,
@ -410,7 +410,7 @@ static bool is_valid_ascii(const uint8_t *data, uint32_t size) {
}
void layoutConfirmOpReturn(const uint8_t *data, uint32_t size) {
const char **str;
const char **str = NULL;
if (!is_valid_ascii(data, size)) {
str = split_message_hex(data, size);
} else {
@ -423,7 +423,7 @@ void layoutConfirmOpReturn(const uint8_t *data, uint32_t size) {
void layoutConfirmTx(const CoinInfo *coin, uint64_t amount_out,
uint64_t amount_fee) {
char str_out[32], str_fee[32];
char str_out[32] = {0}, str_fee[32] = {0};
bn_format_uint64(amount_out, NULL, coin->coin_shortcut, BITCOIN_DIVISIBILITY,
0, false, str_out, sizeof(str_out));
bn_format_uint64(amount_fee, NULL, coin->coin_shortcut, BITCOIN_DIVISIBILITY,
@ -434,7 +434,7 @@ void layoutConfirmTx(const CoinInfo *coin, uint64_t amount_out,
}
void layoutFeeOverThreshold(const CoinInfo *coin, uint64_t fee) {
char str_fee[32];
char str_fee[32] = {0};
bn_format_uint64(fee, NULL, coin->coin_shortcut, BITCOIN_DIVISIBILITY, 0,
false, str_fee, sizeof(str_fee));
layoutDialogSwipe(&bmp_icon_question, _("Cancel"), _("Confirm"), NULL,
@ -443,7 +443,7 @@ void layoutFeeOverThreshold(const CoinInfo *coin, uint64_t fee) {
}
void layoutSignMessage(const uint8_t *msg, uint32_t len) {
const char **str;
const char **str = NULL;
if (!is_valid_ascii(msg, len)) {
str = split_message_hex(msg, len);
layoutDialogSwipe(&bmp_icon_question, _("Cancel"), _("Confirm"),
@ -458,7 +458,7 @@ void layoutSignMessage(const uint8_t *msg, uint32_t len) {
}
void layoutVerifyMessage(const uint8_t *msg, uint32_t len) {
const char **str;
const char **str = NULL;
if (!is_valid_ascii(msg, len)) {
str = split_message_hex(msg, len);
layoutDialogSwipe(&bmp_icon_info, _("Cancel"), _("Confirm"),
@ -506,7 +506,7 @@ void layoutResetWord(const char *word, int pass, int word_pos, bool last) {
layoutLast = layoutResetWord;
layoutSwipe();
const char *btnYes;
const char *btnYes = NULL;
if (last) {
if (pass == 1) {
btnYes = _("Finish");
@ -517,7 +517,7 @@ void layoutResetWord(const char *word, int pass, int word_pos, bool last) {
btnYes = _("Next");
}
const char *action;
const char *action = NULL;
if (pass == 1) {
action = _("Please check the seed");
} else {
@ -574,6 +574,7 @@ void layoutAddress(const char *address, const char *desc, bool qrcode,
uint32_t addrlen = strlen(address);
if (qrcode) {
char address_upcase[addrlen + 1];
memset(address_upcase, 0, sizeof(address_upcase));
if (ignorecase) {
for (uint32_t i = 0; i < addrlen + 1; i++) {
address_upcase[i] = address[i] >= 'a' && address[i] <= 'z'
@ -581,8 +582,8 @@ void layoutAddress(const char *address, const char *desc, bool qrcode,
: address[i];
}
}
uint8_t codedata[qrcodegen_BUFFER_LEN_FOR_VERSION(QR_MAX_VERSION)];
uint8_t tempdata[qrcodegen_BUFFER_LEN_FOR_VERSION(QR_MAX_VERSION)];
uint8_t codedata[qrcodegen_BUFFER_LEN_FOR_VERSION(QR_MAX_VERSION)] = {0};
uint8_t tempdata[qrcodegen_BUFFER_LEN_FOR_VERSION(QR_MAX_VERSION)] = {0};
int side = 0;
if (qrcodegen_encodeText(ignorecase ? address_upcase : address, tempdata,
@ -641,7 +642,7 @@ void layoutAddress(const char *address, const char *desc, bool qrcode,
}
void layoutPublicKey(const uint8_t *pubkey) {
char desc[16];
char desc[16] = {0};
strlcpy(desc, "Public Key: 00", sizeof(desc));
if (pubkey[0] == 1) {
/* ed25519 public key */
@ -655,9 +656,9 @@ void layoutPublicKey(const uint8_t *pubkey) {
}
void layoutSignIdentity(const IdentityType *identity, const char *challenge) {
char row_proto[8 + 11 + 1];
char row_hostport[64 + 6 + 1];
char row_user[64 + 8 + 1];
char row_proto[8 + 11 + 1] = {0};
char row_hostport[64 + 6 + 1] = {0};
char row_user[64 + 8 + 1] = {0};
bool is_gpg = (strcmp(identity->proto, "gpg") == 0);
@ -719,9 +720,9 @@ void layoutSignIdentity(const IdentityType *identity, const char *challenge) {
}
void layoutDecryptIdentity(const IdentityType *identity) {
char row_proto[8 + 11 + 1];
char row_hostport[64 + 6 + 1];
char row_user[64 + 8 + 1];
char row_proto[8 + 11 + 1] = {0};
char row_hostport[64 + 6 + 1] = {0};
char row_user[64 + 8 + 1] = {0};
if (identity->has_proto && identity->proto[0]) {
strlcpy(row_proto, identity->proto, sizeof(row_proto));
@ -786,7 +787,7 @@ void layoutNEMDialog(const BITMAP *icon, const char *btnNo, const char *btnYes,
void layoutNEMTransferXEM(const char *desc, uint64_t quantity,
const bignum256 *multiplier, uint64_t fee) {
char str_out[32], str_fee[32];
char str_out[32] = {0}, str_fee[32] = {0};
nem_mosaicFormatAmount(NEM_MOSAIC_DEFINITION_XEM, quantity, multiplier,
str_out, sizeof(str_out));
@ -800,7 +801,7 @@ void layoutNEMTransferXEM(const char *desc, uint64_t quantity,
void layoutNEMNetworkFee(const char *desc, bool confirm, const char *fee1_desc,
uint64_t fee1, const char *fee2_desc, uint64_t fee2) {
char str_fee1[32], str_fee2[32];
char str_fee1[32] = {0}, str_fee2[32] = {0};
nem_mosaicFormatAmount(NEM_MOSAIC_DEFINITION_XEM, fee1, NULL, str_fee1,
sizeof(str_fee1));
@ -818,7 +819,7 @@ void layoutNEMNetworkFee(const char *desc, bool confirm, const char *fee1_desc,
void layoutNEMTransferMosaic(const NEMMosaicDefinition *definition,
uint64_t quantity, const bignum256 *multiplier,
uint8_t network) {
char str_out[32], str_levy[32];
char str_out[32] = {0}, str_levy[32] = {0};
nem_mosaicFormatAmount(definition, quantity, multiplier, str_out,
sizeof(str_out));
@ -838,10 +839,10 @@ void layoutNEMTransferMosaic(const NEMMosaicDefinition *definition,
void layoutNEMTransferUnknownMosaic(const char *namespace, const char *mosaic,
uint64_t quantity,
const bignum256 *multiplier) {
char mosaic_name[32];
char mosaic_name[32] = {0};
nem_mosaicFormatName(namespace, mosaic, mosaic_name, sizeof(mosaic_name));
char str_out[32];
char str_out[32] = {0};
nem_mosaicFormatAmount(NULL, quantity, multiplier, str_out, sizeof(str_out));
char *decimal = strchr(str_out, '.');
@ -858,6 +859,8 @@ void layoutNEMTransferPayload(const uint8_t *payload, size_t length,
bool encrypted) {
if (length >= 1 && payload[0] == 0xFE) {
char encoded[(length - 1) * 2 + 1];
memset(encoded, 0, sizeof(encoded));
data2hex(&payload[1], length - 1, encoded);
const char **str =
@ -884,7 +887,7 @@ void layoutNEMMosaicDescription(const char *description) {
}
void layoutNEMLevy(const NEMMosaicDefinition *definition, uint8_t network) {
const NEMMosaicDefinition *mosaic;
const NEMMosaicDefinition *mosaic = NULL;
if (nem_mosaicMatches(definition, definition->levy_namespace,
definition->levy_mosaic, network)) {
mosaic = definition;
@ -893,13 +896,13 @@ void layoutNEMLevy(const NEMMosaicDefinition *definition, uint8_t network) {
definition->levy_mosaic, network);
}
char mosaic_name[32];
char mosaic_name[32] = {0};
if (mosaic == NULL) {
nem_mosaicFormatName(definition->levy_namespace, definition->levy_mosaic,
mosaic_name, sizeof(mosaic_name));
}
char str_out[32];
char str_out[32] = {0};
switch (definition->levy) {
case NEMMosaicLevy_MosaicLevy_Percentile:
@ -939,7 +942,7 @@ static inline bool is_slip18(const uint32_t *address_n,
void layoutCosiCommitSign(const uint32_t *address_n, size_t address_n_count,
const uint8_t *data, uint32_t len, bool final_sign) {
char *desc = final_sign ? _("CoSi sign message?") : _("CoSi commit message?");
char desc_buf[32];
char desc_buf[32] = {0};
if (is_slip18(address_n, address_n_count)) {
if (final_sign) {
strlcpy(desc_buf, _("CoSi sign index #?"), sizeof(desc_buf));
@ -950,7 +953,7 @@ void layoutCosiCommitSign(const uint32_t *address_n, size_t address_n_count,
}
desc = desc_buf;
}
char str[4][17];
char str[4][17] = {0};
if (len == 32) {
data2hex(data, 8, str[0]);
data2hex(data + 8, 8, str[1]);

View File

@ -30,7 +30,7 @@
void lisk_get_address_from_public_key(const uint8_t *public_key,
char *address) {
uint64_t digest[4];
uint64_t digest[4] = {0};
sha256_Raw(public_key, 32, (uint8_t *)digest);
bn_format_uint64(digest[0], NULL, "L", 0, 0, false, address,
MAX_LISK_ADDRESS_SIZE);
@ -38,10 +38,10 @@ void lisk_get_address_from_public_key(const uint8_t *public_key,
void lisk_message_hash(const uint8_t *message, size_t message_len,
uint8_t hash[32]) {
SHA256_CTX ctx;
SHA256_CTX ctx = {0};
sha256_Init(&ctx);
sha256_Update(&ctx, (const uint8_t *)"\x15" "Lisk Signed Message:\n", 22);
uint8_t varint[5];
uint8_t varint[5] = {0};
uint32_t l = ser_length(message_len, varint);
sha256_Update(&ctx, varint, l);
sha256_Update(&ctx, message, message_len);
@ -60,8 +60,8 @@ void lisk_sign_message(const HDNode *node, const LiskSignMessage *msg,
layoutProgressSwipe(_("Signing"), 0);
uint8_t signature[64];
uint8_t hash[32];
uint8_t signature[64] = {0};
uint8_t hash[32] = {0};
lisk_message_hash(msg->message.bytes, msg->message.size, hash);
ed25519_sign(hash, 32, node->private_key, &node->public_key[1], signature);
@ -76,7 +76,7 @@ void lisk_sign_message(const HDNode *node, const LiskSignMessage *msg,
}
bool lisk_verify_message(const LiskVerifyMessage *msg) {
uint8_t hash[32];
uint8_t hash[32] = {0};
lisk_message_hash(msg->message.bytes, msg->message.size, hash);
return 0 == ed25519_sign_open(hash, 32, msg->public_key.bytes,
msg->signature.bytes);
@ -98,7 +98,7 @@ static void lisk_update_raw_tx(const HDNode *node, LiskSignTx *msg) {
}
static void lisk_hashupdate_uint32(SHA256_CTX *ctx, uint32_t value) {
uint8_t data[4];
uint8_t data[4] = {0};
write_le(data, value);
sha256_Update(ctx, data, sizeof(data));
}
@ -108,7 +108,7 @@ static void lisk_hashupdate_uint64_le(SHA256_CTX *ctx, uint64_t value) {
}
static void lisk_hashupdate_uint64_be(SHA256_CTX *ctx, uint64_t value) {
uint8_t data[8];
uint8_t data[8] = {0};
data[0] = value >> 56;
data[1] = value >> 48;
data[2] = value >> 40;
@ -174,7 +174,7 @@ void lisk_sign_tx(const HDNode *node, LiskSignTx *msg, LiskSignedTx *resp) {
lisk_update_raw_tx(node, msg);
if (msg->has_transaction) {
SHA256_CTX ctx;
SHA256_CTX ctx = {0};
sha256_Init(&ctx);
switch (msg->transaction.type) {
@ -256,7 +256,7 @@ void lisk_sign_tx(const HDNode *node, LiskSignTx *msg, LiskSignedTx *resp) {
msg->transaction.signature.size);
}
uint8_t hash[32];
uint8_t hash[32] = {0};
sha256_Final(&ctx, hash);
ed25519_sign(hash, 32, node->private_key, &node->public_key[1],
resp->signature.bytes);
@ -282,7 +282,7 @@ void layoutLiskVerifyAddress(const char *address) {
}
void layoutRequireConfirmTx(char *recipient_id, uint64_t amount) {
char formated_amount[MAX_LISK_VALUE_SIZE];
char formated_amount[MAX_LISK_VALUE_SIZE] = {0};
const char **str =
split_message((const uint8_t *)recipient_id, strlen(recipient_id), 16);
lisk_format_value(amount, formated_amount);
@ -292,8 +292,8 @@ void layoutRequireConfirmTx(char *recipient_id, uint64_t amount) {
}
void layoutRequireConfirmFee(uint64_t fee, uint64_t amount) {
char formated_amount[MAX_LISK_VALUE_SIZE];
char formated_fee[MAX_LISK_VALUE_SIZE];
char formated_amount[MAX_LISK_VALUE_SIZE] = {0};
char formated_fee[MAX_LISK_VALUE_SIZE] = {0};
lisk_format_value(amount, formated_amount);
lisk_format_value(fee, formated_fee);
layoutDialogSwipe(&bmp_icon_question, _("Cancel"), _("Confirm"), NULL,
@ -314,8 +314,8 @@ void layoutRequireConfirmDelegateRegistration(LiskTransactionAsset *asset) {
void layoutRequireConfirmCastVotes(LiskTransactionAsset *asset) {
uint8_t plus = 0;
uint8_t minus = 0;
char add_votes_txt[13];
char remove_votes_txt[16];
char add_votes_txt[13] = {0};
char remove_votes_txt[16] = {0};
for (int i = 0; i < asset->votes_count; i++) {
if (asset->votes[i][0] == '+') {
@ -336,9 +336,9 @@ void layoutRequireConfirmCastVotes(LiskTransactionAsset *asset) {
}
void layoutRequireConfirmMultisig(LiskTransactionAsset *asset) {
char keys_group_str[25];
char life_time_str[14];
char min_str[8];
char keys_group_str[25] = {0};
char life_time_str[14] = {0};
char min_str[8] = {0};
bn_format_uint64(asset->multisignature.keys_group_count,
"Keys group length: ", NULL, 0, 0, false, keys_group_str,

View File

@ -164,12 +164,12 @@ bool msg_write_common(char type, uint16_t msg_id, const void *msg_ptr) {
return false;
}
size_t len;
size_t len = 0;
if (!pb_get_encoded_size(&len, fields, msg_ptr)) {
return false;
}
void (*append)(uint8_t);
void (*append)(uint8_t) = NULL;
bool (*pb_callback)(pb_ostream_t *, const uint8_t *, size_t);
if (type == 'n') {

View File

@ -210,6 +210,7 @@ bool nem_askTransfer(const NEMTransactionCommon *common,
bool unknownMosaic = false;
const NEMMosaicDefinition *definitions[transfer->mosaics_count];
memset(definitions, 0, sizeof(definitions));
for (size_t i = 0; i < transfer->mosaics_count; i++) {
const NEMMosaic *mosaic = &transfer->mosaics[i];
@ -224,7 +225,7 @@ bool nem_askTransfer(const NEMTransactionCommon *common,
}
}
bignum256 multiplier;
bignum256 multiplier = {0};
bn_read_uint64(transfer->amount, &multiplier);
if (unknownMosaic) {
@ -399,7 +400,7 @@ bool nem_askMosaicCreation(const NEMTransactionCommon *common,
return false;
}
char str_out[32];
char str_out[32] = {0};
bn_format_uint64(mosaic_creation->definition.supply, NULL, NULL,
mosaic_creation->definition.divisibility,
@ -478,7 +479,7 @@ bool nem_askSupplyChange(const NEMTransactionCommon *common,
return false;
}
char str_out[32];
char str_out[32] = {0};
bn_format_uint64(supply_change->delta, NULL, NULL, 0, 0, false, str_out,
sizeof(str_out));
@ -523,7 +524,7 @@ bool nem_askAggregateModification(
}
}
char address[NEM_ADDRESS_SIZE + 1];
char address[NEM_ADDRESS_SIZE + 1] = {0};
for (size_t i = 0; i < aggregate_modification->modifications_count; i++) {
const NEMCosignatoryModification *modification =
@ -543,7 +544,7 @@ bool nem_askAggregateModification(
int32_t relative_change = aggregate_modification->relative_change;
if (relative_change) {
char str_out[32];
char str_out[32] = {0};
bn_format_uint64(relative_change < 0 ? -relative_change : relative_change,
NULL, NULL, 0, 0, false, str_out, sizeof(str_out));
@ -685,7 +686,7 @@ static inline size_t format_amount(const NEMMosaicDefinition *definition,
const bignum256 *amnt,
const bignum256 *multiplier, int divisor,
char *str_out, size_t size) {
bignum256 val;
bignum256 val = {0};
memcpy(&val, amnt, sizeof(bignum256));
if (multiplier) {
@ -746,7 +747,7 @@ void nem_canonicalizeMosaics(NEMTransfer *transfer) {
NEMMosaic *b = &mosaics[j];
if (nem_mosaicCompare(a, b) > 0) {
NEMMosaic temp;
NEMMosaic temp = {0};
memcpy(&temp, a, sizeof(NEMMosaic));
memcpy(a, b, sizeof(NEMMosaic));
memcpy(b, &temp, sizeof(NEMMosaic));
@ -758,7 +759,7 @@ void nem_canonicalizeMosaics(NEMTransfer *transfer) {
void nem_mosaicFormatAmount(const NEMMosaicDefinition *definition,
uint64_t quantity, const bignum256 *multiplier,
char *str_out, size_t size) {
bignum256 amnt;
bignum256 amnt = {0};
bn_read_uint64(quantity, &amnt);
format_amount(definition, &amnt, multiplier, 0, str_out, size);
@ -771,7 +772,7 @@ bool nem_mosaicFormatLevy(const NEMMosaicDefinition *definition,
return false;
}
bignum256 amnt, fee;
bignum256 amnt = {0}, fee = {0};
bn_read_uint64(quantity, &amnt);
bn_read_uint64(definition->fee, &fee);

View File

@ -73,7 +73,7 @@ static const pb_encoder_t PB_ENCODERS[PB_LTYPES_COUNT] = {
static bool checkreturn buf_write(pb_ostream_t *stream, const pb_byte_t *buf, size_t count)
{
size_t i;
size_t i = 0;
pb_byte_t *dest = (pb_byte_t*)stream->state;
stream->state = dest + count;
@ -128,9 +128,9 @@ bool checkreturn pb_write(pb_ostream_t *stream, const pb_byte_t *buf, size_t cou
static bool checkreturn encode_array(pb_ostream_t *stream, const pb_field_t *field,
const void *pData, size_t count, pb_encoder_t func)
{
size_t i;
const void *p;
size_t size;
size_t i = 0;
const void *p = NULL;
size_t size = 0;
if (count == 0)
return true;
@ -688,7 +688,7 @@ bool checkreturn pb_encode_submessage(pb_ostream_t *stream, const pb_field_t fie
{
/* First calculate the message size using a non-writing substream. */
pb_ostream_t substream = PB_OSTREAM_SIZING;
size_t size;
size_t size = 0;
bool status;
if (!pb_encode(&substream, fields, src_struct))

View File

@ -64,7 +64,7 @@ void pinmatrix_start(const char *text) {
}
void pinmatrix_done(char *pin) {
int k, i = 0;
int i = 0, k = 0;
while (pin && pin[i]) {
k = pin[i] - '1';
if (k >= 0 && k <= 8) {

View File

@ -39,7 +39,7 @@ bool protectAbortedByCancel = false;
bool protectAbortedByInitialize = false;
bool protectButton(ButtonRequestType type, bool confirm_only) {
ButtonRequest resp;
ButtonRequest resp = {0};
bool result = false;
bool acked = false;
#if DEBUG_LINK
@ -112,7 +112,7 @@ bool protectButton(ButtonRequestType type, bool confirm_only) {
}
const char *requestPin(PinMatrixRequestType type, const char *text) {
PinMatrixRequest resp;
PinMatrixRequest resp = {0};
memzero(&resp, sizeof(PinMatrixRequest));
resp.has_type = true;
resp.type = type;
@ -283,7 +283,7 @@ bool protectPassphrase(void) {
return true;
}
PassphraseRequest resp;
PassphraseRequest resp = {0};
memzero(&resp, sizeof(PassphraseRequest));
usbTiny(1);
msg_write(MessageType_MessageType_PassphraseRequest, &resp);

View File

@ -143,7 +143,7 @@ static void format_number(char *dest, int number) {
/* Send a request for a new word/matrix code to the PC.
*/
static void recovery_request(void) {
WordRequest resp;
WordRequest resp = {0};
memzero(&resp, sizeof(WordRequest));
resp.has_type = true;
resp.type = awaiting_word == 1
@ -323,8 +323,8 @@ static void display_choices(bool twoColumn, char choices[9][12], int num) {
* Generates a new matrix and requests the next pin.
*/
static void next_matrix(void) {
char word_choices[9][12];
uint32_t idx, num;
char word_choices[9][12] = {0};
uint32_t idx = 0, num = 0;
bool last = (word_index % 4) == 3;
/* Build the matrix:

View File

@ -68,7 +68,7 @@ void reset_init(bool display_random, uint32_t _strength,
if (display_random) {
for (int start = 0; start < 2; start++) {
char ent_str[4][17];
char ent_str[4][17] = {0};
char desc[] = "Internal entropy _/2:";
data2hex(int_entropy + start * 16, 4, ent_str[0]);
data2hex(int_entropy + start * 16 + 4, 4, ent_str[1]);
@ -109,7 +109,7 @@ void reset_init(bool display_random, uint32_t _strength,
config_setLabel(label);
config_setU2FCounter(u2f_counter);
EntropyRequest resp;
EntropyRequest resp = {0};
memzero(&resp, sizeof(EntropyRequest));
msg_write(MessageType_MessageType_EntropyRequest, &resp);
awaiting_entropy = true;
@ -123,7 +123,7 @@ void reset_entropy(const uint8_t *ext_entropy, uint32_t len) {
}
awaiting_entropy = false;
SHA256_CTX ctx;
SHA256_CTX ctx = {0};
sha256_Init(&ctx);
sha256_Update(&ctx, int_entropy, 32);
sha256_Update(&ctx, ext_entropy, len);

View File

@ -417,7 +417,7 @@ bool check_change_bip32_path(const TxOutputType *toutput) {
bool compile_input_script_sig(TxInputType *tinput) {
if (!multisig_fp_mismatch) {
// check that this is still multisig
uint8_t h[32];
uint8_t h[32] = {0};
if (!tinput->has_multisig ||
cryptoMultisigFingerprint(&(tinput->multisig), h) == 0 ||
memcmp(multisig_fp, h, 32) != 0) {
@ -445,7 +445,7 @@ bool compile_input_script_sig(TxInputType *tinput) {
tinput->script_sig.size = compile_script_multisig(coin, &(tinput->multisig),
tinput->script_sig.bytes);
} else { // SPENDADDRESS
uint8_t hash[20];
uint8_t hash[20] = {0};
ecdsa_get_pubkeyhash(node.public_key, coin->curve->hasher_pubkey, hash);
tinput->script_sig.size =
compile_script_sig(coin->address_type, hash, tinput->script_sig.bytes);
@ -557,7 +557,7 @@ static bool signing_check_input(const TxInputType *txinput) {
/* (if all input share the same fingerprint, outputs having the same
* fingerprint will be considered as change outputs) */
if (txinput->has_multisig && !multisig_fp_mismatch) {
uint8_t h[32];
uint8_t h[32] = {0};
if (cryptoMultisigFingerprint(&txinput->multisig, h) == 0) {
fsm_sendFailure(FailureType_Failure_ProcessError,
_("Error computing multisig fingerprint"));
@ -610,7 +610,7 @@ static bool signing_check_input(const TxInputType *txinput) {
// check if the hash of the prevtx matches
static bool signing_check_prevtx_hash(void) {
uint8_t hash[32];
uint8_t hash[32] = {0};
tx_hash_final(&tp, hash, true);
if (memcmp(hash, input.prev_hash.bytes, 32) != 0) {
fsm_sendFailure(FailureType_Failure_DataError,
@ -640,7 +640,7 @@ static bool signing_check_output(TxOutputType *txoutput) {
* For multisig check that all inputs are multisig
*/
if (txoutput->has_multisig) {
uint8_t h[32];
uint8_t h[32] = {0};
if (multisig_fp_set && !multisig_fp_mismatch &&
cryptoMultisigFingerprint(&(txoutput->multisig), h) &&
memcmp(multisig_fp, h, 32) == 0) {
@ -720,7 +720,7 @@ static bool signing_check_fee(void) {
return false;
}
}
uint64_t fee;
uint64_t fee = 0;
if (spending <= to_spend) {
fee = to_spend - spending;
if (fee > ((uint64_t)tx_weight * coin->maxfee_kb) / 4000) {
@ -788,7 +788,7 @@ static void phase1_request_next_output(void) {
static void signing_hash_bip143(const TxInputType *txinput, uint8_t *hash) {
uint32_t hash_type = signing_hash_type();
Hasher hasher_preimage;
Hasher hasher_preimage = {0};
hasher_Init(&hasher_preimage, coin->curve->hasher_sign);
hasher_Update(&hasher_preimage, (const uint8_t *)&version, 4); // nVersion
hasher_Update(&hasher_preimage, hash_prevouts, 32); // hashPrevouts
@ -809,10 +809,10 @@ static void signing_hash_bip143(const TxInputType *txinput, uint8_t *hash) {
static void signing_hash_zip143(const TxInputType *txinput, uint8_t *hash) {
uint32_t hash_type = signing_hash_type();
uint8_t personal[16];
uint8_t personal[16] = {0};
memcpy(personal, "ZcashSigHash", 12);
memcpy(personal + 12, &branch_id, 4);
Hasher hasher_preimage;
Hasher hasher_preimage = {0};
hasher_InitParam(&hasher_preimage, HASHER_BLAKE2B_PERSONAL, personal,
sizeof(personal));
uint32_t ver = version | TX_OVERWINTERED; // 1. nVersion | fOverwintered
@ -843,10 +843,10 @@ static void signing_hash_zip143(const TxInputType *txinput, uint8_t *hash) {
static void signing_hash_zip243(const TxInputType *txinput, uint8_t *hash) {
uint32_t hash_type = signing_hash_type();
uint8_t personal[16];
uint8_t personal[16] = {0};
memcpy(personal, "ZcashSigHash", 12);
memcpy(personal + 12, &branch_id, 4);
Hasher hasher_preimage;
Hasher hasher_preimage = {0};
hasher_InitParam(&hasher_preimage, HASHER_BLAKE2B_PERSONAL, personal,
sizeof(personal));
uint32_t ver = version | TX_OVERWINTERED; // 1. nVersion | fOverwintered
@ -884,7 +884,7 @@ static void signing_hash_zip243(const TxInputType *txinput, uint8_t *hash) {
static void signing_hash_decred(const uint8_t *hash_witness, uint8_t *hash) {
uint32_t hash_type = signing_hash_type();
Hasher hasher_preimage;
Hasher hasher_preimage = {0};
hasher_Init(&hasher_preimage, coin->curve->hasher_sign);
hasher_Update(&hasher_preimage, (const uint8_t *)&hash_type, 4);
hasher_Update(&hasher_preimage, decred_hash_prefix, 32);
@ -941,7 +941,7 @@ static bool signing_sign_hash(TxInputType *txinput, const uint8_t *private_key,
}
static bool signing_sign_input(void) {
uint8_t hash[32];
uint8_t hash[32] = {0};
hasher_Final(&hasher_check, hash);
if (memcmp(hash, hash_outputs, 32) != 0) {
fsm_sendFailure(FailureType_Failure_DataError,
@ -962,7 +962,7 @@ static bool signing_sign_input(void) {
static bool signing_sign_segwit_input(TxInputType *txinput) {
// idx1: index to sign
uint8_t hash[32];
uint8_t hash[32] = {0};
if (txinput->script_type == InputScriptType_SPENDWITNESS ||
txinput->script_type == InputScriptType_SPENDP2SHWITNESS) {
@ -1042,7 +1042,7 @@ static bool signing_sign_segwit_input(TxInputType *txinput) {
#if !BITCOIN_ONLY
static bool signing_sign_decred_input(TxInputType *txinput) {
uint8_t hash[32], hash_witness[32];
uint8_t hash[32] = {}, hash_witness[32] = {};
tx_hash_final(&ti, hash_witness, false);
signing_hash_decred(hash_witness, hash);
resp.has_serialized = true;
@ -1325,7 +1325,7 @@ void signing_txack(TransactionType *tx) {
idx2++;
send_req_4_input();
} else {
uint8_t hash[32];
uint8_t hash[32] = {0};
hasher_Final(&hasher_check, hash);
if (memcmp(hash, hash_check, 32) != 0) {
fsm_sendFailure(FailureType_Failure_DataError,
@ -1405,7 +1405,7 @@ void signing_txack(TransactionType *tx) {
}
authorized_amount -= tx->inputs[0].amount;
uint8_t hash[32];
uint8_t hash[32] = {0};
#if !BITCOIN_ONLY
if (overwintered) {
switch (version) {
@ -1550,7 +1550,7 @@ void signing_txack(TransactionType *tx) {
}
for (idx2 = 0; idx2 < inputs_count; idx2++) {
uint32_t r;
uint32_t r = 0;
if (idx2 == idx1) {
r = tx_serialize_decred_witness_hash(&ti, &tx->inputs[0]);
} else {

View File

@ -62,7 +62,7 @@ bool stellar_signingInit(const StellarSignTx *msg) {
// Calculate sha256 for network passphrase
// max length defined in messages.options
uint8_t network_hash[32];
uint8_t network_hash[32] = {0};
sha256_Raw((uint8_t *)msg->network_passphrase,
strnlen(msg->network_passphrase, 1024), network_hash);
@ -171,7 +171,7 @@ bool stellar_confirmSourceAccount(bool has_source_account,
}
// Convert account string to public key bytes
uint8_t bytes[32];
uint8_t bytes[32] = {0};
if (!stellar_getAddressBytes(str_account, bytes)) {
return false;
}
@ -205,7 +205,7 @@ bool stellar_confirmCreateAccountOp(const StellarCreateAccountOp *msg) {
stellar_hashupdate_uint32(0);
// Validate new account and convert to bytes
uint8_t new_account_bytes[STELLAR_KEY_SIZE];
uint8_t new_account_bytes[STELLAR_KEY_SIZE] = {0};
if (!stellar_getAddressBytes(msg->new_account, new_account_bytes)) {
stellar_signingAbort(_("Invalid new account address"));
return false;
@ -214,8 +214,8 @@ bool stellar_confirmCreateAccountOp(const StellarCreateAccountOp *msg) {
const char **str_addr_rows = stellar_lineBreakAddress(new_account_bytes);
// Amount being funded
char str_amount_line[32];
char str_amount[32];
char str_amount_line[32] = {0};
char str_amount[32] = {0};
stellar_format_stroops(msg->starting_balance, str_amount, sizeof(str_amount));
strlcpy(str_amount_line, _("With "), sizeof(str_amount_line));
@ -252,7 +252,7 @@ bool stellar_confirmPaymentOp(const StellarPaymentOp *msg) {
stellar_hashupdate_uint32(1);
// Validate destination account and convert to bytes
uint8_t destination_account_bytes[STELLAR_KEY_SIZE];
uint8_t destination_account_bytes[STELLAR_KEY_SIZE] = {0};
if (!stellar_getAddressBytes(msg->destination_account,
destination_account_bytes)) {
stellar_signingAbort(_("Invalid destination account"));
@ -263,16 +263,16 @@ bool stellar_confirmPaymentOp(const StellarPaymentOp *msg) {
stellar_lineBreakAddress(destination_account_bytes);
// To: G...
char str_to[32];
char str_to[32] = {0};
strlcpy(str_to, _("To: "), sizeof(str_to));
strlcat(str_to, str_addr_rows[0], sizeof(str_to));
char str_asset_row[32];
char str_asset_row[32] = {0};
memzero(str_asset_row, sizeof(str_asset_row));
stellar_format_asset(&(msg->asset), str_asset_row, sizeof(str_asset_row));
char str_pay_amount[32];
char str_amount[32];
char str_pay_amount[32] = {0};
char str_amount[32] = {0};
stellar_format_stroops(msg->amount, str_amount, sizeof(str_amount));
strlcpy(str_pay_amount, _("Pay "), sizeof(str_pay_amount));
@ -310,7 +310,7 @@ bool stellar_confirmPathPaymentOp(const StellarPathPaymentOp *msg) {
stellar_hashupdate_uint32(2);
// Validate destination account and convert to bytes
uint8_t destination_account_bytes[STELLAR_KEY_SIZE];
uint8_t destination_account_bytes[STELLAR_KEY_SIZE] = {0};
if (!stellar_getAddressBytes(msg->destination_account,
destination_account_bytes)) {
stellar_signingAbort(_("Invalid destination account"));
@ -320,19 +320,19 @@ bool stellar_confirmPathPaymentOp(const StellarPathPaymentOp *msg) {
stellar_lineBreakAddress(destination_account_bytes);
// To: G...
char str_to[32];
char str_to[32] = {0};
strlcpy(str_to, _("To: "), sizeof(str_to));
strlcat(str_to, str_dest_rows[0], sizeof(str_to));
char str_send_asset[32];
char str_dest_asset[32];
char str_send_asset[32] = {0};
char str_dest_asset[32] = {0};
stellar_format_asset(&(msg->send_asset), str_send_asset,
sizeof(str_send_asset));
stellar_format_asset(&(msg->destination_asset), str_dest_asset,
sizeof(str_dest_asset));
char str_pay_amount[32];
char str_amount[32];
char str_pay_amount[32] = {0};
char str_amount[32] = {0};
stellar_format_stroops(msg->destination_amount, str_amount,
sizeof(str_amount));
@ -355,8 +355,8 @@ bool stellar_confirmPathPaymentOp(const StellarPathPaymentOp *msg) {
}
// Confirm what the sender is using to pay
char str_source_amount[32];
char str_source_number[32];
char str_source_amount[32] = {0};
char str_source_number[32] = {0};
stellar_format_stroops(msg->send_max, str_source_number,
sizeof(str_source_number));
@ -408,11 +408,11 @@ bool stellar_confirmManageOfferOp(const StellarManageOfferOp *msg) {
stellar_hashupdate_uint32(3);
// New Offer / Delete #123 / Update #123
char str_offer[32];
char str_offer[32] = {0};
if (msg->offer_id == 0) {
strlcpy(str_offer, _("New Offer"), sizeof(str_offer));
} else {
char str_offer_id[20];
char str_offer_id[20] = {0};
stellar_format_uint64(msg->offer_id, str_offer_id, sizeof(str_offer_id));
if (msg->amount == 0) {
@ -424,9 +424,9 @@ bool stellar_confirmManageOfferOp(const StellarManageOfferOp *msg) {
strlcat(str_offer, str_offer_id, sizeof(str_offer));
}
char str_selling[32];
char str_sell_amount[32];
char str_selling_asset[32];
char str_selling[32] = {0};
char str_sell_amount[32] = {0};
char str_selling_asset[32] = {0};
stellar_format_asset(&(msg->selling_asset), str_selling_asset,
sizeof(str_selling_asset));
@ -439,9 +439,9 @@ bool stellar_confirmManageOfferOp(const StellarManageOfferOp *msg) {
strlcpy(str_selling, _("Sell "), sizeof(str_selling));
strlcat(str_selling, str_sell_amount, sizeof(str_selling));
char str_buying[32];
char str_buying_asset[32];
char str_price[32];
char str_buying[32] = {0};
char str_buying_asset[32] = {0};
char str_price[32] = {0};
stellar_format_asset(&(msg->buying_asset), str_buying_asset,
sizeof(str_buying_asset));
@ -495,16 +495,16 @@ bool stellar_confirmCreatePassiveOfferOp(
stellar_hashupdate_uint32(4);
// New Offer / Delete #123 / Update #123
char str_offer[32];
char str_offer[32] = {0};
if (msg->amount == 0) {
strlcpy(str_offer, _("Delete Passive Offer"), sizeof(str_offer));
} else {
strlcpy(str_offer, _("New Passive Offer"), sizeof(str_offer));
}
char str_selling[32];
char str_sell_amount[32];
char str_selling_asset[32];
char str_selling[32] = {0};
char str_sell_amount[32] = {0};
char str_selling_asset[32] = {0};
stellar_format_asset(&(msg->selling_asset), str_selling_asset,
sizeof(str_selling_asset));
@ -517,9 +517,9 @@ bool stellar_confirmCreatePassiveOfferOp(
strlcpy(str_selling, _("Sell "), sizeof(str_selling));
strlcat(str_selling, str_sell_amount, sizeof(str_selling));
char str_buying[32];
char str_buying_asset[32];
char str_price[32];
char str_buying[32] = {0};
char str_buying_asset[32] = {0};
char str_price[32] = {0};
stellar_format_asset(&(msg->buying_asset), str_buying_asset,
sizeof(str_buying_asset));
@ -570,8 +570,8 @@ bool stellar_confirmSetOptionsOp(const StellarSetOptionsOp *msg) {
stellar_hashupdate_uint32(5);
// Something like Set Inflation Destination
char str_title[32];
char rows[4][32];
char str_title[32] = {0};
char rows[4][32] = {0};
int row_idx = 0;
memzero(rows, sizeof(rows));
@ -581,7 +581,7 @@ bool stellar_confirmSetOptionsOp(const StellarSetOptionsOp *msg) {
strlcpy(str_title, _("Set Inflation Destination"), sizeof(str_title));
// Validate account and convert to bytes
uint8_t inflation_destination_account_bytes[STELLAR_KEY_SIZE];
uint8_t inflation_destination_account_bytes[STELLAR_KEY_SIZE] = {0};
if (!stellar_getAddressBytes(msg->inflation_destination_account,
inflation_destination_account_bytes)) {
stellar_signingAbort(_("Invalid inflation destination account"));
@ -682,7 +682,7 @@ bool stellar_confirmSetOptionsOp(const StellarSetOptionsOp *msg) {
row_idx = 0;
stellar_hashupdate_bool(msg->has_master_weight);
if (msg->has_master_weight) {
char str_master_weight[10 + 1];
char str_master_weight[10 + 1] = {0};
show_thresholds_confirm = true;
stellar_format_uint32(msg->master_weight, str_master_weight,
sizeof(str_master_weight));
@ -696,7 +696,7 @@ bool stellar_confirmSetOptionsOp(const StellarSetOptionsOp *msg) {
stellar_hashupdate_bool(msg->has_low_threshold);
if (msg->has_low_threshold) {
char str_low_threshold[10 + 1];
char str_low_threshold[10 + 1] = {0};
show_thresholds_confirm = true;
stellar_format_uint32(msg->low_threshold, str_low_threshold,
sizeof(str_low_threshold));
@ -709,7 +709,7 @@ bool stellar_confirmSetOptionsOp(const StellarSetOptionsOp *msg) {
}
stellar_hashupdate_bool(msg->has_medium_threshold);
if (msg->has_medium_threshold) {
char str_med_threshold[10 + 1];
char str_med_threshold[10 + 1] = {0};
show_thresholds_confirm = true;
stellar_format_uint32(msg->medium_threshold, str_med_threshold,
sizeof(str_med_threshold));
@ -722,7 +722,7 @@ bool stellar_confirmSetOptionsOp(const StellarSetOptionsOp *msg) {
}
stellar_hashupdate_bool(msg->has_high_threshold);
if (msg->has_high_threshold) {
char str_high_threshold[10 + 1];
char str_high_threshold[10 + 1] = {0};
show_thresholds_confirm = true;
stellar_format_uint32(msg->high_threshold, str_high_threshold,
sizeof(str_high_threshold));
@ -782,14 +782,14 @@ bool stellar_confirmSetOptionsOp(const StellarSetOptionsOp *msg) {
}
// Format weight as a string
char str_weight[16];
char str_weight[16] = {0};
stellar_format_uint32(msg->signer_weight, str_weight, sizeof(str_weight));
char str_weight_row[32];
char str_weight_row[32] = {0};
strlcpy(str_weight_row, _("Weight: "), sizeof(str_weight_row));
strlcat(str_weight_row, str_weight, sizeof(str_weight_row));
// 0 = account, 1 = pre-auth, 2 = hash(x)
char str_signer_type[16];
char str_signer_type[16] = {0};
bool needs_hash_confirm = false;
if (msg->signer_type == 0) {
strlcpy(str_signer_type, _("account"), sizeof(str_signer_type));
@ -873,7 +873,7 @@ bool stellar_confirmChangeTrustOp(const StellarChangeTrustOp *msg) {
stellar_hashupdate_uint32(6);
// Add Trust: USD
char str_title[32];
char str_title[32] = {0};
if (msg->limit == 0) {
strlcpy(str_title, _("DELETE Trust: "), sizeof(str_title));
} else {
@ -882,19 +882,19 @@ bool stellar_confirmChangeTrustOp(const StellarChangeTrustOp *msg) {
strlcat(str_title, msg->asset.code, sizeof(str_title));
// Amount: MAX (or a number)
char str_amount_row[32];
char str_amount_row[32] = {0};
strlcpy(str_amount_row, _("Amount: "), sizeof(str_amount_row));
if (msg->limit == 9223372036854775807) {
strlcat(str_amount_row, _("[Maximum]"), sizeof(str_amount_row));
} else {
char str_amount[32];
char str_amount[32] = {0};
stellar_format_stroops(msg->limit, str_amount, sizeof(str_amount));
strlcat(str_amount_row, str_amount, sizeof(str_amount_row));
}
// Validate destination account and convert to bytes
uint8_t asset_issuer_bytes[STELLAR_KEY_SIZE];
uint8_t asset_issuer_bytes[STELLAR_KEY_SIZE] = {0};
if (!stellar_getAddressBytes(msg->asset.issuer, asset_issuer_bytes)) {
stellar_signingAbort(_("User canceled"));
fsm_sendFailure(FailureType_Failure_ProcessError,
@ -935,7 +935,7 @@ bool stellar_confirmAllowTrustOp(const StellarAllowTrustOp *msg) {
stellar_hashupdate_uint32(7);
// Add Trust: USD
char str_title[32];
char str_title[32] = {0};
if (msg->is_authorized) {
strlcpy(str_title, _("Allow Trust of"), sizeof(str_title));
} else {
@ -943,11 +943,11 @@ bool stellar_confirmAllowTrustOp(const StellarAllowTrustOp *msg) {
}
// Asset code
char str_asset_row[32];
char str_asset_row[32] = {0};
strlcpy(str_asset_row, msg->asset_code, sizeof(str_asset_row));
// Validate account and convert to bytes
uint8_t trusted_account_bytes[STELLAR_KEY_SIZE];
uint8_t trusted_account_bytes[STELLAR_KEY_SIZE] = {0};
if (!stellar_getAddressBytes(msg->trusted_account, trusted_account_bytes)) {
stellar_signingAbort(_("Invalid trusted account"));
return false;
@ -957,7 +957,7 @@ bool stellar_confirmAllowTrustOp(const StellarAllowTrustOp *msg) {
stellar_lineBreakAddress(trusted_account_bytes);
// By: G...
char str_by[32];
char str_by[32] = {0};
strlcpy(str_by, _("By: "), sizeof(str_by));
strlcat(str_by, str_trustor_rows[0], sizeof(str_by));
@ -974,13 +974,13 @@ bool stellar_confirmAllowTrustOp(const StellarAllowTrustOp *msg) {
stellar_hashupdate_uint32(msg->asset_type);
// asset code
if (msg->asset_type == 1) {
char code4[4 + 1];
char code4[4 + 1] = {0};
memzero(code4, sizeof(code4));
strlcpy(code4, msg->asset_code, sizeof(code4));
stellar_hashupdate_bytes((uint8_t *)code4, 4);
}
if (msg->asset_type == 2) {
char code12[12 + 1];
char code12[12 + 1] = {0};
memzero(code12, sizeof(code12));
strlcpy(code12, msg->asset_code, sizeof(code12));
stellar_hashupdate_bytes((uint8_t *)code12, 12);
@ -1006,7 +1006,7 @@ bool stellar_confirmAccountMergeOp(const StellarAccountMergeOp *msg) {
stellar_hashupdate_uint32(8);
// Validate account and convert to bytes
uint8_t destination_account_bytes[STELLAR_KEY_SIZE];
uint8_t destination_account_bytes[STELLAR_KEY_SIZE] = {0};
if (!stellar_getAddressBytes(msg->destination_account,
destination_account_bytes)) {
stellar_signingAbort(_("Invalid destination account"));
@ -1045,7 +1045,7 @@ bool stellar_confirmManageDataOp(const StellarManageDataOp *msg) {
// Hash: operation type
stellar_hashupdate_uint32(10);
char str_title[32];
char str_title[32] = {0};
if (msg->has_value) {
strlcpy(str_title, _("Set data value key:"), sizeof(str_title));
} else {
@ -1068,7 +1068,7 @@ bool stellar_confirmManageDataOp(const StellarManageDataOp *msg) {
if (msg->has_value) {
strlcpy(str_title, _("Confirm sha256 of value:"), sizeof(str_title));
char str_hash_digest[SHA256_DIGEST_STRING_LENGTH];
char str_hash_digest[SHA256_DIGEST_STRING_LENGTH] = {0};
sha256_Data(msg->value.bytes, msg->value.size, str_hash_digest);
const char **str_hash_lines = split_message(
(const uint8_t *)str_hash_digest, sizeof(str_hash_digest), 16);
@ -1110,7 +1110,7 @@ bool stellar_confirmBumpSequenceOp(const StellarBumpSequenceOp *msg) {
// Hash: operation type
stellar_hashupdate_uint32(11);
char str_bump_to[20];
char str_bump_to[20] = {0};
stellar_format_uint64(msg->bump_to, str_bump_to, sizeof(str_bump_to));
stellar_layoutTransactionDialog(_("Bump Sequence"), _("Set sequence to:"),
@ -1154,7 +1154,7 @@ void stellar_fillSignedTx(StellarSignedTx *resp) {
// Add the signature (note that this does not include the 4-byte hint since it
// can be calculated from the public key)
uint8_t signature[64];
uint8_t signature[64] = {0};
// Note: this calls sha256_Final on the hash context
stellar_getSignatureForActiveTx(signature);
memcpy(resp->signature.bytes, signature, sizeof(signature));
@ -1181,10 +1181,10 @@ void stellar_getSignatureForActiveTx(uint8_t *out_signature) {
// Signature is the ed25519 detached signature of the sha256 of all the bytes
// that have been read so far
uint8_t to_sign[32];
uint8_t to_sign[32] = {0};
sha256_Final(&(stellar_activeTx.sha256_ctx), to_sign);
uint8_t signature[64];
uint8_t signature[64] = {0};
ed25519_sign(to_sign, sizeof(to_sign), node->private_key,
node->public_key + 1, signature);
@ -1248,7 +1248,7 @@ void stellar_format_price(uint32_t numerator, uint32_t denominator, char *out,
* Returns a uint32 formatted as a string
*/
void stellar_format_uint32(uint32_t number, char *out, size_t outlen) {
bignum256 bn_number;
bignum256 bn_number = {0};
bn_read_uint32(number, &bn_number);
bn_format(&bn_number, NULL, NULL, 0, 0, false, out, outlen);
}
@ -1265,7 +1265,7 @@ void stellar_format_uint64(uint64_t number, char *out, size_t outlen) {
* This is to allow a small label to be prepended to the first line
*/
const char **stellar_lineBreakAddress(const uint8_t *addrbytes) {
char str_fulladdr[56 + 1];
char str_fulladdr[56 + 1] = {0};
static char rows[3][20 + 1];
memzero(rows, sizeof(rows));
@ -1292,9 +1292,9 @@ const char **stellar_lineBreakAddress(const uint8_t *addrbytes) {
*/
void stellar_format_asset(const StellarAssetType *asset, char *str_formatted,
size_t len) {
char str_asset_code[12 + 1];
char str_asset_code[12 + 1] = {0};
// truncated asset issuer, final length depends on length of asset code
char str_asset_issuer_trunc[13 + 1];
char str_asset_issuer_trunc[13 + 1] = {0};
memzero(str_formatted, len);
memzero(str_asset_code, sizeof(str_asset_code));
@ -1339,6 +1339,8 @@ size_t stellar_publicAddressAsStr(const uint8_t *bytes, char *out,
// version + key bytes + checksum
uint8_t keylen = 1 + 32 + 2;
uint8_t bytes_full[keylen];
memset(bytes_full, 0, sizeof(bytes_full));
bytes_full[0] = 6 << 3; // 'G'
memcpy(bytes_full + 1, bytes, 32);
@ -1367,7 +1369,7 @@ size_t stellar_publicAddressAsStr(const uint8_t *bytes, char *out,
*/
bool stellar_validateAddress(const char *str_address) {
bool valid = false;
uint8_t decoded[STELLAR_ADDRESS_SIZE_RAW];
uint8_t decoded[STELLAR_ADDRESS_SIZE_RAW] = {0};
memzero(decoded, sizeof(decoded));
if (strlen(str_address) != STELLAR_ADDRESS_SIZE) {
@ -1400,7 +1402,7 @@ bool stellar_validateAddress(const char *str_address) {
* Converts a string address (G...) to the 32-byte raw address
*/
bool stellar_getAddressBytes(const char *str_address, uint8_t *out_bytes) {
uint8_t decoded[STELLAR_ADDRESS_SIZE_RAW];
uint8_t decoded[STELLAR_ADDRESS_SIZE_RAW] = {0};
memzero(decoded, sizeof(decoded));
// Ensure address is valid
@ -1426,11 +1428,11 @@ uint16_t stellar_crc16(uint8_t *bytes, uint32_t length) {
// Calculate checksum for existing bytes
uint16_t crc = 0x0000;
uint16_t polynomial = 0x1021;
uint32_t i;
uint8_t bit;
uint8_t byte;
uint8_t bitidx;
uint8_t c15;
uint32_t i = 0;
uint8_t bit = 0;
uint8_t byte = 0;
uint8_t bitidx = 0;
uint8_t c15 = 0;
for (i = 0; i < length; i++) {
byte = bytes[i];
@ -1478,7 +1480,7 @@ void stellar_hashupdate_uint32(uint32_t value) {
#endif
// Byte values must be hashed as big endian
uint8_t data[4];
uint8_t data[4] = {0};
data[3] = (value >> 24) & 0xFF;
data[2] = (value >> 16) & 0xFF;
data[1] = (value >> 8) & 0xFF;
@ -1494,7 +1496,7 @@ void stellar_hashupdate_uint64(uint64_t value) {
#endif
// Byte values must be hashed as big endian
uint8_t data[8];
uint8_t data[8] = {0};
data[7] = (value >> 56) & 0xFF;
data[6] = (value >> 48) & 0xFF;
data[5] = (value >> 40) & 0xFF;
@ -1550,7 +1552,7 @@ void stellar_hashupdate_asset(const StellarAssetType *asset) {
stellar_hashupdate_uint32(asset->type);
// For non-native assets, validate issuer account and convert to bytes
uint8_t issuer_bytes[STELLAR_KEY_SIZE];
uint8_t issuer_bytes[STELLAR_KEY_SIZE] = {0};
if (asset->type != 0 &&
!stellar_getAddressBytes(asset->issuer, issuer_bytes)) {
stellar_signingAbort(_("Invalid asset issuer"));
@ -1559,7 +1561,7 @@ void stellar_hashupdate_asset(const StellarAssetType *asset) {
// 4-character asset code
if (asset->type == 1) {
char code4[4 + 1];
char code4[4 + 1] = {0};
memzero(code4, sizeof(code4));
strlcpy(code4, asset->code, sizeof(code4));
@ -1569,7 +1571,7 @@ void stellar_hashupdate_asset(const StellarAssetType *asset) {
// 12-character asset code
if (asset->type == 2) {
char code12[12 + 1];
char code12[12 + 1] = {0};
memzero(code12, sizeof(code12));
strlcpy(code12, asset->code, sizeof(code12));
@ -1586,11 +1588,11 @@ void stellar_hashupdate_bytes(const uint8_t *data, size_t len) {
* Displays a summary of the overall transaction
*/
void stellar_layoutTransactionSummary(const StellarSignTx *msg) {
char str_lines[5][32];
char str_lines[5][32] = {0};
memzero(str_lines, sizeof(str_lines));
char str_fee[12];
char str_num_ops[12];
char str_fee[12] = {0};
char str_num_ops[12] = {0};
// Will be set to true for some large hashes that don't fit on one screen
uint8_t needs_memo_hash_confirm = 0;
@ -1680,8 +1682,8 @@ void stellar_layoutTransactionSummary(const StellarSignTx *msg) {
// Timebound: lower
if (msg->timebounds_start || msg->timebounds_end) {
time_t timebound;
char str_timebound[32];
const struct tm *tm;
char str_timebound[32] = {0};
const struct tm *tm = NULL;
timebound = (time_t)msg->timebounds_start;
strlcpy(str_lines[0], _("Valid from:"), sizeof(str_lines[0]));
@ -1749,7 +1751,7 @@ void stellar_layoutSigningDialog(const char *line1, const char *line2,
oledClear();
// Load up public address
char str_pubaddr[56 + 1];
char str_pubaddr[56 + 1] = {0};
memzero(str_pubaddr, sizeof(str_pubaddr));
stellar_publicAddressAsStr(node->public_key + 1, str_pubaddr,
sizeof(str_pubaddr));
@ -1757,7 +1759,7 @@ void stellar_layoutSigningDialog(const char *line1, const char *line2,
// Header
// Ends up as: Signing with GABCDEFGHIJKL
char str_header[32];
char str_header[32] = {0};
memzero(str_header, sizeof(str_header));
strlcpy(str_header, _("Signing with "), sizeof(str_header));
strlcat(str_header, str_pubaddr_truncated, sizeof(str_header));
@ -1805,7 +1807,7 @@ void stellar_layoutSigningDialog(const char *line1, const char *line2,
}
// Next / sign button
char str_next_label[8];
char str_next_label[8] = {0};
if (is_final_step) {
strlcpy(str_next_label, _("SIGN"), sizeof(str_next_label));
} else {
@ -1831,7 +1833,7 @@ void stellar_layoutSigningDialog(const char *line1, const char *line2,
void stellar_layoutTransactionDialog(const char *line1, const char *line2,
const char *line3, const char *line4,
const char *line5) {
char str_warning[16];
char str_warning[16] = {0};
memzero(str_warning, sizeof(str_warning));
if (stellar_activeTx.network_type == 2) {

View File

@ -105,9 +105,9 @@ bool compute_address(const CoinInfo *coin, InputScriptType script_type,
const HDNode *node, bool has_multisig,
const MultisigRedeemScriptType *multisig,
char address[MAX_ADDR_SIZE]) {
uint8_t raw[MAX_ADDR_RAW_SIZE];
uint8_t digest[32];
size_t prelen;
uint8_t raw[MAX_ADDR_RAW_SIZE] = {0};
uint8_t digest[32] = {0};
size_t prelen = 0;
if (has_multisig) {
if (cryptoMultisigPubkeyIndex(coin, multisig, node->public_key) < 0) {
@ -200,8 +200,8 @@ int compile_output(const CoinInfo *coin, const HDNode *root, TxOutputType *in,
memzero(out, sizeof(TxOutputBinType));
out->amount = in->amount;
out->decred_script_version = in->decred_script_version;
uint8_t addr_raw[MAX_ADDR_RAW_SIZE];
size_t addr_raw_len;
uint8_t addr_raw[MAX_ADDR_RAW_SIZE] = {0};
size_t addr_raw_len = 0;
if (in->script_type == OutputScriptType_PAYTOOPRETURN) {
// only 0 satoshi allowed for OP_RETURN
@ -235,7 +235,7 @@ int compile_output(const CoinInfo *coin, const HDNode *root, TxOutputType *in,
if (in->address_n_count > 0) {
static CONFIDENTIAL HDNode node;
InputScriptType input_script_type;
InputScriptType input_script_type = 0;
switch (in->script_type) {
case OutputScriptType_PAYTOADDRESS:
@ -269,7 +269,7 @@ int compile_output(const CoinInfo *coin, const HDNode *root, TxOutputType *in,
addr_raw_len = base58_decode_check(in->address, coin->curve->hasher_base58,
addr_raw, MAX_ADDR_RAW_SIZE);
size_t prefix_len;
size_t prefix_len = 0;
if (coin->has_address_type // p2pkh
&& addr_raw_len ==
20 + (prefix_len = address_prefix_bytes_len(coin->address_type)) &&
@ -313,7 +313,7 @@ int compile_output(const CoinInfo *coin, const HDNode *root, TxOutputType *in,
return 0;
}
} else if (coin->bech32_prefix) {
int witver;
int witver = 0;
if (!segwit_addr_decode(&witver, addr_raw, &addr_raw_len,
coin->bech32_prefix, in->address)) {
return 0;
@ -394,10 +394,10 @@ uint32_t compile_script_multisig_hash(const CoinInfo *coin,
if (m < 1 || m > 15) return 0;
if (n < 1 || n > 15) return 0;
Hasher hasher;
Hasher hasher = {0};
hasher_Init(&hasher, coin->curve->hasher_script);
uint8_t d[2];
uint8_t d[2] = {0};
d[0] = 0x50 + m;
hasher_Update(&hasher, d, 1);
for (uint32_t i = 0; i < n; i++) {
@ -800,7 +800,7 @@ void tx_hash_final(TxStruct *t, uint8_t *hash, bool reverse) {
}
static uint32_t tx_input_script_size(const TxInputType *txinput) {
uint32_t input_script_size;
uint32_t input_script_size = 0;
if (txinput->has_multisig) {
uint32_t multisig_script_size =
TXSIZE_MULTISIGSCRIPT +
@ -860,9 +860,9 @@ uint32_t tx_output_weight(const CoinInfo *coin, const TxOutputType *txoutput) {
txoutput->has_multisig ? TXSIZE_P2SCRIPT : TXSIZE_P2PKHASH;
}
} else {
uint8_t addr_raw[MAX_ADDR_RAW_SIZE];
int witver;
size_t addr_raw_len;
uint8_t addr_raw[MAX_ADDR_RAW_SIZE] = {0};
int witver = 0;
size_t addr_raw_len = 0;
if (coin->cashaddr_prefix &&
cash_addr_decode(addr_raw, &addr_raw_len, coin->cashaddr_prefix,
txoutput->address)) {

View File

@ -39,7 +39,7 @@
#endif
/* Screen timeout */
uint32_t system_millis_lock_start;
uint32_t system_millis_lock_start = 0;
void check_lock_screen(void) {
buttonUpdate();
@ -100,7 +100,7 @@ static void collect_hw_entropy(bool privileged) {
desig_get_unique_id((uint32_t *)HW_ENTROPY_DATA);
// set entropy in the OTP randomness block
if (!flash_otp_is_locked(FLASH_OTP_BLOCK_RANDOMNESS)) {
uint8_t entropy[FLASH_OTP_BLOCK_SIZE];
uint8_t entropy[FLASH_OTP_BLOCK_SIZE] = {0};
random_buffer(entropy, FLASH_OTP_BLOCK_SIZE);
flash_otp_write(FLASH_OTP_BLOCK_RANDOMNESS, 0, entropy,
FLASH_OTP_BLOCK_SIZE);

View File

@ -174,7 +174,7 @@ void u2fhid_init_cmd(const U2FHID_FRAME *f) {
}
void u2fhid_read_start(const U2FHID_FRAME *f) {
U2F_ReadBuffer readbuffer;
U2F_ReadBuffer readbuffer = {0};
memzero(&readbuffer, sizeof(readbuffer));
if (!(f->type & TYPE_INIT)) {
@ -273,7 +273,7 @@ void u2fhid_wink(const uint8_t *buf, uint32_t len) {
if (dialog_timeout > 0) dialog_timeout = U2F_TIMEOUT;
U2FHID_FRAME f;
U2FHID_FRAME f = {0};
memzero(&f, sizeof(f));
f.cid = cid;
f.init.cmd = U2FHID_WINK;
@ -283,8 +283,8 @@ void u2fhid_wink(const uint8_t *buf, uint32_t len) {
void u2fhid_init(const U2FHID_FRAME *in) {
const U2FHID_INIT_REQ *init_req = (const U2FHID_INIT_REQ *)&in->init.data;
U2FHID_FRAME f;
U2FHID_INIT_RESP resp;
U2FHID_FRAME f = {0};
U2FHID_INIT_RESP resp = {0};
memzero(&resp, sizeof(resp));
debugLog(0, "", "u2fhid_init");
@ -367,10 +367,10 @@ void send_u2fhid_msg(const uint8_t cmd, const uint8_t *data,
return;
}
U2FHID_FRAME f;
U2FHID_FRAME f = {0};
uint8_t *p = (uint8_t *)data;
uint32_t l = len;
uint32_t psz;
uint32_t psz = 0;
uint8_t seq = 0;
// debugLog(0, "", "send_u2fhid_msg");
@ -405,7 +405,7 @@ void send_u2fhid_msg(const uint8_t cmd, const uint8_t *data,
}
void send_u2fhid_error(uint32_t fcid, uint8_t err) {
U2FHID_FRAME f;
U2FHID_FRAME f = {0};
memzero(&f, sizeof(f));
f.cid = fcid;
@ -470,10 +470,10 @@ static const HDNode *getDerivedNode(uint32_t *address_n,
static const HDNode *generateKeyHandle(const uint8_t app_id[],
uint8_t key_handle[]) {
uint8_t keybase[U2F_APPID_SIZE + KEY_PATH_LEN];
uint8_t keybase[U2F_APPID_SIZE + KEY_PATH_LEN] = {0};
// Derivation path is m/U2F'/r'/r'/r'/r'/r'/r'/r'/r'
uint32_t key_path[KEY_PATH_ENTRIES];
uint32_t key_path[KEY_PATH_ENTRIES] = {0};
for (uint32_t i = 0; i < KEY_PATH_ENTRIES; i++) {
// high bit for hardened keys
key_path[i] = 0x80000000 | random32();
@ -499,7 +499,7 @@ static const HDNode *generateKeyHandle(const uint8_t app_id[],
static const HDNode *validateKeyHandle(const uint8_t app_id[],
const uint8_t key_handle[]) {
uint32_t key_path[KEY_PATH_ENTRIES];
uint32_t key_path[KEY_PATH_ENTRIES] = {0};
memcpy(key_path, key_handle, KEY_PATH_LEN);
for (unsigned int i = 0; i < KEY_PATH_ENTRIES; i++) {
// check high bit for hardened keys
@ -511,11 +511,11 @@ static const HDNode *validateKeyHandle(const uint8_t app_id[],
const HDNode *node = getDerivedNode(key_path, KEY_PATH_ENTRIES);
if (!node) return NULL;
uint8_t keybase[U2F_APPID_SIZE + KEY_PATH_LEN];
uint8_t keybase[U2F_APPID_SIZE + KEY_PATH_LEN] = {0};
memcpy(&keybase[0], app_id, U2F_APPID_SIZE);
memcpy(&keybase[U2F_APPID_SIZE], key_handle, KEY_PATH_LEN);
uint8_t hmac[SHA256_DIGEST_LENGTH];
uint8_t hmac[SHA256_DIGEST_LENGTH] = {0};
hmac_sha256(node->private_key, sizeof(node->private_key), keybase,
sizeof(keybase), hmac);
@ -558,7 +558,7 @@ void u2f_register(const APDU *a) {
_("Another U2F device"), _("was used to register"),
_("in this application."), NULL, NULL, NULL);
} else {
const char *appname;
const char *appname = NULL;
getReadableAppId(req->appId, &appname);
layoutU2FDialog(_("Register"), appname);
}
@ -575,7 +575,7 @@ void u2f_register(const APDU *a) {
// Buttons said yes
if (last_req_state == REG_PASS) {
uint8_t data[sizeof(U2F_REGISTER_RESP) + 2];
uint8_t data[sizeof(U2F_REGISTER_RESP) + 2] = {0};
U2F_REGISTER_RESP *resp = (U2F_REGISTER_RESP *)&data;
memzero(data, sizeof(data));
@ -597,8 +597,8 @@ void u2f_register(const APDU *a) {
memcpy(resp->keyHandleCertSig + resp->keyHandleLen, U2F_ATT_CERT,
sizeof(U2F_ATT_CERT));
uint8_t sig[64];
U2F_REGISTER_SIG_STR sig_base;
uint8_t sig[64] = {0};
U2F_REGISTER_SIG_STR sig_base = {0};
sig_base.reserved = 0;
memcpy(sig_base.appId, req->appId, U2F_APPID_SIZE);
memcpy(sig_base.chal, req->chal, U2F_CHAL_SIZE);
@ -690,7 +690,7 @@ void u2f_authenticate(const APDU *a) {
if (last_req_state == INIT) {
// error: testof-user-presence is required
buttonUpdate(); // Clear button state
const char *appname;
const char *appname = NULL;
getReadableAppId(req->appId, &appname);
layoutU2FDialog(_("Authenticate"), appname);
last_req_state = AUTH;
@ -706,7 +706,7 @@ void u2f_authenticate(const APDU *a) {
// Buttons said yes
if (last_req_state == AUTH_PASS) {
uint8_t buf[sizeof(U2F_AUTHENTICATE_RESP) + 2];
uint8_t buf[(sizeof(U2F_AUTHENTICATE_RESP)) + 2] = {0};
U2F_AUTHENTICATE_RESP *resp = (U2F_AUTHENTICATE_RESP *)&buf;
const uint32_t ctr = config_nextU2FCounter();
@ -717,8 +717,8 @@ void u2f_authenticate(const APDU *a) {
resp->ctr[3] = ctr & 0xff;
// Build and sign response
U2F_AUTHENTICATE_SIG_STR sig_base;
uint8_t sig[64];
U2F_AUTHENTICATE_SIG_STR sig_base = {0};
uint8_t sig[64] = {0};
memcpy(sig_base.appId, req->appId, U2F_APPID_SIZE);
sig_base.flags = resp->flags;
memcpy(sig_base.ctr, resp->ctr, 4);
@ -744,7 +744,7 @@ void u2f_authenticate(const APDU *a) {
}
void send_u2f_error(const uint16_t err) {
uint8_t data[2];
uint8_t data[2] = {0};
data[0] = err >> 8 & 0xFF;
data[1] = err & 0xFF;
send_u2f_msg(data, 2);

View File

@ -16,7 +16,7 @@ static inline char convert(char c) {
}
int main(int argc, char **argv) {
char *line;
char *line = NULL;
int font = FONT_STANDARD;
while ((line = readline(NULL)) != NULL) {
size_t length = strlen(line);

View File

@ -25,8 +25,8 @@
static uint16_t build_bos_descriptor(const struct usb_bos_descriptor *bos,
uint8_t *buf, uint16_t len) {
uint8_t *tmpbuf = buf;
uint16_t count, total = 0, totallen = 0;
uint16_t i;
uint16_t count = 0, total = 0, totallen = 0;
uint16_t i = 0;
memcpy(buf, bos, count = MIN(len, bos->bLength));
buf += count;

View File

@ -45,7 +45,7 @@ LGPL License Terms @ref lgpl_license
int usbd_register_set_config_callback(usbd_device *usbd_dev,
usbd_set_config_callback callback)
{
int i;
int i = 0;
for (i = 0; i < MAX_USER_SET_CONFIG_CALLBACK; i++) {
if (usbd_dev->user_callback_set_config[i]) {
@ -73,8 +73,8 @@ static uint16_t build_config_descriptor(usbd_device *usbd_dev,
{
uint8_t *tmpbuf = buf;
const struct usb_config_descriptor *cfg = &usbd_dev->config[index];
uint16_t count, total = 0, totallen = 0;
uint16_t i, j, k;
uint16_t count = 0, total = 0, totallen = 0;
uint16_t i = 0, j = 0, k = 0;
memcpy(buf, cfg, count = MIN(len, cfg->bLength));
buf += count;
@ -160,8 +160,8 @@ usb_standard_get_descriptor(usbd_device *usbd_dev,
wait_random();
int i, array_idx, descr_idx;
struct usb_string_descriptor *sd;
int i = 0, array_idx = 0, descr_idx = 0;
struct usb_string_descriptor *sd = NULL;
descr_idx = usb_descriptor_index(req->wValue);
@ -259,9 +259,9 @@ usb_standard_set_configuration(usbd_device *usbd_dev,
struct usb_setup_data *req,
uint8_t **buf, uint16_t *len)
{
unsigned i;
unsigned i = 0;
int found_index = -1;
const struct usb_config_descriptor *cfg;
const struct usb_config_descriptor *cfg = NULL;
(void)req;
(void)buf;
@ -344,7 +344,7 @@ usb_standard_set_interface(usbd_device *usbd_dev,
{
const struct usb_config_descriptor *cfx =
&usbd_dev->config[usbd_dev->current_config - 1];
const struct usb_interface *iface;
const struct usb_interface *iface = NULL;
(void)buf;
@ -380,7 +380,7 @@ usb_standard_get_interface(usbd_device *usbd_dev,
struct usb_setup_data *req,
uint8_t **buf, uint16_t *len)
{
uint8_t *cur_altsetting;
uint8_t *cur_altsetting = NULL;
const struct usb_config_descriptor *cfx =
&usbd_dev->config[usbd_dev->current_config - 1];

View File

@ -109,7 +109,7 @@ static secbool norcow_write(uint8_t sector, uint32_t offset, uint32_t prefix,
static void erase_sector(uint8_t sector, secbool set_magic) {
#if NORCOW_HEADER_LEN > 0
// Backup the sector header.
uint32_t header_backup[NORCOW_HEADER_LEN / sizeof(uint32_t)];
uint32_t header_backup[NORCOW_HEADER_LEN / sizeof(uint32_t)] = {0};
const void *sector_start = norcow_ptr(sector, 0, NORCOW_HEADER_LEN);
memcpy(header_backup, sector_start, sizeof(header_backup));
#endif
@ -208,16 +208,16 @@ static secbool find_item(uint8_t sector, uint16_t key, const void **val,
*val = NULL;
*len = 0;
uint32_t offset;
uint32_t version;
uint32_t offset = 0;
uint32_t version = 0;
if (sectrue != find_start_offset(sector, &offset, &version)) {
return secfalse;
}
for (;;) {
uint16_t k, l;
const void *v;
uint32_t pos;
uint16_t k = 0, l = 0;
const void *v = NULL;
uint32_t pos = 0;
if (sectrue != read_item(sector, offset, &k, &v, &l, &pos)) {
break;
}
@ -234,16 +234,16 @@ static secbool find_item(uint8_t sector, uint16_t key, const void **val,
* Finds first unused offset in given sector
*/
static uint32_t find_free_offset(uint8_t sector) {
uint32_t offset;
uint32_t version;
uint32_t offset = 0;
uint32_t version = 0;
if (sectrue != find_start_offset(sector, &offset, &version)) {
return secfalse;
}
for (;;) {
uint16_t key, len;
const void *val;
uint32_t pos;
uint16_t key = 0, len = 0;
const void *val = NULL;
uint32_t pos = 0;
if (sectrue != read_item(sector, offset, &key, &val, &len, &pos)) {
break;
}
@ -256,8 +256,8 @@ static uint32_t find_free_offset(uint8_t sector) {
* Compacts active sector and sets new active sector
*/
static void compact(void) {
uint32_t offsetr;
uint32_t version;
uint32_t offsetr = 0;
uint32_t version = 0;
if (sectrue != find_start_offset(norcow_active_sector, &offsetr, &version)) {
return;
}
@ -268,9 +268,9 @@ static void compact(void) {
for (;;) {
// read item
uint16_t k, l;
const void *v;
uint32_t posr;
uint16_t k = 0, l = 0;
const void *v = NULL;
uint32_t posr = 0;
secbool r = read_item(norcow_active_sector, offsetr, &k, &v, &l, &posr);
if (sectrue != r) {
break;
@ -283,7 +283,7 @@ static void compact(void) {
}
// copy the item
uint32_t posw;
uint32_t posw = 0;
ensure(write_item(norcow_write_sector, offsetw, k, v, l, &posw),
"compaction write failed");
offsetw = posw;
@ -304,7 +304,7 @@ void norcow_init(uint32_t *norcow_version) {
*norcow_version = 0;
// detect active sector - starts with magic and has highest version
for (uint8_t i = 0; i < NORCOW_SECTOR_COUNT; i++) {
uint32_t offset;
uint32_t offset = 0;
if (sectrue == find_start_offset(i, &offset, &norcow_active_version) &&
norcow_active_version >= *norcow_version) {
found = sectrue;
@ -356,7 +356,7 @@ secbool norcow_get(uint16_t key, const void **val, uint16_t *len) {
secbool norcow_get_next(uint32_t *offset, uint16_t *key, const void **val,
uint16_t *len) {
if (*offset == 0) {
uint32_t version;
uint32_t version = 0;
if (sectrue != find_start_offset(norcow_active_sector, offset, &version)) {
return secfalse;
}
@ -379,9 +379,9 @@ secbool norcow_get_next(uint32_t *offset, uint16_t *key, const void **val,
// Check whether the item is the latest instance.
uint32_t offsetr = *offset;
for (;;) {
uint16_t k;
uint16_t l;
const void *v;
uint16_t k = 0;
uint16_t l = 0;
const void *v = NULL;
ret = read_item(norcow_active_sector, offsetr, &k, &v, &l, &offsetr);
if (sectrue != ret) {
// There is no newer instance of the item.
@ -405,7 +405,7 @@ secbool norcow_get_next(uint32_t *offset, uint16_t *key, const void **val,
* then be written using norcow_update_bytes().
*/
secbool norcow_set(uint16_t key, const void *val, uint16_t len) {
secbool found;
secbool found = secfalse;
return norcow_set_ex(key, val, len, &found);
}
@ -467,7 +467,7 @@ secbool norcow_set_ex(uint16_t key, const void *val, uint16_t len,
compact();
}
// Write new item.
uint32_t pos;
uint32_t pos = 0;
ret = write_item(norcow_write_sector, norcow_free_offset, key, val, len,
&pos);
if (sectrue == ret) {
@ -521,8 +521,8 @@ secbool norcow_delete(uint16_t key) {
* into the NORCOW area.
*/
secbool norcow_update_word(uint16_t key, uint16_t offset, uint32_t value) {
const void *ptr;
uint16_t len;
const void *ptr = NULL;
uint16_t len = 0;
if (sectrue != find_item(norcow_write_sector, key, &ptr, &len)) {
return secfalse;
}
@ -546,8 +546,8 @@ secbool norcow_update_word(uint16_t key, uint16_t offset, uint32_t value) {
*/
secbool norcow_update_bytes(const uint16_t key, const uint16_t offset,
const uint8_t *data, const uint16_t len) {
const void *ptr;
uint16_t allocated_len;
const void *ptr = NULL;
uint16_t allocated_len = 0;
if (sectrue != find_item(norcow_write_sector, key, &ptr, &allocated_len)) {
return secfalse;
}

View File

@ -151,7 +151,7 @@ static secbool secequal(const void *ptr1, const void *ptr2, size_t n) {
const uint8_t *p1 = ptr1;
const uint8_t *p2 = ptr2;
uint8_t diff = 0;
size_t i;
size_t i = 0;
for (i = 0; i < n; ++i) {
diff |= *p1 ^ *p2;
++p1;
@ -169,7 +169,7 @@ static secbool secequal(const void *ptr1, const void *ptr2, size_t n) {
static secbool secequal32(const uint32_t *ptr1, const uint32_t *ptr2,
size_t n) {
uint32_t diff = 0;
size_t i;
size_t i = 0;
for (i = 0; i < n; ++i) {
uint32_t mask = random32();
diff |= (*ptr1 + mask - *ptr2) ^ mask;
@ -194,7 +194,7 @@ static secbool is_protected(uint16_t key) {
* Initialize the storage authentication tag for freshly wiped storage.
*/
static secbool auth_init(void) {
uint8_t tag[SHA256_DIGEST_LENGTH];
uint8_t tag[SHA256_DIGEST_LENGTH] = {0};
memzero(authentication_sum, sizeof(authentication_sum));
hmac_sha256(cached_sak, SAK_SIZE, authentication_sum,
sizeof(authentication_sum), tag);
@ -209,7 +209,7 @@ static secbool auth_update(uint16_t key) {
return sectrue;
}
uint8_t tag[SHA256_DIGEST_LENGTH];
uint8_t tag[SHA256_DIGEST_LENGTH] = {0};
hmac_sha256(cached_sak, SAK_SIZE, (uint8_t *)&key, sizeof(key), tag);
for (uint32_t i = 0; i < SHA256_DIGEST_LENGTH; i++) {
authentication_sum[i] ^= tag[i];
@ -224,7 +224,7 @@ static secbool auth_update(uint16_t key) {
* tag.
*/
static secbool auth_set(uint16_t key, const void *val, uint16_t len) {
secbool found;
secbool found = secfalse;
secbool ret = norcow_set_ex(key, val, len, &found);
if (sectrue == ret && secfalse == found) {
ret = auth_update(key);
@ -245,8 +245,8 @@ static secbool auth_get(uint16_t key, const void **val, uint16_t *len) {
uint32_t sum[SHA256_DIGEST_LENGTH / sizeof(uint32_t)] = {0};
// Prepare inner and outer digest.
uint32_t odig[SHA256_DIGEST_LENGTH / sizeof(uint32_t)];
uint32_t idig[SHA256_DIGEST_LENGTH / sizeof(uint32_t)];
uint32_t odig[SHA256_DIGEST_LENGTH / sizeof(uint32_t)] = {0};
uint32_t idig[SHA256_DIGEST_LENGTH / sizeof(uint32_t)] = {0};
hmac_sha256_prepare(cached_sak, SAK_SIZE, odig, idig);
// Prepare SHA-256 message padding.
@ -338,7 +338,8 @@ static void derive_kek(uint32_t pin, const uint8_t *random_salt,
REVERSE32(pin, pin);
#endif
uint8_t salt[HARDWARE_SALT_SIZE + RANDOM_SALT_SIZE + EXTERNAL_SALT_SIZE];
uint8_t salt[HARDWARE_SALT_SIZE + RANDOM_SALT_SIZE + EXTERNAL_SALT_SIZE] = {
0};
size_t salt_len = 0;
memcpy(salt + salt_len, hardware_salt, HARDWARE_SALT_SIZE);
@ -357,7 +358,7 @@ static void derive_kek(uint32_t pin, const uint8_t *random_salt,
ui_callback(ui_rem, progress, ui_message);
}
PBKDF2_HMAC_SHA256_CTX ctx;
PBKDF2_HMAC_SHA256_CTX ctx = {0};
pbkdf2_hmac_sha256_Init(&ctx, (const uint8_t *)&pin, sizeof(pin), salt,
salt_len, 1);
for (int i = 1; i <= 5; i++) {
@ -389,14 +390,14 @@ static void derive_kek(uint32_t pin, const uint8_t *random_salt,
}
static secbool set_pin(uint32_t pin, const uint8_t *ext_salt) {
uint8_t buffer[RANDOM_SALT_SIZE + KEYS_SIZE + POLY1305_TAG_SIZE];
uint8_t buffer[RANDOM_SALT_SIZE + KEYS_SIZE + POLY1305_TAG_SIZE] = {0};
uint8_t *rand_salt = buffer;
uint8_t *ekeys = buffer + RANDOM_SALT_SIZE;
uint8_t *pvc = buffer + RANDOM_SALT_SIZE + KEYS_SIZE;
uint8_t kek[SHA256_DIGEST_LENGTH];
uint8_t keiv[SHA256_DIGEST_LENGTH];
chacha20poly1305_ctx ctx;
uint8_t kek[SHA256_DIGEST_LENGTH] = {0};
uint8_t keiv[SHA256_DIGEST_LENGTH] = {0};
chacha20poly1305_ctx ctx = {0};
random_buffer(rand_salt, RANDOM_SALT_SIZE);
derive_kek(pin, rand_salt, ext_salt, kek, keiv);
rfc7539_init(&ctx, kek, keiv);
@ -482,12 +483,12 @@ static secbool pin_logs_init(uint32_t fails) {
// The format of the PIN_LOGS_KEY entry is:
// guard_key (1 word), pin_success_log (PIN_LOG_WORDS), pin_entry_log
// (PIN_LOG_WORDS)
uint32_t logs[GUARD_KEY_WORDS + 2 * PIN_LOG_WORDS];
uint32_t logs[GUARD_KEY_WORDS + 2 * PIN_LOG_WORDS] = {0};
logs[0] = generate_guard_key();
uint32_t guard_mask;
uint32_t guard;
uint32_t guard_mask = 0;
uint32_t guard = 0;
wait_random();
if (sectrue != expand_guard_key(logs[0], &guard_mask, &guard)) {
return secfalse;
@ -550,8 +551,8 @@ void storage_init(PIN_UI_WAIT_CALLBACK callback, const uint8_t *salt,
}
// If there is no EDEK, then generate a random DEK and SAK and store them.
const void *val;
uint16_t len;
const void *val = NULL;
uint16_t len = 0;
if (secfalse == norcow_get(EDEK_PVC_KEY, &val, &len)) {
init_wiped_storage();
}
@ -567,8 +568,8 @@ static secbool pin_fails_reset(void) {
return secfalse;
}
uint32_t guard_mask;
uint32_t guard;
uint32_t guard_mask = 0;
uint32_t guard = 0;
wait_random();
if (sectrue !=
expand_guard_key(*(const uint32_t *)logs, &guard_mask, &guard)) {
@ -608,8 +609,8 @@ secbool storage_pin_fails_increase(void) {
return secfalse;
}
uint32_t guard_mask;
uint32_t guard;
uint32_t guard_mask = 0;
uint32_t guard = 0;
wait_random();
if (sectrue !=
expand_guard_key(*(const uint32_t *)logs, &guard_mask, &guard)) {
@ -668,8 +669,8 @@ static secbool pin_get_fails(uint32_t *ctr) {
return secfalse;
}
uint32_t guard_mask;
uint32_t guard;
uint32_t guard_mask = 0;
uint32_t guard = 0;
wait_random();
if (sectrue !=
expand_guard_key(*(const uint32_t *)logs, &guard_mask, &guard)) {
@ -681,7 +682,7 @@ static secbool pin_get_fails(uint32_t *ctr) {
const uint32_t *success_log = ((const uint32_t *)logs) + GUARD_KEY_WORDS;
const uint32_t *entry_log = success_log + PIN_LOG_WORDS;
volatile int current = -1;
volatile size_t i;
volatile size_t i = 0;
for (i = 0; i < PIN_LOG_WORDS; ++i) {
if ((entry_log[i] & guard_mask) != guard ||
(success_log[i] & guard_mask) != guard ||
@ -760,9 +761,9 @@ static secbool decrypt_dek(const uint8_t *kek, const uint8_t *keiv) {
_Static_assert(((RANDOM_SALT_SIZE + KEYS_SIZE) & 3) == 0, "PVC unaligned");
_Static_assert((PVC_SIZE & 3) == 0, "PVC size unaligned");
uint8_t keys[KEYS_SIZE];
uint8_t keys[KEYS_SIZE] = {0};
uint8_t tag[POLY1305_TAG_SIZE] __attribute__((aligned(sizeof(uint32_t))));
chacha20poly1305_ctx ctx;
chacha20poly1305_ctx ctx = {0};
// Decrypt the data encryption key and the storage authentication key and
// check the PIN verification code.
@ -784,7 +785,7 @@ static secbool decrypt_dek(const uint8_t *kek, const uint8_t *keiv) {
// Check that the authenticated version number matches the norcow version.
// NOTE: storage_get_encrypted() calls auth_get(), which initializes the
// authentication_sum.
uint32_t version;
uint32_t version = 0;
if (sectrue !=
storage_get_encrypted(VERSION_KEY, &version, sizeof(version), &len) ||
len != sizeof(version) || version != norcow_active_version) {
@ -801,7 +802,7 @@ static secbool unlock(uint32_t pin, const uint8_t *ext_salt) {
}
// Get the pin failure counter
uint32_t ctr;
uint32_t ctr = 0;
if (sectrue != pin_get_fails(&ctr)) {
memzero(&pin, sizeof(pin));
return secfalse;
@ -847,8 +848,8 @@ static secbool unlock(uint32_t pin, const uint8_t *ext_salt) {
handle_fault("no EDEK");
return secfalse;
}
uint8_t kek[SHA256_DIGEST_LENGTH];
uint8_t keiv[SHA256_DIGEST_LENGTH];
uint8_t kek[SHA256_DIGEST_LENGTH] = {0};
uint8_t keiv[SHA256_DIGEST_LENGTH] = {0};
derive_kek(pin, (const uint8_t *)rand_salt, ext_salt, kek, keiv);
memzero(&pin, sizeof(pin));
@ -860,7 +861,7 @@ static secbool unlock(uint32_t pin, const uint8_t *ext_salt) {
}
// Check that the PIN fail counter was incremented.
uint32_t ctr_ck;
uint32_t ctr_ck = 0;
if (sectrue != pin_get_fails(&ctr_ck) || ctr + 1 != ctr_ck) {
handle_fault("PIN counter increment");
return secfalse;
@ -932,8 +933,8 @@ static secbool storage_get_encrypted(const uint16_t key, void *val_dest,
const uint8_t *tag_stored = (const uint8_t *)val_stored + CHACHA20_IV_SIZE;
const uint8_t *ciphertext =
(const uint8_t *)val_stored + CHACHA20_IV_SIZE + POLY1305_TAG_SIZE;
uint8_t tag_computed[POLY1305_TAG_SIZE];
chacha20poly1305_ctx ctx;
uint8_t tag_computed[POLY1305_TAG_SIZE] = {0};
chacha20poly1305_ctx ctx = {0};
rfc7539_init(&ctx, cached_dek, iv);
rfc7539_auth(&ctx, (const uint8_t *)&key, sizeof(key));
chacha20poly1305_decrypt(&ctx, ciphertext, (uint8_t *)val_dest, *len);
@ -1007,7 +1008,7 @@ static secbool storage_set_encrypted(const uint16_t key, const void *val,
}
// Write the IV to the flash.
uint8_t buffer[CHACHA20_BLOCK_SIZE];
uint8_t buffer[CHACHA20_BLOCK_SIZE] = {0};
random_buffer(buffer, CHACHA20_IV_SIZE);
uint16_t offset = 0;
if (sectrue != norcow_update_bytes(key, offset, buffer, CHACHA20_IV_SIZE)) {
@ -1016,10 +1017,10 @@ static secbool storage_set_encrypted(const uint16_t key, const void *val,
offset += CHACHA20_IV_SIZE + POLY1305_TAG_SIZE;
// Encrypt all blocks except for the last one.
chacha20poly1305_ctx ctx;
chacha20poly1305_ctx ctx = {0};
rfc7539_init(&ctx, cached_dek, buffer);
rfc7539_auth(&ctx, (const uint8_t *)&key, sizeof(key));
size_t i;
size_t i = 0;
for (i = 0; i + CHACHA20_BLOCK_SIZE < len;
i += CHACHA20_BLOCK_SIZE, offset += CHACHA20_BLOCK_SIZE) {
chacha20poly1305_encrypt(&ctx, ((const uint8_t *)val) + i, buffer,
@ -1092,7 +1093,7 @@ secbool storage_set_counter(const uint16_t key, const uint32_t count) {
// The count is stored as a 32-bit integer followed by a tail of "1" bits,
// which is used as a tally.
uint32_t value[1 + COUNTER_TAIL_WORDS];
uint32_t value[1 + COUNTER_TAIL_WORDS] = {0};
memset(value, 0xff, sizeof(value));
value[0] = count;
return storage_set(key, value, sizeof(value));
@ -1143,7 +1144,7 @@ secbool storage_has_pin(void) {
}
const void *val = NULL;
uint16_t len;
uint16_t len = 0;
if (sectrue != norcow_get(PIN_NOT_SET_KEY, &val, &len) ||
(len > 0 && *(uint8_t *)val != FALSE_BYTE)) {
return secfalse;
@ -1206,7 +1207,7 @@ static void __handle_fault(const char *msg, const char *file, int line,
// We use the PIN fail counter as a fault counter. Increment the counter,
// check that it was incremented and halt.
in_progress = sectrue;
uint32_t ctr;
uint32_t ctr = 0;
if (sectrue != pin_get_fails(&ctr)) {
storage_wipe();
__fatal_error("Fault detected", msg, file, line, func);
@ -1217,7 +1218,7 @@ static void __handle_fault(const char *msg, const char *file, int line,
__fatal_error("Fault detected", msg, file, line, func);
}
uint32_t ctr_new;
uint32_t ctr_new = 0;
if (sectrue != pin_get_fails(&ctr_new) || ctr + 1 != ctr_new) {
storage_wipe();
}
@ -1298,7 +1299,7 @@ static secbool storage_upgrade(void) {
continue;
}
secbool ret;
secbool ret = secfalse;
if (((key >> 8) & FLAG_PUBLIC) != 0) {
ret = norcow_set(key, val, len);
} else {