1
0
mirror of https://github.com/trezor/trezor-firmware.git synced 2024-11-21 15:08:12 +00:00

refactor(crypto): download ripemd160 implementation

This commit is contained in:
Ondřej Vejpustek 2024-09-01 18:47:45 +02:00
parent 732e21443d
commit 3167684d08
2 changed files with 342 additions and 339 deletions

View File

@ -1,343 +1,345 @@
/*
* RIPE MD-160 implementation
*
* Copyright (C) 2006-2015, ARM Limited, All Rights Reserved
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License"); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* This file is part of mbed TLS (https://tls.mbed.org)
*/
#define _RIPEMD160_C_ 1
#include "ripemd160.h"
#include <assert.h>
#define NDEBUG
// adapted by Pieter Wuille in 2012; all changes are in the public domain
/*
* The RIPEMD-160 algorithm was designed by RIPE in 1996
* http://homes.esat.kuleuven.be/~bosselae/ripemd160.html
* http://ehash.iaik.tugraz.at/wiki/RIPEMD-160
*
* RIPEMD160.c : RIPEMD-160 implementation
*
* Written in 2008 by Dwayne C. Litzenberger <dlitz@dlitz.net>
*
* ===================================================================
* The contents of this file are dedicated to the public domain. To
* the extent that dedication to the public domain is not available,
* everyone is granted a worldwide, perpetual, royalty-free,
* non-exclusive license to exercise all rights associated with the
* contents of this file for any purpose whatsoever.
* No rights are reserved.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
* ===================================================================
*
* Country of origin: Canada
*
* This implementation (written in C) is based on an implementation the author
* wrote in Python.
*
* This implementation was written with reference to the RIPEMD-160
* specification, which is available at:
* http://homes.esat.kuleuven.be/~cosicart/pdf/AB-9601/
*
* It is also documented in the _Handbook of Applied Cryptography_, as
* Algorithm 9.55. It's on page 30 of the following PDF file:
* http://www.cacr.math.uwaterloo.ca/hac/about/chap9.pdf
*
* The RIPEMD-160 specification doesn't really tell us how to do padding, but
* since RIPEMD-160 is inspired by MD4, you can use the padding algorithm from
* RFC 1320.
*
* According to http://www.users.zetnet.co.uk/hopwood/crypto/scan/md.html:
* "RIPEMD-160 is big-bit-endian, little-byte-endian, and left-justified."
*/
#include <stdint.h>
#include <string.h>
#include "ripemd160.h"
#include "memzero.h"
#define RIPEMD160_DIGEST_SIZE 20
#define BLOCK_SIZE 64
/*
* 32-bit integer manipulation macros (little endian)
/* cyclic left-shift the 32-bit word n left by s bits */
#define ROL(s, n) (((n) << (s)) | ((n) >> (32-(s))))
/* Initial values for the chaining variables.
* This is just 0123456789ABCDEFFEDCBA9876543210F0E1D2C3 in little-endian. */
static const uint32_t initial_h[5] = { 0x67452301u, 0xEFCDAB89u, 0x98BADCFEu, 0x10325476u, 0xC3D2E1F0u };
/* Ordering of message words. Based on the permutations rho(i) and pi(i), defined as follows:
*
* rho(i) := { 7, 4, 13, 1, 10, 6, 15, 3, 12, 0, 9, 5, 2, 14, 11, 8 }[i] 0 <= i <= 15
*
* pi(i) := 9*i + 5 (mod 16)
*
* Line | Round 1 | Round 2 | Round 3 | Round 4 | Round 5
* -------+-----------+-----------+-----------+-----------+-----------
* left | id | rho | rho^2 | rho^3 | rho^4
* right | pi | rho pi | rho^2 pi | rho^3 pi | rho^4 pi
*/
#ifndef GET_UINT32_LE
#define GET_UINT32_LE(n,b,i) \
{ \
(n) = ( (uint32_t) (b)[(i) ] ) \
| ( (uint32_t) (b)[(i) + 1] << 8 ) \
| ( (uint32_t) (b)[(i) + 2] << 16 ) \
| ( (uint32_t) (b)[(i) + 3] << 24 ); \
}
#endif
#ifndef PUT_UINT32_LE
#define PUT_UINT32_LE(n,b,i) \
{ \
(b)[(i) ] = (uint8_t) ( ( (n) ) & 0xFF ); \
(b)[(i) + 1] = (uint8_t) ( ( (n) >> 8 ) & 0xFF ); \
(b)[(i) + 2] = (uint8_t) ( ( (n) >> 16 ) & 0xFF ); \
(b)[(i) + 3] = (uint8_t) ( ( (n) >> 24 ) & 0xFF ); \
}
#endif
/* Left line */
static const uint8_t RL[5][16] = {
{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 }, /* Round 1: id */
{ 7, 4, 13, 1, 10, 6, 15, 3, 12, 0, 9, 5, 2, 14, 11, 8 }, /* Round 2: rho */
{ 3, 10, 14, 4, 9, 15, 8, 1, 2, 7, 0, 6, 13, 11, 5, 12 }, /* Round 3: rho^2 */
{ 1, 9, 11, 10, 0, 8, 12, 4, 13, 3, 7, 15, 14, 5, 6, 2 }, /* Round 4: rho^3 */
{ 4, 0, 5, 9, 7, 12, 2, 10, 14, 1, 3, 8, 11, 6, 15, 13 } /* Round 5: rho^4 */
};
/*
* RIPEMD-160 context setup
*/
void ripemd160_Init(RIPEMD160_CTX *ctx)
{
memzero(ctx, sizeof(RIPEMD160_CTX));
ctx->total[0] = 0;
ctx->total[1] = 0;
ctx->state[0] = 0x67452301;
ctx->state[1] = 0xEFCDAB89;
ctx->state[2] = 0x98BADCFE;
ctx->state[3] = 0x10325476;
ctx->state[4] = 0xC3D2E1F0;
}
#if !defined(MBEDTLS_RIPEMD160_PROCESS_ALT)
/*
* Process one block
*/
void ripemd160_process( RIPEMD160_CTX *ctx, const uint8_t data[RIPEMD160_BLOCK_LENGTH] )
{
uint32_t A = 0, B = 0, C = 0, D = 0, E = 0, Ap = 0, Bp = 0, Cp = 0, Dp = 0, Ep = 0, X[16] = {0};
GET_UINT32_LE( X[ 0], data, 0 );
GET_UINT32_LE( X[ 1], data, 4 );
GET_UINT32_LE( X[ 2], data, 8 );
GET_UINT32_LE( X[ 3], data, 12 );
GET_UINT32_LE( X[ 4], data, 16 );
GET_UINT32_LE( X[ 5], data, 20 );
GET_UINT32_LE( X[ 6], data, 24 );
GET_UINT32_LE( X[ 7], data, 28 );
GET_UINT32_LE( X[ 8], data, 32 );
GET_UINT32_LE( X[ 9], data, 36 );
GET_UINT32_LE( X[10], data, 40 );
GET_UINT32_LE( X[11], data, 44 );
GET_UINT32_LE( X[12], data, 48 );
GET_UINT32_LE( X[13], data, 52 );
GET_UINT32_LE( X[14], data, 56 );
GET_UINT32_LE( X[15], data, 60 );
A = Ap = ctx->state[0];
B = Bp = ctx->state[1];
C = Cp = ctx->state[2];
D = Dp = ctx->state[3];
E = Ep = ctx->state[4];
#define F1( x, y, z ) ( x ^ y ^ z )
#define F2( x, y, z ) ( ( x & y ) | ( ~x & z ) )
#define F3( x, y, z ) ( ( x | ~y ) ^ z )
#define F4( x, y, z ) ( ( x & z ) | ( y & ~z ) )
#define F5( x, y, z ) ( x ^ ( y | ~z ) )
#define S( x, n ) ( ( x << n ) | ( x >> (32 - n) ) )
#define P( a, b, c, d, e, r, s, f, k ) \
a += f( b, c, d ) + X[r] + k; \
a = S( a, s ) + e; \
c = S( c, 10 );
#define P2( a, b, c, d, e, r, s, rp, sp ) \
P( a, b, c, d, e, r, s, F, K ); \
P( a ## p, b ## p, c ## p, d ## p, e ## p, rp, sp, Fp, Kp );
#define F F1
#define K 0x00000000
#define Fp F5
#define Kp 0x50A28BE6
P2( A, B, C, D, E, 0, 11, 5, 8 );
P2( E, A, B, C, D, 1, 14, 14, 9 );
P2( D, E, A, B, C, 2, 15, 7, 9 );
P2( C, D, E, A, B, 3, 12, 0, 11 );
P2( B, C, D, E, A, 4, 5, 9, 13 );
P2( A, B, C, D, E, 5, 8, 2, 15 );
P2( E, A, B, C, D, 6, 7, 11, 15 );
P2( D, E, A, B, C, 7, 9, 4, 5 );
P2( C, D, E, A, B, 8, 11, 13, 7 );
P2( B, C, D, E, A, 9, 13, 6, 7 );
P2( A, B, C, D, E, 10, 14, 15, 8 );
P2( E, A, B, C, D, 11, 15, 8, 11 );
P2( D, E, A, B, C, 12, 6, 1, 14 );
P2( C, D, E, A, B, 13, 7, 10, 14 );
P2( B, C, D, E, A, 14, 9, 3, 12 );
P2( A, B, C, D, E, 15, 8, 12, 6 );
#undef F
#undef K
#undef Fp
#undef Kp
#define F F2
#define K 0x5A827999
#define Fp F4
#define Kp 0x5C4DD124
P2( E, A, B, C, D, 7, 7, 6, 9 );
P2( D, E, A, B, C, 4, 6, 11, 13 );
P2( C, D, E, A, B, 13, 8, 3, 15 );
P2( B, C, D, E, A, 1, 13, 7, 7 );
P2( A, B, C, D, E, 10, 11, 0, 12 );
P2( E, A, B, C, D, 6, 9, 13, 8 );
P2( D, E, A, B, C, 15, 7, 5, 9 );
P2( C, D, E, A, B, 3, 15, 10, 11 );
P2( B, C, D, E, A, 12, 7, 14, 7 );
P2( A, B, C, D, E, 0, 12, 15, 7 );
P2( E, A, B, C, D, 9, 15, 8, 12 );
P2( D, E, A, B, C, 5, 9, 12, 7 );
P2( C, D, E, A, B, 2, 11, 4, 6 );
P2( B, C, D, E, A, 14, 7, 9, 15 );
P2( A, B, C, D, E, 11, 13, 1, 13 );
P2( E, A, B, C, D, 8, 12, 2, 11 );
#undef F
#undef K
#undef Fp
#undef Kp
#define F F3
#define K 0x6ED9EBA1
#define Fp F3
#define Kp 0x6D703EF3
P2( D, E, A, B, C, 3, 11, 15, 9 );
P2( C, D, E, A, B, 10, 13, 5, 7 );
P2( B, C, D, E, A, 14, 6, 1, 15 );
P2( A, B, C, D, E, 4, 7, 3, 11 );
P2( E, A, B, C, D, 9, 14, 7, 8 );
P2( D, E, A, B, C, 15, 9, 14, 6 );
P2( C, D, E, A, B, 8, 13, 6, 6 );
P2( B, C, D, E, A, 1, 15, 9, 14 );
P2( A, B, C, D, E, 2, 14, 11, 12 );
P2( E, A, B, C, D, 7, 8, 8, 13 );
P2( D, E, A, B, C, 0, 13, 12, 5 );
P2( C, D, E, A, B, 6, 6, 2, 14 );
P2( B, C, D, E, A, 13, 5, 10, 13 );
P2( A, B, C, D, E, 11, 12, 0, 13 );
P2( E, A, B, C, D, 5, 7, 4, 7 );
P2( D, E, A, B, C, 12, 5, 13, 5 );
#undef F
#undef K
#undef Fp
#undef Kp
#define F F4
#define K 0x8F1BBCDC
#define Fp F2
#define Kp 0x7A6D76E9
P2( C, D, E, A, B, 1, 11, 8, 15 );
P2( B, C, D, E, A, 9, 12, 6, 5 );
P2( A, B, C, D, E, 11, 14, 4, 8 );
P2( E, A, B, C, D, 10, 15, 1, 11 );
P2( D, E, A, B, C, 0, 14, 3, 14 );
P2( C, D, E, A, B, 8, 15, 11, 14 );
P2( B, C, D, E, A, 12, 9, 15, 6 );
P2( A, B, C, D, E, 4, 8, 0, 14 );
P2( E, A, B, C, D, 13, 9, 5, 6 );
P2( D, E, A, B, C, 3, 14, 12, 9 );
P2( C, D, E, A, B, 7, 5, 2, 12 );
P2( B, C, D, E, A, 15, 6, 13, 9 );
P2( A, B, C, D, E, 14, 8, 9, 12 );
P2( E, A, B, C, D, 5, 6, 7, 5 );
P2( D, E, A, B, C, 6, 5, 10, 15 );
P2( C, D, E, A, B, 2, 12, 14, 8 );
#undef F
#undef K
#undef Fp
#undef Kp
#define F F5
#define K 0xA953FD4E
#define Fp F1
#define Kp 0x00000000
P2( B, C, D, E, A, 4, 9, 12, 8 );
P2( A, B, C, D, E, 0, 15, 15, 5 );
P2( E, A, B, C, D, 5, 5, 10, 12 );
P2( D, E, A, B, C, 9, 11, 4, 9 );
P2( C, D, E, A, B, 7, 6, 1, 12 );
P2( B, C, D, E, A, 12, 8, 5, 5 );
P2( A, B, C, D, E, 2, 13, 8, 14 );
P2( E, A, B, C, D, 10, 12, 7, 6 );
P2( D, E, A, B, C, 14, 5, 6, 8 );
P2( C, D, E, A, B, 1, 12, 2, 13 );
P2( B, C, D, E, A, 3, 13, 13, 6 );
P2( A, B, C, D, E, 8, 14, 14, 5 );
P2( E, A, B, C, D, 11, 11, 0, 15 );
P2( D, E, A, B, C, 6, 8, 3, 13 );
P2( C, D, E, A, B, 15, 5, 9, 11 );
P2( B, C, D, E, A, 13, 6, 11, 11 );
#undef F
#undef K
#undef Fp
#undef Kp
C = ctx->state[1] + C + Dp;
ctx->state[1] = ctx->state[2] + D + Ep;
ctx->state[2] = ctx->state[3] + E + Ap;
ctx->state[3] = ctx->state[4] + A + Bp;
ctx->state[4] = ctx->state[0] + B + Cp;
ctx->state[0] = C;
}
#endif /* !MBEDTLS_RIPEMD160_PROCESS_ALT */
/*
* RIPEMD-160 process buffer
*/
void ripemd160_Update( RIPEMD160_CTX *ctx, const uint8_t *input, uint32_t ilen )
{
uint32_t fill = 0;
uint32_t left = 0;
if( ilen == 0 )
return;
left = ctx->total[0] & 0x3F;
fill = RIPEMD160_BLOCK_LENGTH - left;
ctx->total[0] += (uint32_t) ilen;
ctx->total[0] &= 0xFFFFFFFF;
if( ctx->total[0] < (uint32_t) ilen )
ctx->total[1]++;
if( left && ilen >= fill )
{
memcpy( (void *) (ctx->buffer + left), input, fill );
ripemd160_process( ctx, ctx->buffer );
input += fill;
ilen -= fill;
left = 0;
}
while( ilen >= RIPEMD160_BLOCK_LENGTH )
{
ripemd160_process( ctx, input );
input += RIPEMD160_BLOCK_LENGTH;
ilen -= RIPEMD160_BLOCK_LENGTH;
}
if( ilen > 0 )
{
memcpy( (void *) (ctx->buffer + left), input, ilen );
}
}
static const uint8_t ripemd160_padding[RIPEMD160_BLOCK_LENGTH] =
{
0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
/* Right line */
static const uint8_t RR[5][16] = {
{ 5, 14, 7, 0, 9, 2, 11, 4, 13, 6, 15, 8, 1, 10, 3, 12 }, /* Round 1: pi */
{ 6, 11, 3, 7, 0, 13, 5, 10, 14, 15, 8, 12, 4, 9, 1, 2 }, /* Round 2: rho pi */
{ 15, 5, 1, 3, 7, 14, 6, 9, 11, 8, 12, 2, 10, 0, 4, 13 }, /* Round 3: rho^2 pi */
{ 8, 6, 4, 1, 3, 11, 15, 0, 5, 12, 2, 13, 9, 7, 10, 14 }, /* Round 4: rho^3 pi */
{ 12, 15, 10, 4, 1, 5, 8, 7, 6, 2, 13, 14, 0, 3, 9, 11 } /* Round 5: rho^4 pi */
};
/*
* RIPEMD-160 final digest
* Shifts - Since we don't actually re-order the message words according to
* the permutations above (we could, but it would be slower), these tables
* come with the permutations pre-applied.
*/
void ripemd160_Final( RIPEMD160_CTX *ctx, uint8_t output[RIPEMD160_DIGEST_LENGTH] )
/* Shifts, left line */
static const uint8_t SL[5][16] = {
{ 11, 14, 15, 12, 5, 8, 7, 9, 11, 13, 14, 15, 6, 7, 9, 8 }, /* Round 1 */
{ 7, 6, 8, 13, 11, 9, 7, 15, 7, 12, 15, 9, 11, 7, 13, 12 }, /* Round 2 */
{ 11, 13, 6, 7, 14, 9, 13, 15, 14, 8, 13, 6, 5, 12, 7, 5 }, /* Round 3 */
{ 11, 12, 14, 15, 14, 15, 9, 8, 9, 14, 5, 6, 8, 6, 5, 12 }, /* Round 4 */
{ 9, 15, 5, 11, 6, 8, 13, 12, 5, 12, 13, 14, 11, 8, 5, 6 } /* Round 5 */
};
/* Shifts, right line */
static const uint8_t SR[5][16] = {
{ 8, 9, 9, 11, 13, 15, 15, 5, 7, 7, 8, 11, 14, 14, 12, 6 }, /* Round 1 */
{ 9, 13, 15, 7, 12, 8, 9, 11, 7, 7, 12, 7, 6, 15, 13, 11 }, /* Round 2 */
{ 9, 7, 15, 11, 8, 6, 6, 14, 12, 13, 5, 14, 13, 13, 7, 5 }, /* Round 3 */
{ 15, 5, 8, 11, 14, 14, 6, 14, 6, 9, 12, 9, 12, 5, 15, 8 }, /* Round 4 */
{ 8, 5, 12, 9, 12, 5, 14, 6, 8, 13, 6, 5, 15, 13, 11, 11 } /* Round 5 */
};
/* Boolean functions */
#define F1(x, y, z) ((x) ^ (y) ^ (z))
#define F2(x, y, z) (((x) & (y)) | (~(x) & (z)))
#define F3(x, y, z) (((x) | ~(y)) ^ (z))
#define F4(x, y, z) (((x) & (z)) | ((y) & ~(z)))
#define F5(x, y, z) ((x) ^ ((y) | ~(z)))
/* Round constants, left line */
static const uint32_t KL[5] = {
0x00000000u, /* Round 1: 0 */
0x5A827999u, /* Round 2: floor(2**30 * sqrt(2)) */
0x6ED9EBA1u, /* Round 3: floor(2**30 * sqrt(3)) */
0x8F1BBCDCu, /* Round 4: floor(2**30 * sqrt(5)) */
0xA953FD4Eu /* Round 5: floor(2**30 * sqrt(7)) */
};
/* Round constants, right line */
static const uint32_t KR[5] = {
0x50A28BE6u, /* Round 1: floor(2**30 * cubert(2)) */
0x5C4DD124u, /* Round 2: floor(2**30 * cubert(3)) */
0x6D703EF3u, /* Round 3: floor(2**30 * cubert(5)) */
0x7A6D76E9u, /* Round 4: floor(2**30 * cubert(7)) */
0x00000000u /* Round 5: 0 */
};
void ripemd160_init(ripemd160_state *self)
{
uint32_t last = 0; uint32_t padn = 0;
uint32_t high = 0; uint32_t low = 0;
uint8_t msglen[8] = {0};
high = ( ctx->total[0] >> 29 )
| ( ctx->total[1] << 3 );
low = ( ctx->total[0] << 3 );
PUT_UINT32_LE( low, msglen, 0 );
PUT_UINT32_LE( high, msglen, 4 );
last = ctx->total[0] & 0x3F;
padn = ( last < 56 ) ? ( 56 - last ) : ( 120 - last );
ripemd160_Update( ctx, ripemd160_padding, padn );
ripemd160_Update( ctx, msglen, 8 );
PUT_UINT32_LE( ctx->state[0], output, 0 );
PUT_UINT32_LE( ctx->state[1], output, 4 );
PUT_UINT32_LE( ctx->state[2], output, 8 );
PUT_UINT32_LE( ctx->state[3], output, 12 );
PUT_UINT32_LE( ctx->state[4], output, 16 );
memzero(ctx, sizeof(RIPEMD160_CTX));
memcpy(self->h, initial_h, RIPEMD160_DIGEST_SIZE);
memset(&self->buf, 0, sizeof(self->buf));
self->length = 0;
self->bufpos = 0;
}
/*
* output = RIPEMD-160( input buffer )
*/
void ripemd160(const uint8_t *msg, uint32_t msg_len, uint8_t hash[RIPEMD160_DIGEST_LENGTH])
static inline void byteswap32(uint32_t *v)
{
RIPEMD160_CTX ctx = {0};
ripemd160_Init( &ctx );
ripemd160_Update( &ctx, msg, msg_len );
ripemd160_Final( &ctx, hash );
union { uint32_t w; uint8_t b[4]; } x, y;
x.w = *v;
y.b[0] = x.b[3];
y.b[1] = x.b[2];
y.b[2] = x.b[1];
y.b[3] = x.b[0];
*v = y.w;
/* Wipe temporary variables */
x.w = y.w = 0;
}
static inline void byteswap_digest(uint32_t *p)
{
unsigned int i;
for (i = 0; i < 4; i++) {
byteswap32(p++);
byteswap32(p++);
byteswap32(p++);
byteswap32(p++);
}
}
/* The RIPEMD160 compression function. Operates on self->buf */
static void ripemd160_compress(ripemd160_state *self)
{
uint8_t w, round;
uint32_t T;
uint32_t AL, BL, CL, DL, EL; /* left line */
uint32_t AR, BR, CR, DR, ER; /* right line */
/* Sanity check */
assert(self->bufpos == 64);
/* Byte-swap the buffer if we're on a big-endian machine */
#ifdef PCT_BIG_ENDIAN
byteswap_digest(self->buf.w);
#endif
/* Load the left and right lines with the initial state */
AL = AR = self->h[0];
BL = BR = self->h[1];
CL = CR = self->h[2];
DL = DR = self->h[3];
EL = ER = self->h[4];
/* Round 1 */
round = 0;
for (w = 0; w < 16; w++) { /* left line */
T = ROL(SL[round][w], AL + F1(BL, CL, DL) + self->buf.w[RL[round][w]] + KL[round]) + EL;
AL = EL; EL = DL; DL = ROL(10, CL); CL = BL; BL = T;
}
for (w = 0; w < 16; w++) { /* right line */
T = ROL(SR[round][w], AR + F5(BR, CR, DR) + self->buf.w[RR[round][w]] + KR[round]) + ER;
AR = ER; ER = DR; DR = ROL(10, CR); CR = BR; BR = T;
}
/* Round 2 */
round++;
for (w = 0; w < 16; w++) { /* left line */
T = ROL(SL[round][w], AL + F2(BL, CL, DL) + self->buf.w[RL[round][w]] + KL[round]) + EL;
AL = EL; EL = DL; DL = ROL(10, CL); CL = BL; BL = T;
}
for (w = 0; w < 16; w++) { /* right line */
T = ROL(SR[round][w], AR + F4(BR, CR, DR) + self->buf.w[RR[round][w]] + KR[round]) + ER;
AR = ER; ER = DR; DR = ROL(10, CR); CR = BR; BR = T;
}
/* Round 3 */
round++;
for (w = 0; w < 16; w++) { /* left line */
T = ROL(SL[round][w], AL + F3(BL, CL, DL) + self->buf.w[RL[round][w]] + KL[round]) + EL;
AL = EL; EL = DL; DL = ROL(10, CL); CL = BL; BL = T;
}
for (w = 0; w < 16; w++) { /* right line */
T = ROL(SR[round][w], AR + F3(BR, CR, DR) + self->buf.w[RR[round][w]] + KR[round]) + ER;
AR = ER; ER = DR; DR = ROL(10, CR); CR = BR; BR = T;
}
/* Round 4 */
round++;
for (w = 0; w < 16; w++) { /* left line */
T = ROL(SL[round][w], AL + F4(BL, CL, DL) + self->buf.w[RL[round][w]] + KL[round]) + EL;
AL = EL; EL = DL; DL = ROL(10, CL); CL = BL; BL = T;
}
for (w = 0; w < 16; w++) { /* right line */
T = ROL(SR[round][w], AR + F2(BR, CR, DR) + self->buf.w[RR[round][w]] + KR[round]) + ER;
AR = ER; ER = DR; DR = ROL(10, CR); CR = BR; BR = T;
}
/* Round 5 */
round++;
for (w = 0; w < 16; w++) { /* left line */
T = ROL(SL[round][w], AL + F5(BL, CL, DL) + self->buf.w[RL[round][w]] + KL[round]) + EL;
AL = EL; EL = DL; DL = ROL(10, CL); CL = BL; BL = T;
}
for (w = 0; w < 16; w++) { /* right line */
T = ROL(SR[round][w], AR + F1(BR, CR, DR) + self->buf.w[RR[round][w]] + KR[round]) + ER;
AR = ER; ER = DR; DR = ROL(10, CR); CR = BR; BR = T;
}
/* Final mixing stage */
T = self->h[1] + CL + DR;
self->h[1] = self->h[2] + DL + ER;
self->h[2] = self->h[3] + EL + AR;
self->h[3] = self->h[4] + AL + BR;
self->h[4] = self->h[0] + BL + CR;
self->h[0] = T;
/* Clear the buffer and wipe the temporary variables */
T = AL = BL = CL = DL = EL = AR = BR = CR = DR = ER = 0;
memset(&self->buf, 0, sizeof(self->buf));
self->bufpos = 0;
}
void ripemd160_process(ripemd160_state *self, const unsigned char *p, unsigned long length)
{
unsigned long bytes_needed;
/* Some assertions */
assert(p != NULL && length >= 0);
/* We never leave a full buffer */
assert(self->bufpos < 64);
while (length > 0) {
/* Figure out how many bytes we need to fill the internal buffer. */
bytes_needed = 64 - self->bufpos;
if ((unsigned long) length >= bytes_needed) {
/* We have enough bytes, so copy them into the internal buffer and run
* the compression function. */
memcpy(&self->buf.b[self->bufpos], p, bytes_needed);
self->bufpos += bytes_needed;
self->length += bytes_needed << 3; /* length is in bits */
p += bytes_needed;
ripemd160_compress(self);
length -= bytes_needed;
continue;
}
/* We do not have enough bytes to fill the internal buffer.
* Copy what's there and return. */
memcpy(&self->buf.b[self->bufpos], p, length);
self->bufpos += length;
self->length += length << 3; /* length is in bits */
return;
}
}
void ripemd160_done(ripemd160_state *self, unsigned char *out)
{
/* Append the padding */
self->buf.b[self->bufpos++] = 0x80;
if (self->bufpos > 56) {
self->bufpos = 64;
ripemd160_compress(self);
}
/* Append the length */
self->buf.w[14] = (uint32_t) (self->length & 0xFFFFffffu);
self->buf.w[15] = (uint32_t) ((self->length >> 32) & 0xFFFFffffu);
#ifdef PCT_BIG_ENDIAN
byteswap32(&self->buf.w[14]);
byteswap32(&self->buf.w[15]);
#endif
self->bufpos = 64;
ripemd160_compress(self);
/* Copy the final state into the output buffer */
#ifdef PCT_BIG_ENDIAN
byteswap_digest(self->h);
#endif
memcpy(out, &self->h, RIPEMD160_DIGEST_SIZE);
}
void ripemd160(const void* in, unsigned long length, void* out)
{
ripemd160_state md;
ripemd160_init(&md);
ripemd160_process(&md, in, length);
ripemd160_done(&md, out);
}

View File

@ -1,22 +1,23 @@
#ifndef __RIPEMD160_H__
#define __RIPEMD160_H__
#ifndef _RIPEMD160_H_
#define _RIPEMD160_H_
#include <stdint.h>
#define RIPEMD160_BLOCK_LENGTH 64
#define RIPEMD160_DIGEST_LENGTH 20
typedef struct {
uint64_t length;
union {
uint32_t w[16];
uint8_t b[64];
} buf;
uint32_t h[5];
uint8_t bufpos;
} ripemd160_state;
typedef struct _RIPEMD160_CTX {
uint32_t total[2]; /*!< number of bytes processed */
uint32_t state[5]; /*!< intermediate digest state */
uint8_t buffer[RIPEMD160_BLOCK_LENGTH]; /*!< data block being processed */
} RIPEMD160_CTX;
void ripemd160_Init(RIPEMD160_CTX *ctx);
void ripemd160_Update(RIPEMD160_CTX *ctx, const uint8_t *input, uint32_t ilen);
void ripemd160_Final(RIPEMD160_CTX *ctx,
uint8_t output[RIPEMD160_DIGEST_LENGTH]);
void ripemd160(const uint8_t *msg, uint32_t msg_len,
uint8_t hash[RIPEMD160_DIGEST_LENGTH]);
#ifndef _RIPEMD160_C_
void ripemd160_init(ripemd160_state * md);
void ripemd160_process(ripemd160_state * md, const void *in, unsigned long inlen);
void ripemd160_done(ripemd160_state * md, void *out);
void ripemd160(const void *in, unsigned long inlen, void *out);
#endif
#endif