1
0
mirror of https://github.com/trezor/trezor-firmware.git synced 2025-01-21 04:41:18 +00:00

perf(core): optimize i2c initialization on U5 by statically defining timing constant

[no changelog]
This commit is contained in:
tychovrahe 2023-12-17 22:52:10 +01:00 committed by TychoVrahe
parent b3d1ba25d9
commit 30edad0151

View File

@ -44,296 +44,12 @@ i2c_instance_t i2c_defs[I2C_COUNT] = {
};
#ifndef I2C_VALID_TIMING_NBR
#define I2C_VALID_TIMING_NBR 128U
#endif /* I2C_VALID_TIMING_NBR */
#define I2C_SPEED_FREQ_STANDARD 0U /* 100 kHz */
#define I2C_SPEED_FREQ_FAST 1U /* 400 kHz */
#define I2C_SPEED_FREQ_FAST_PLUS 2U /* 1 MHz */
#define I2C_ANALOG_FILTER_DELAY_MIN 50U /* ns */
#define I2C_ANALOG_FILTER_DELAY_MAX 260U /* ns */
#define I2C_USE_ANALOG_FILTER 1U
#define I2C_DIGITAL_FILTER_COEF 0U
#define I2C_PRESC_MAX 16U
#define I2C_SCLDEL_MAX 16U
#define I2C_SDADEL_MAX 16U
#define I2C_SCLH_MAX 256U
#define I2C_SCLL_MAX 256U
#define SEC2NSEC 1000000000UL
/**
* @}
*/
/** @defgroup STM32U5x9J_DISCOVERY_BUS_Private_Types BUS Private Types
* @{
*/
typedef struct {
uint32_t freq; /* Frequency in Hz */
uint32_t freq_min; /* Minimum frequency in Hz */
uint32_t freq_max; /* Maximum frequency in Hz */
uint32_t hddat_min; /* Minimum data hold time in ns */
uint32_t vddat_max; /* Maximum data valid time in ns */
uint32_t sudat_min; /* Minimum data setup time in ns */
uint32_t lscl_min; /* Minimum low period of the SCL clock in ns */
uint32_t hscl_min; /* Minimum high period of SCL clock in ns */
uint32_t trise; /* Rise time in ns */
uint32_t tfall; /* Fall time in ns */
uint32_t dnf; /* Digital noise filter coefficient */
} I2C_Charac_t;
typedef struct {
uint32_t presc; /* Timing prescaler */
uint32_t tscldel; /* SCL delay */
uint32_t tsdadel; /* SDA delay */
uint32_t sclh; /* SCL high period */
uint32_t scll; /* SCL low period */
} I2C_Timings_t;
static I2C_Timings_t I2c_valid_timing[I2C_VALID_TIMING_NBR];
static uint32_t I2c_valid_timing_nbr = 0;
static const I2C_Charac_t I2C_Charac[] = {
[I2C_SPEED_FREQ_STANDARD] =
{
.freq = 100000,
.freq_min = 80000,
.freq_max = 120000,
.hddat_min = 0,
.vddat_max = 3450,
.sudat_min = 250,
.lscl_min = 4700,
.hscl_min = 4000,
.trise = 640,
.tfall = 20,
.dnf = I2C_DIGITAL_FILTER_COEF,
},
[I2C_SPEED_FREQ_FAST] =
{
.freq = 400000,
.freq_min = 320000,
.freq_max = 480000,
.hddat_min = 0,
.vddat_max = 900,
.sudat_min = 100,
.lscl_min = 1300,
.hscl_min = 600,
.trise = 250,
.tfall = 100,
.dnf = I2C_DIGITAL_FILTER_COEF,
},
[I2C_SPEED_FREQ_FAST_PLUS] =
{
.freq = 1000000,
.freq_min = 800000,
.freq_max = 1200000,
.hddat_min = 0,
.vddat_max = 450,
.sudat_min = 50,
.lscl_min = 500,
.hscl_min = 260,
.trise = 60,
.tfall = 100,
.dnf = I2C_DIGITAL_FILTER_COEF,
},
};
/**
* @brief Compute PRESC, SCLDEL and SDADEL.
* @param clock_src_freq I2C source clock in HZ.
* @param I2C_speed I2C frequency (index).
* @retval None.
*/
static void I2C_Compute_PRESC_SCLDEL_SDADEL(uint32_t clock_src_freq,
uint32_t I2C_speed) {
uint32_t prev_presc = I2C_PRESC_MAX;
uint32_t ti2cclk;
int32_t tsdadel_min;
int32_t tsdadel_max;
int32_t tscldel_min;
uint32_t presc;
uint32_t scldel;
uint32_t sdadel;
uint32_t tafdel_min;
uint32_t tafdel_max;
ti2cclk = (SEC2NSEC + (clock_src_freq / 2U)) / clock_src_freq;
tafdel_min = I2C_ANALOG_FILTER_DELAY_MIN;
tafdel_max = I2C_ANALOG_FILTER_DELAY_MAX;
/* tDNF = DNF x tI2CCLK
tPRESC = (PRESC+1) x tI2CCLK
SDADEL >= {tf +tHD;DAT(min) - tAF(min) - tDNF - [3 x tI2CCLK]} / {tPRESC}
SDADEL <= {tVD;DAT(max) - tr - tAF(max) - tDNF- [4 x tI2CCLK]} / {tPRESC}
*/
tsdadel_min =
(int32_t)I2C_Charac[I2C_speed].tfall +
(int32_t)I2C_Charac[I2C_speed].hddat_min - (int32_t)tafdel_min -
(int32_t)(((int32_t)I2C_Charac[I2C_speed].dnf + 3) * (int32_t)ti2cclk);
tsdadel_max =
(int32_t)I2C_Charac[I2C_speed].vddat_max -
(int32_t)I2C_Charac[I2C_speed].trise - (int32_t)tafdel_max -
(int32_t)(((int32_t)I2C_Charac[I2C_speed].dnf + 4) * (int32_t)ti2cclk);
/* {[tr+ tSU;DAT(min)] / [tPRESC]} - 1 <= SCLDEL */
tscldel_min = (int32_t)I2C_Charac[I2C_speed].trise +
(int32_t)I2C_Charac[I2C_speed].sudat_min;
if (tsdadel_min <= 0) {
tsdadel_min = 0;
}
if (tsdadel_max <= 0) {
tsdadel_max = 0;
}
for (presc = 0; presc < I2C_PRESC_MAX; presc++) {
for (scldel = 0; scldel < I2C_SCLDEL_MAX; scldel++) {
/* TSCLDEL = (SCLDEL+1) * (PRESC+1) * TI2CCLK */
uint32_t tscldel = (scldel + 1U) * (presc + 1U) * ti2cclk;
if (tscldel >= (uint32_t)tscldel_min) {
for (sdadel = 0; sdadel < I2C_SDADEL_MAX; sdadel++) {
/* TSDADEL = SDADEL * (PRESC+1) * TI2CCLK */
uint32_t tsdadel = (sdadel * (presc + 1U)) * ti2cclk;
if ((tsdadel >= (uint32_t)tsdadel_min) &&
(tsdadel <= (uint32_t)tsdadel_max)) {
if (presc != prev_presc) {
I2c_valid_timing[I2c_valid_timing_nbr].presc = presc;
I2c_valid_timing[I2c_valid_timing_nbr].tscldel = scldel;
I2c_valid_timing[I2c_valid_timing_nbr].tsdadel = sdadel;
prev_presc = presc;
I2c_valid_timing_nbr++;
if (I2c_valid_timing_nbr >= I2C_VALID_TIMING_NBR) {
return;
}
}
}
}
}
}
}
}
/**
* @brief Calculate SCLL and SCLH and find best configuration.
* @param clock_src_freq I2C source clock in HZ.
* @param I2C_speed I2C frequency (index).
* @retval config index (0 to I2C_VALID_TIMING_NBR], 0xFFFFFFFF for no valid
* config.
*/
static uint32_t I2C_Compute_SCLL_SCLH(uint32_t clock_src_freq,
uint32_t I2C_speed) {
uint32_t ret = 0xFFFFFFFFU;
uint32_t ti2cclk;
uint32_t ti2cspeed;
uint32_t prev_error;
uint32_t dnf_delay;
uint32_t clk_min;
uint32_t clk_max;
uint32_t scll;
uint32_t sclh;
uint32_t tafdel_min;
ti2cclk = (SEC2NSEC + (clock_src_freq / 2U)) / clock_src_freq;
ti2cspeed = (SEC2NSEC + (I2C_Charac[I2C_speed].freq / 2U)) /
I2C_Charac[I2C_speed].freq;
tafdel_min = I2C_ANALOG_FILTER_DELAY_MIN;
/* tDNF = DNF x tI2CCLK */
dnf_delay = I2C_Charac[I2C_speed].dnf * ti2cclk;
clk_max = SEC2NSEC / I2C_Charac[I2C_speed].freq_min;
clk_min = SEC2NSEC / I2C_Charac[I2C_speed].freq_max;
prev_error = ti2cspeed;
for (uint32_t count = 0; count < I2c_valid_timing_nbr; count++) {
/* tPRESC = (PRESC+1) x tI2CCLK*/
uint32_t tpresc = (I2c_valid_timing[count].presc + 1U) * ti2cclk;
for (scll = 0; scll < I2C_SCLL_MAX; scll++) {
/* tLOW(min) <= tAF(min) + tDNF + 2 x tI2CCLK + [(SCLL+1) x tPRESC ] */
uint32_t tscl_l =
tafdel_min + dnf_delay + (2U * ti2cclk) + ((scll + 1U) * tpresc);
/* The I2CCLK period tI2CCLK must respect the following conditions:
tI2CCLK < (tLOW - tfilters) / 4 and tI2CCLK < tHIGH */
if ((tscl_l > I2C_Charac[I2C_speed].lscl_min) &&
(ti2cclk < ((tscl_l - tafdel_min - dnf_delay) / 4U))) {
for (sclh = 0; sclh < I2C_SCLH_MAX; sclh++) {
/* tHIGH(min) <= tAF(min) + tDNF + 2 x tI2CCLK + [(SCLH+1) x tPRESC]
*/
uint32_t tscl_h =
tafdel_min + dnf_delay + (2U * ti2cclk) + ((sclh + 1U) * tpresc);
/* tSCL = tf + tLOW + tr + tHIGH */
uint32_t tscl = tscl_l + tscl_h + I2C_Charac[I2C_speed].trise +
I2C_Charac[I2C_speed].tfall;
if ((tscl >= clk_min) && (tscl <= clk_max) &&
(tscl_h >= I2C_Charac[I2C_speed].hscl_min) &&
(ti2cclk < tscl_h)) {
int32_t error = (int32_t)tscl - (int32_t)ti2cspeed;
if (error < 0) {
error = -error;
}
/* look for the timings with the lowest clock error */
if ((uint32_t)error < prev_error) {
prev_error = (uint32_t)error;
I2c_valid_timing[count].scll = scll;
I2c_valid_timing[count].sclh = sclh;
ret = count;
}
}
}
}
}
}
return ret;
}
/*
* @brief Compute I2C timing according current I2C clock source and required
* I2C clock.
* @param clock_src_freq I2C clock source in Hz.
* @param i2c_freq Required I2C clock in Hz.
* @retval I2C timing or 0 in case of error.
* Using calculation from STM32CubeMX
* PCLKx as source, assumed 160MHz
* Fast mode, freq = 400kHz, Rise time = 250ns, Fall time = 100ns
*/
static uint32_t I2C_GetTiming(uint32_t clock_src_freq, uint32_t i2c_freq) {
uint32_t ret = 0;
uint32_t speed;
uint32_t idx;
if ((clock_src_freq != 0U) && (i2c_freq != 0U)) {
for (speed = 0; speed <= (uint32_t)I2C_SPEED_FREQ_FAST_PLUS; speed++) {
if ((i2c_freq >= I2C_Charac[speed].freq_min) &&
(i2c_freq <= I2C_Charac[speed].freq_max)) {
I2C_Compute_PRESC_SCLDEL_SDADEL(clock_src_freq, speed);
idx = I2C_Compute_SCLL_SCLH(clock_src_freq, speed);
if (idx < I2C_VALID_TIMING_NBR) {
ret = ((I2c_valid_timing[idx].presc & 0x0FU) << 28) |
((I2c_valid_timing[idx].tscldel & 0x0FU) << 20) |
((I2c_valid_timing[idx].tsdadel & 0x0FU) << 16) |
((I2c_valid_timing[idx].sclh & 0xFFU) << 8) |
((I2c_valid_timing[idx].scll & 0xFFU) << 0);
}
break;
}
}
}
return ret;
}
#define I2C_TIMING_400000_Hz 0x30D2153A
void i2c_init_instance(uint16_t idx, i2c_instance_t *instance) {
if (i2c_handle[idx].Instance) {
@ -358,7 +74,7 @@ void i2c_init_instance(uint16_t idx, i2c_instance_t *instance) {
HAL_GPIO_Init(instance->SdaPort, &GPIO_InitStructure);
i2c_handle[idx].Instance = instance->Instance;
i2c_handle[idx].Init.Timing = I2C_GetTiming(HAL_RCC_GetPCLK1Freq(), 400000);
i2c_handle[idx].Init.Timing = I2C_TIMING_400000_Hz;
i2c_handle[idx].Init.OwnAddress1 = 0xFE; // master
i2c_handle[idx].Init.AddressingMode = I2C_ADDRESSINGMODE_7BIT;
i2c_handle[idx].Init.DualAddressMode = I2C_DUALADDRESS_DISABLE;