1
0
mirror of https://github.com/trezor/trezor-firmware.git synced 2025-01-18 03:10:58 +00:00

Merge pull request #65 from axic/bignum

Bignum: add tests and support little endian mode
This commit is contained in:
Pavol Rusnak 2016-08-26 15:44:04 +02:00 committed by GitHub
commit 2bd84028c5
4 changed files with 406 additions and 0 deletions

View File

@ -4,6 +4,7 @@ Jochen Hoenicke <hoenicke@gmail.com>
Dustin Laurence <dustin@laurences.net>
Ondrej Mikle <ondrej.mikle@nic.cz>
Roman Zeyde <roman.zeyde@gmail.com>
Alex Beregszaszi <alex@rtfs.hu>
netanelkl <netanel.keidar@gmail.com>
Jan Pochyla <jpochyla@gmail.com>
Ondrej Mikle <ondrej.mikle@gmail.com>

View File

@ -2,6 +2,7 @@
* Copyright (c) 2013-2014 Tomas Dzetkulic
* Copyright (c) 2013-2014 Pavol Rusnak
* Copyright (c) 2015 Jochen Hoenicke
* Copyright (c) 2016 Alex Beregszaszi
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the "Software"),
@ -69,6 +70,22 @@ inline void write_be(uint8_t *data, uint32_t x)
data[3] = x;
}
inline uint32_t read_le(const uint8_t *data)
{
return (((uint32_t)data[3]) << 24) |
(((uint32_t)data[2]) << 16) |
(((uint32_t)data[1]) << 8) |
(((uint32_t)data[0]));
}
inline void write_le(uint8_t *data, uint32_t x)
{
data[3] = x >> 24;
data[2] = x >> 16;
data[1] = x >> 8;
data[0] = x;
}
// convert a raw bigendian 256 bit value into a normalized bignum.
// out_number is partly reduced (since it fits in 256 bit).
void bn_read_be(const uint8_t *in_number, bignum256 *out_number)
@ -104,6 +121,80 @@ void bn_write_be(const bignum256 *in_number, uint8_t *out_number)
}
}
// convert a raw little endian 256 bit value into a normalized bignum.
// out_number is partly reduced (since it fits in 256 bit).
void bn_read_le(const uint8_t *in_number, bignum256 *out_number)
{
int i;
uint32_t temp = 0;
for (i = 0; i < 8; i++) {
// invariant: temp = (in_number % 2^(32i)) >> 30i
// get next limb = (in_number % 2^(32(i+1))) >> 32i
uint32_t limb = read_le(in_number + i * 4);
// temp = (in_number % 2^(32(i+1))) << 30i
temp |= limb << (2*i);
// store 30 bits into val[i]
out_number->val[i]= temp & 0x3FFFFFFF;
// prepare temp for next round
temp = limb >> (30 - 2*i);
}
out_number->val[8] = temp;
}
// convert a normalized bignum to a raw little endian 256 bit number.
// in_number must be fully reduced.
void bn_write_le(const bignum256 *in_number, uint8_t *out_number)
{
int i;
uint32_t temp = in_number->val[8] << 16;
for (i = 0; i < 8; i++) {
// invariant: temp = (in_number >> 30*(8-i)) << (16 + 2i)
uint32_t limb = in_number->val[7 - i];
temp |= limb >> (14 - 2*i);
write_le(out_number + (7 - i) * 4, temp);
temp = limb << (18 + 2*i);
}
}
void bn_read_uint32(uint32_t in_number, bignum256 *out_number)
{
out_number->val[0] = in_number & 0x3FFFFFFF;
out_number->val[1] = in_number >> 30;
out_number->val[2] = 0;
out_number->val[3] = 0;
out_number->val[4] = 0;
out_number->val[5] = 0;
out_number->val[6] = 0;
out_number->val[7] = 0;
out_number->val[8] = 0;
}
void bn_read_uint64(uint64_t in_number, bignum256 *out_number)
{
out_number->val[0] = in_number & 0x3FFFFFFF;
out_number->val[1] = (in_number >>= 30) & 0x3FFFFFFF;
out_number->val[2] = in_number >>= 30;
out_number->val[3] = 0;
out_number->val[4] = 0;
out_number->val[5] = 0;
out_number->val[6] = 0;
out_number->val[7] = 0;
out_number->val[8] = 0;
}
// a must be normalized
int bn_bitcount(const bignum256 *a)
{
int i;
for (i = 8; i >= 0; i--) {
int tmp = a->val[i];
if (tmp != 0) {
return i * 30 + (32 - __builtin_clz(tmp));
}
}
return 0;
}
// sets a bignum to zero.
void bn_zero(bignum256 *a)
{

View File

@ -1,6 +1,7 @@
/**
* Copyright (c) 2013-2014 Tomas Dzetkulic
* Copyright (c) 2013-2014 Pavol Rusnak
* Copyright (c) 2016 Alex Beregszaszi
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the "Software"),
@ -39,14 +40,59 @@ uint32_t read_be(const uint8_t *data);
// write 4 big endian bytes
void write_be(uint8_t *data, uint32_t x);
// read 4 little endian bytes into uint32
uint32_t read_le(const uint8_t *data);
// write 4 little endian bytes
void write_le(uint8_t *data, uint32_t x);
void bn_read_be(const uint8_t *in_number, bignum256 *out_number);
void bn_write_be(const bignum256 *in_number, uint8_t *out_number);
void bn_read_le(const uint8_t *in_number, bignum256 *out_number);
void bn_write_le(const bignum256 *in_number, uint8_t *out_number);
void bn_read_uint32(uint32_t in_number, bignum256 *out_number);
void bn_read_uint64(uint64_t in_number, bignum256 *out_number);
static inline uint32_t bn_write_uint32(const bignum256 *in_number)
{
return in_number->val[0] | (in_number->val[1] << 30);
}
static inline uint64_t bn_write_uint64(const bignum256 *in_number)
{
uint64_t tmp;
tmp = in_number->val[2];
tmp <<= 30;
tmp |= in_number->val[1];
tmp <<= 30;
tmp |= in_number->val[0];
return tmp;
}
// copies number a to b
static inline void bn_copy(const bignum256 *a, bignum256 *b) {
*b = *a;
}
int bn_bitcount(const bignum256 *a);
void bn_zero(bignum256 *a);
int bn_is_zero(const bignum256 *a);
static inline int bn_is_even(const bignum256 *a) {
return (a->val[0] & 1) == 0;
}
static inline int bn_is_odd(const bignum256 *a) {
return (a->val[0] & 1) == 1;
}
int bn_is_less(const bignum256 *a, const bignum256 *b);
int bn_is_equal(const bignum256 *a, const bignum256 *b);

268
tests.c
View File

@ -83,6 +83,256 @@ char *tohex(const uint8_t *bin, size_t l)
#define ck_assert_mem_eq(X, Y, L) _ck_assert_mem(X, Y, L, ==)
#define ck_assert_mem_ne(X, Y, L) _ck_assert_mem(X, Y, L, !=)
START_TEST(test_bignum_read_be)
{
bignum256 a;
uint8_t input[32];
memcpy(input, fromhex("c55ece858b0ddd5263f96810fe14437cd3b5e1fbd7c6a2ec1e031f05e86d8bd5"), 32);
bn_read_be(input, &a);
bignum256 b = { { 0x286d8bd5, 0x380c7c17, 0x3c6a2ec1, 0x2d787ef5, 0x14437cd3, 0x25a043f8, 0x1dd5263f, 0x33a162c3, 0x0000c55e } };
for (int i = 0; i < 9; i++) {
ck_assert_int_eq(a.val[i], b.val[i]);
}
}
END_TEST
START_TEST(test_bignum_write_be)
{
bignum256 a = { { 0x286d8bd5, 0x380c7c17, 0x3c6a2ec1, 0x2d787ef5, 0x14437cd3, 0x25a043f8, 0x1dd5263f, 0x33a162c3, 0x0000c55e } };
uint8_t tmp[32];
bn_write_be(&a, tmp);
ck_assert_mem_eq(tmp, fromhex("c55ece858b0ddd5263f96810fe14437cd3b5e1fbd7c6a2ec1e031f05e86d8bd5"), 32);
}
END_TEST
START_TEST(test_bignum_equal)
{
bignum256 a = { { 0x286d8bd5, 0x380c7c17, 0x3c6a2ec1, 0x2d787ef5, 0x14437cd3, 0x25a043f8, 0x1dd5263f, 0x33a162c3, 0x0000c55e } };
bignum256 b = { { 0x286d8bd5, 0x380c7c17, 0x3c6a2ec1, 0x2d787ef5, 0x14437cd3, 0x25a043f8, 0x1dd5263f, 0x33a162c3, 0x0000c55e } };
bignum256 c = { { 0, } };
ck_assert_int_eq(bn_is_equal(&a, &b), 1);
ck_assert_int_eq(bn_is_equal(&c, &c), 1);
ck_assert_int_eq(bn_is_equal(&a, &c), 0);
}
END_TEST
START_TEST(test_bignum_zero)
{
bignum256 a;
bignum256 b;
bn_read_be(fromhex("0000000000000000000000000000000000000000000000000000000000000000"), &a);
bn_zero(&b);
ck_assert_int_eq(bn_is_equal(&a, &b), 1);
}
END_TEST
START_TEST(test_bignum_is_zero)
{
bignum256 a;
bn_read_be(fromhex("0000000000000000000000000000000000000000000000000000000000000000"), &a);
ck_assert_int_eq(bn_is_zero(&a), 1);
bn_read_be(fromhex("0000000000000000000000000000000000000000000000000000000000000001"), &a);
ck_assert_int_eq(bn_is_zero(&a), 0);
bn_read_be(fromhex("1000000000000000000000000000000000000000000000000000000000000000"), &a);
ck_assert_int_eq(bn_is_zero(&a), 0);
bn_read_be(fromhex("f000000000000000000000000000000000000000000000000000000000000000"), &a);
ck_assert_int_eq(bn_is_zero(&a), 0);
}
END_TEST
START_TEST(test_bignum_read_le)
{
bignum256 a;
bignum256 b;
bn_read_be(fromhex("c55ece858b0ddd5263f96810fe14437cd3b5e1fbd7c6a2ec1e031f05e86d8bd5"), &a);
bn_read_le(fromhex("d58b6de8051f031eeca2c6d7fbe1b5d37c4314fe1068f96352dd0d8b85ce5ec5"), &b);
ck_assert_int_eq(bn_is_equal(&a, &b), 1);
}
END_TEST
START_TEST(test_bignum_write_le)
{
bignum256 a;
bignum256 b;
uint8_t tmp[32];
bn_read_be(fromhex("c55ece858b0ddd5263f96810fe14437cd3b5e1fbd7c6a2ec1e031f05e86d8bd5"), &a);
bn_write_le(&a, tmp);
bn_read_le(tmp, &b);
ck_assert_int_eq(bn_is_equal(&a, &b), 1);
bn_read_be(fromhex("d58b6de8051f031eeca2c6d7fbe1b5d37c4314fe1068f96352dd0d8b85ce5ec5"), &a);
bn_read_be(tmp, &b);
ck_assert_int_eq(bn_is_equal(&a, &b), 1);
}
END_TEST
START_TEST(test_bignum_read_uint32)
{
bignum256 a;
bignum256 b;
// lowest 30 bits set
bn_read_be(fromhex("000000000000000000000000000000000000000000000000000000003fffffff"), &a);
bn_read_uint32(0x3fffffff, &b);
ck_assert_int_eq(bn_is_equal(&a, &b), 1);
// bit 31 set
bn_read_be(fromhex("0000000000000000000000000000000000000000000000000000000040000000"), &a);
bn_read_uint32(0x40000000, &b);
ck_assert_int_eq(bn_is_equal(&a, &b), 1);
}
END_TEST
START_TEST(test_bignum_read_uint64)
{
bignum256 a;
bignum256 b;
// lowest 30 bits set
bn_read_be(fromhex("000000000000000000000000000000000000000000000000000000003fffffff"), &a);
bn_read_uint64(0x3fffffff, &b);
ck_assert_int_eq(bn_is_equal(&a, &b), 1);
// bit 31 set
bn_read_be(fromhex("0000000000000000000000000000000000000000000000000000000040000000"), &a);
bn_read_uint64(0x40000000, &b);
ck_assert_int_eq(bn_is_equal(&a, &b), 1);
// bit 33 set
bn_read_be(fromhex("0000000000000000000000000000000000000000000000000000000100000000"), &a);
bn_read_uint64(0x100000000LL, &b);
ck_assert_int_eq(bn_is_equal(&a, &b), 1);
// bit 61 set
bn_read_be(fromhex("0000000000000000000000000000000000000000000000002000000000000000"), &a);
bn_read_uint64(0x2000000000000000LL, &b);
ck_assert_int_eq(bn_is_equal(&a, &b), 1);
// all 64 bits set
bn_read_be(fromhex("000000000000000000000000000000000000000000000000ffffffffffffffff"), &a);
bn_read_uint64(0xffffffffffffffffLL, &b);
ck_assert_int_eq(bn_is_equal(&a, &b), 1);
}
END_TEST
START_TEST(test_bignum_write_uint32)
{
bignum256 a;
// lowest 30 bits set
bn_read_be(fromhex("000000000000000000000000000000000000000000000000000000003fffffff"), &a);
ck_assert_int_eq(bn_write_uint32(&a), 0x3fffffff);
// bit 31 set
bn_read_be(fromhex("0000000000000000000000000000000000000000000000000000000040000000"), &a);
ck_assert_int_eq(bn_write_uint32(&a), 0x40000000);
}
END_TEST
START_TEST(test_bignum_write_uint64)
{
bignum256 a;
// lowest 30 bits set
bn_read_be(fromhex("000000000000000000000000000000000000000000000000000000003fffffff"), &a);
ck_assert_int_eq(bn_write_uint64(&a), 0x3fffffff);
// bit 31 set
bn_read_be(fromhex("0000000000000000000000000000000000000000000000000000000040000000"), &a);
ck_assert_int_eq(bn_write_uint64(&a), 0x40000000);
// bit 33 set
bn_read_be(fromhex("0000000000000000000000000000000000000000000000000000000100000000"), &a);
ck_assert_int_eq(bn_write_uint64(&a), 0x100000000LL);
// bit 61 set
bn_read_be(fromhex("0000000000000000000000000000000000000000000000002000000000000000"), &a);
ck_assert_int_eq(bn_write_uint64(&a), 0x2000000000000000LL);
// all 64 bits set
bn_read_be(fromhex("000000000000000000000000000000000000000000000000ffffffffffffffff"), &a);
ck_assert_int_eq(bn_write_uint64(&a), 0xffffffffffffffffLL);
}
END_TEST
START_TEST(test_bignum_copy)
{
bignum256 a;
bignum256 b;
bn_read_be(fromhex("c55ece858b0ddd5263f96810fe14437cd3b5e1fbd7c6a2ec1e031f05e86d8bd5"), &a);
bn_copy(&a, &b);
ck_assert_int_eq(bn_is_equal(&a, &b), 1);
}
END_TEST
START_TEST(test_bignum_is_even)
{
bignum256 a;
bn_read_be(fromhex("c55ece858b0ddd5263f96810fe14437cd3b5e1fbd7c6a2ec1e031f05e86d8bd5"), &a);
ck_assert_int_eq(bn_is_even(&a), 0);
bn_read_be(fromhex("c55ece858b0ddd5263f96810fe14437cd3b5e1fbd7c6a2ec1e031f05e86d8bd2"), &a);
ck_assert_int_eq(bn_is_even(&a), 1);
bn_read_be(fromhex("c55ece858b0ddd5263f96810fe14437cd3b5e1fbd7c6a2ec1e031f05e86d8bd0"), &a);
ck_assert_int_eq(bn_is_even(&a), 1);
}
END_TEST
START_TEST(test_bignum_is_odd)
{
bignum256 a;
bn_read_be(fromhex("c55ece858b0ddd5263f96810fe14437cd3b5e1fbd7c6a2ec1e031f05e86d8bd5"), &a);
ck_assert_int_eq(bn_is_odd(&a), 1);
bn_read_be(fromhex("c55ece858b0ddd5263f96810fe14437cd3b5e1fbd7c6a2ec1e031f05e86d8bd2"), &a);
ck_assert_int_eq(bn_is_odd(&a), 0);
bn_read_be(fromhex("c55ece858b0ddd5263f96810fe14437cd3b5e1fbd7c6a2ec1e031f05e86d8bd0"), &a);
ck_assert_int_eq(bn_is_odd(&a), 0);
}
END_TEST
START_TEST(test_bignum_bitcount)
{
bignum256 a;
bn_zero(&a);
ck_assert_int_eq(bn_bitcount(&a), 0);
bn_read_uint32(0x3fffffff, &a);
ck_assert_int_eq(bn_bitcount(&a), 30);
bn_read_uint32(0xffffffff, &a);
ck_assert_int_eq(bn_bitcount(&a), 32);
bn_read_be(fromhex("ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff"), &a);
ck_assert_int_eq(bn_bitcount(&a), 256);
}
END_TEST
// from https://github.com/bitcoin/bitcoin/blob/master/src/test/data/base58_keys_valid.json
START_TEST(test_base58)
{
@ -2327,6 +2577,24 @@ Suite *test_suite(void)
Suite *s = suite_create("trezor-crypto");
TCase *tc;
tc = tcase_create("bignum");
tcase_add_test(tc, test_bignum_read_be);
tcase_add_test(tc, test_bignum_write_be);
tcase_add_test(tc, test_bignum_equal);
tcase_add_test(tc, test_bignum_zero);
tcase_add_test(tc, test_bignum_is_zero);
tcase_add_test(tc, test_bignum_read_le);
tcase_add_test(tc, test_bignum_write_le);
tcase_add_test(tc, test_bignum_read_uint32);
tcase_add_test(tc, test_bignum_read_uint64);
tcase_add_test(tc, test_bignum_write_uint32);
tcase_add_test(tc, test_bignum_write_uint64);
tcase_add_test(tc, test_bignum_copy);
tcase_add_test(tc, test_bignum_is_even);
tcase_add_test(tc, test_bignum_is_odd);
tcase_add_test(tc, test_bignum_bitcount);
suite_add_tcase(s, tc);
tc = tcase_create("base58");
tcase_add_test(tc, test_base58);
suite_add_tcase(s, tc);