1
0
mirror of https://github.com/trezor/trezor-firmware.git synced 2025-01-18 11:21:11 +00:00

feat(west): introduce zephyr into firmware monorepo

[no changelog]
This commit is contained in:
tychovrahe 2024-12-15 23:03:17 +01:00
parent e196413bb7
commit 09a894e0b6
62 changed files with 3163 additions and 0 deletions

9
.gitignore vendored
View File

@ -11,3 +11,12 @@ __pycache__/
proto.gv*
.DS_Store
crypto/tests/libtrezor-crypto.so.dSYM/
/west/.west/
/west/bootloader/
/west/modules/
/west/nrf/
/west/nrfxlib/
/west/test/
/west/tools/
/west/zephyr/
/west/trezor/build/

View File

@ -8,6 +8,7 @@ ignore-paths=
crypto,
legacy,
storage,
west,
fail-under=10.0
jobs=0
load-plugins=trezor_pylint_plugin

View File

@ -5,6 +5,7 @@ ignore: |
vendor/
/common/defs/ethereum/chains/
/common/defs/ethereum/tokens/
/west/
rules:
# fix for truthy warning on github action files

View File

@ -3,3 +3,4 @@
^\./crypto/
^\./legacy/
^\./storage/
^\./west/workspace/

View File

@ -0,0 +1,9 @@
# Copyright (c) 2021 Nordic Semiconductor ASA
# SPDX-License-Identifier: Apache-2.0
#
# This CMake file is picked by the Zephyr build system because it is defined
# as the module CMake entry point (see zephyr/module.yml).
zephyr_include_directories(include)

7
west/trezor/Kconfig Normal file
View File

@ -0,0 +1,7 @@
# Copyright (c) 2021 Nordic Semiconductor ASA
# SPDX-License-Identifier: Apache-2.0
#
# This Kconfig file is picked by the Zephyr build system because it is defined
# as the module Kconfig entry point (see zephyr/module.yml). You can browse
# module options by going to Zephyr -> Modules in Kconfig.

72
west/trezor/README.md Normal file
View File

@ -0,0 +1,72 @@
# Trezor BLE Gateway
Welcome to the **Trezor BLE Gateway** project!
This repository contains the source code and instructions to build and flash the application onto the `t3w1_nrf52833` board.
## Table of Contents
- [Prerequisites](#prerequisites)
- [Getting Started](#getting-started)
- [Install the toolchain](#install-the-toolchain)
- [Launch the nRF Shell](#launch-the-nrf-shell)
- [Initialize the Workspace](#initialize-the-workspace)
- [Update nRF Connect SDK Modules](#update-nrf-connect-sdk-modules)
- [Build the Application](#build-the-application)
- [Flash the Application](#flash-the-application)
- [Contributing](#contributing)
- [License](#license)
## Prerequisites
Before you begin, ensure you have met the following requirements:
- **nrfutil**: Install [nrfutil](https://docs.nordicsemi.com/bundle/nrfutil/page/README.html). This tool is essential for managing the nRF Connect SDK and toolchains.
- **Git**: Ensure you have Git installed for cloning repositories.
## Getting Started
Follow these steps to set up the project on your local machine.
### Install the toolchain
Using nrfutil, install the required toolchain for the nRF Connect SDK:
```sh
nrfutil toolchain-manager install --ncs-version v2.6.2
```
### Launch the nRF Shell
First, launch the nRF shell using the `nrfutil` toolchain manager:
```sh
nrfutil toolchain-manager launch --shell
```
### Initialize the Workspace
Initialize your West workspace for the Trezor BLE Gateway project:
```sh
cd west
west init -l ./trezor
```
### Update nRF Connect SDK Modules
Update the modules:
```sh
west update
```
### Building the Application
Build the application for the t3w1_revA_nrf52832 board:
```sh
cd trezor
west build ./trezor-ble -b t3w1_revA_nrf52832
```
### Flashing the Application
Flash the compiled application onto the board:
```sh
west flash
```

View File

@ -0,0 +1,14 @@
# nRF52833 DK NRF52833 board configuration
# Copyright (c) 2019 Nordic Semiconductor ASA
# SPDX-License-Identifier: Apache-2.0
if BOARD_T3W1_D1_NRF52833
config BOARD
default "t3w1_d1_nrf52833"
config BT_CTLR
default BT
endif # BOARD_T3W1_NRF52833

View File

@ -0,0 +1,7 @@
# nRF52833 DK NRF52833 board configuration
# Copyright (c) 2019 Nordic Semiconductor ASA
# SPDX-License-Identifier: Apache-2.0
config BOARD_T3W1_D1_NRF52833
select SOC_NRF52833_QIAA

View File

@ -0,0 +1,12 @@
# Copyright (c) 2021 Nordic Semiconductor ASA
# SPDX-License-Identifier: Apache-2.0
board_runner_args(jlink "--device=nRF52833_xxAA" "--speed=4000")
board_runner_args(pyocd "--target=nrf52833" "--frequency=4000000")
set(OPENOCD_NRF5_SUBFAMILY "nrf52")
include(${ZEPHYR_BASE}/boards/common/nrfjprog.board.cmake)
include(${ZEPHYR_BASE}/boards/common/jlink.board.cmake)
include(${ZEPHYR_BASE}/boards/common/pyocd.board.cmake)
include(${ZEPHYR_BASE}/boards/common/openocd-nrf5.board.cmake)

View File

@ -0,0 +1,8 @@
# Copyright (c) 2024 Nordic Semiconductor ASA
# SPDX-License-Identifier: Apache-2.0
board:
name: t3w1_d1_nrf52833
vendor: vendor
socs:
- name: nrf52833

View File

@ -0,0 +1,7 @@
# Copyright (c) 2024 Nordic Semiconductor
# SPDX-License-Identifier: Apache-2.0
# Suppress "unique_unit_address_if_enabled" to handle the following overlaps:
# - power@40000000 & clock@40000000 & bprot@40000000
# - acl@4001e000 & flash-controller@4001e000
list(APPEND EXTRA_DTC_FLAGS "-Wno-unique_unit_address_if_enabled")

View File

@ -0,0 +1,47 @@
/*
* Copyright (c) 2022 Nordic Semiconductor
* SPDX-License-Identifier: Apache-2.0
*/
&pinctrl {
uart0_default: uart0_default {
group1 {
psels = <NRF_PSEL(UART_TX, 0, 27)>,
<NRF_PSEL(UART_RTS, 0, 8)>;
};
group2 {
psels = <NRF_PSEL(UART_RX, 0, 26)>,
<NRF_PSEL(UART_CTS, 0, 6)>;
bias-pull-up;
};
};
uart0_sleep: uart0_sleep {
group1 {
psels = <NRF_PSEL(UART_TX, 0, 27)>,
<NRF_PSEL(UART_RX, 0, 26)>,
<NRF_PSEL(UART_RTS, 0, 8)>,
<NRF_PSEL(UART_CTS, 0, 6)>;
low-power-enable;
};
};
spi0_default: spi0_default {
group1 {
psels = <NRF_PSEL(SPIM_SCK, 1, 5)>,
<NRF_PSEL(SPIM_MOSI, 0, 19)>,
<NRF_PSEL(SPIM_MISO, 1, 3)>;
};
};
spi0_sleep: spi0_sleep {
group1 {
psels = <NRF_PSEL(SPIM_SCK, 1, 5)>,
<NRF_PSEL(SPIM_MOSI, 0, 19)>,
<NRF_PSEL(SPIM_MISO, 1, 3)>;
low-power-enable;
};
};
};

View File

@ -0,0 +1,145 @@
/*
* Copyright (c) 2019 Nordic Semiconductor ASA
*
* SPDX-License-Identifier: Apache-2.0
*/
/dts-v1/;
#include <nordic/nrf52833_qiaa.dtsi>
#include "t3w1_d1_nrf52833-pinctrl.dtsi"
#include <zephyr/dt-bindings/input/input-event-codes.h>
/ {
model = "T3W1 D1 NRF52833";
compatible = "nordic,t3w1_d1_nrf52833";
chosen {
zephyr,console = &uart0;
zephyr,shell-uart = &uart0;
zephyr,uart-mcumgr = &uart0;
zephyr,bt-mon-uart = &uart0;
zephyr,bt-c2h-uart = &uart0;
zephyr,sram = &sram0;
zephyr,flash = &flash0;
zephyr,code-partition = &slot0_partition;
zephyr,ieee802154 = &ieee802154;
};
leds {
compatible = "gpio-leds";
led0: led_0 {
gpios = <&gpio0 22 GPIO_ACTIVE_LOW>;
label = "Green LED 0";
};
led1: led_1 {
gpios = <&gpio0 24 GPIO_ACTIVE_LOW>;
label = "Green LED 1";
};
out0: out_0 {
gpios = <&gpio0 29 GPIO_ACTIVE_HIGH>;
label = "FW Running";
};
};
buttons {
compatible = "gpio-keys";
button0: button_0 {
gpios = <&gpio1 8 (GPIO_PULL_UP | GPIO_ACTIVE_LOW)>;
label = "Push button switch 0";
zephyr,code = <INPUT_KEY_0>;
};
trezor_ready: trezor_ready {
gpios = <&gpio0 30 (GPIO_PULL_DOWN | GPIO_ACTIVE_HIGH)>;
label = "Trezor ready";
zephyr,code = <INPUT_KEY_1>;
};
};
/* These aliases are provided for compatibility with samples */
aliases {
led0 = &led0;
led1 = &led1;
sw0 = &button0;
bootloader-led0 = &led0;
mcuboot-button0 = &button0;
mcuboot-led0 = &led0;
watchdog0 = &wdt0;
};
};
&adc {
status = "okay";
};
&uicr {
gpio-as-nreset;
};
&gpiote {
status = "okay";
};
&gpio0 {
status = "okay";
};
&gpio1 {
status = "okay";
};
&uart0 {
compatible = "nordic,nrf-uarte";
status = "okay";
current-speed = <1000000>;
pinctrl-0 = <&uart0_default>;
pinctrl-1 = <&uart0_sleep>;
pinctrl-names = "default", "sleep";
hw-flow-control;
};
&spi0 {
compatible = "nordic,nrf-spim";
status = "okay";
pinctrl-0 = <&spi0_default>;
pinctrl-1 = <&spi0_sleep>;
pinctrl-names = "default", "sleep";
cs-gpios = <&gpio0 23 GPIO_ACTIVE_LOW>;
reg_my_spi_master: spi-dev-a@0 {
reg = <0>;
};
};
&ieee802154 {
status = "okay";
};
&flash0 {
partitions {
compatible = "fixed-partitions";
#address-cells = <1>;
#size-cells = <1>;
boot_partition: partition@0 {
label = "mcuboot";
reg = <0x00000000 0xC000>;
};
slot0_partition: partition@c000 {
label = "image-0";
reg = <0x0000C000 0x37000>;
};
slot1_partition: partition@43000 {
label = "image-1";
reg = <0x00043000 0x37000>;
};
storage_partition: partition@7a000 {
label = "storage";
reg = <0x0007A000 0x00006000>;
};
};
};
zephyr_udc0: &usbd {
compatible = "nordic,nrf-usbd";
status = "okay";
};

View File

@ -0,0 +1,16 @@
identifier: t3w1_d1_nrf52833
name: tw31-d1-NRF52833
type: mcu
arch: arm
ram: 128
flash: 512
toolchain:
- zephyr
- gnuarmemb
- xtools
supported:
- usb_device
- ble
- gpio
- watchdog
- counter

View File

@ -0,0 +1,22 @@
# SPDX-License-Identifier: Apache-2.0
# Enable MPU
CONFIG_ARM_MPU=y
# Enable hardware stack protection
CONFIG_HW_STACK_PROTECTION=y
# Enable RTT
CONFIG_USE_SEGGER_RTT=y
# enable GPIO
CONFIG_GPIO=y
# enable uart driver
CONFIG_SERIAL=y
# enable console
CONFIG_CONSOLE=y
CONFIG_UART_CONSOLE=y
CONFIG_PINCTRL=y

View File

@ -0,0 +1,14 @@
# T3W1 REVA NRF52833 board configuration
# Copyright (c) 2019 Nordic Semiconductor ASA
# SPDX-License-Identifier: Apache-2.0
if BOARD_T3W1_REVA_NRF52832
config BOARD
default "t3w1_revA_nrf52832"
config BT_CTLR
default BT
endif # BOARD_T3W1_REVA_NRF52832

View File

@ -0,0 +1,7 @@
# T3W1 REVA NRF52832 board configuration
# Copyright (c) 2019 Nordic Semiconductor ASA
# SPDX-License-Identifier: Apache-2.0
config BOARD_T3W1_REVA_NRF52832
select SOC_NRF52832_CIAA

View File

@ -0,0 +1,12 @@
# Copyright (c) 2021 Nordic Semiconductor ASA
# SPDX-License-Identifier: Apache-2.0
board_runner_args(jlink "--device=nRF52832_xxAA" "--speed=4000")
board_runner_args(pyocd "--target=nrf52832" "--frequency=4000000")
set(OPENOCD_NRF5_SUBFAMILY "nrf52")
include(${ZEPHYR_BASE}/boards/common/nrfjprog.board.cmake)
include(${ZEPHYR_BASE}/boards/common/jlink.board.cmake)
include(${ZEPHYR_BASE}/boards/common/pyocd.board.cmake)
include(${ZEPHYR_BASE}/boards/common/openocd-nrf5.board.cmake)

View File

@ -0,0 +1,8 @@
# Copyright (c) 2024 Nordic Semiconductor ASA
# SPDX-License-Identifier: Apache-2.0
board:
name: t3w1_revA_nrf52832
vendor: vendor
socs:
- name: nrf52832

View File

@ -0,0 +1,7 @@
# Copyright (c) 2024 Nordic Semiconductor
# SPDX-License-Identifier: Apache-2.0
# Suppress "unique_unit_address_if_enabled" to handle the following overlaps:
# - power@40000000 & clock@40000000 & bprot@40000000
# - acl@4001e000 & flash-controller@4001e000
list(APPEND EXTRA_DTC_FLAGS "-Wno-unique_unit_address_if_enabled")

View File

@ -0,0 +1,47 @@
/*
* Copyright (c) 2022 Nordic Semiconductor
* SPDX-License-Identifier: Apache-2.0
*/
&pinctrl {
uart0_default: uart0_default {
group1 {
psels = <NRF_PSEL(UART_TX, 0, 6)>,
<NRF_PSEL(UART_RTS, 0, 7)>;
};
group2 {
psels = <NRF_PSEL(UART_RX, 0, 9)>,
<NRF_PSEL(UART_CTS, 0, 8)>;
bias-pull-up;
};
};
uart0_sleep: uart0_sleep {
group1 {
psels = <NRF_PSEL(UART_TX, 0, 6)>,
<NRF_PSEL(UART_RX, 0, 9)>,
<NRF_PSEL(UART_RTS, 0, 7)>,
<NRF_PSEL(UART_CTS, 0, 8)>;
low-power-enable;
};
};
spi0_default: spi0_default {
group1 {
psels = <NRF_PSEL(SPIM_SCK, 0, 3)>,
<NRF_PSEL(SPIM_MOSI, 0, 1)>,
<NRF_PSEL(SPIM_MISO, 0, 2)>;
};
};
spi0_sleep: spi0_sleep {
group1 {
psels = <NRF_PSEL(SPIM_SCK, 0, 3)>,
<NRF_PSEL(SPIM_MOSI, 0, 1)>,
<NRF_PSEL(SPIM_MISO, 0, 2)>;
low-power-enable;
};
};
};

View File

@ -0,0 +1,132 @@
/*
* Copyright (c) 2019 Nordic Semiconductor ASA
*
* SPDX-License-Identifier: Apache-2.0
*/
/dts-v1/;
#include <nordic/nrf52832_ciaa.dtsi>
#include "t3w1_revA_nrf52832-pinctrl.dtsi"
#include <zephyr/dt-bindings/input/input-event-codes.h>
/ {
model = "T3W1 REVA NRF52832";
compatible = "nordic,t3w1_revA_nrf52832";
chosen {
zephyr,console = &uart0;
zephyr,shell-uart = &uart0;
zephyr,uart-mcumgr = &uart0;
zephyr,bt-mon-uart = &uart0;
zephyr,bt-c2h-uart = &uart0;
zephyr,sram = &sram0;
zephyr,flash = &flash0;
zephyr,code-partition = &slot0_partition;
};
leds {
compatible = "gpio-leds";
led0: led_0 {
gpios = <&gpio0 12 GPIO_ACTIVE_LOW>;
label = "Green LED 0";
};
led1: led_1 {
gpios = <&gpio0 14 GPIO_ACTIVE_LOW>;
label = "Green LED 1";
};
out0: out_0 {
gpios = <&gpio0 25 GPIO_ACTIVE_HIGH>;
label = "FW Running";
};
};
buttons {
compatible = "gpio-keys";
button0: button_0 {
gpios = <&gpio0 27 (GPIO_PULL_UP | GPIO_ACTIVE_LOW)>;
label = "Push button switch 0";
zephyr,code = <INPUT_KEY_0>;
};
trezor_ready: trezor_ready {
gpios = <&gpio0 29 (GPIO_PULL_DOWN | GPIO_ACTIVE_HIGH)>;
label = "Trezor ready";
zephyr,code = <INPUT_KEY_1>;
};
};
/* These aliases are provided for compatibility with samples */
aliases {
led0 = &led0;
led1 = &led1;
sw0 = &button0;
bootloader-led0 = &led0;
mcuboot-button0 = &button0;
mcuboot-led0 = &led0;
watchdog0 = &wdt0;
};
};
&adc {
status = "okay";
};
&uicr {
gpio-as-nreset;
nfct-pins-as-gpios;
};
&gpiote {
status = "okay";
};
&gpio0 {
status = "okay";
};
&uart0 {
compatible = "nordic,nrf-uarte";
status = "okay";
current-speed = <1000000>;
pinctrl-0 = <&uart0_default>;
pinctrl-1 = <&uart0_sleep>;
pinctrl-names = "default", "sleep";
hw-flow-control;
};
&spi0 {
compatible = "nordic,nrf-spim";
status = "okay";
pinctrl-0 = <&spi0_default>;
pinctrl-1 = <&spi0_sleep>;
pinctrl-names = "default", "sleep";
cs-gpios = <&gpio0 0 GPIO_ACTIVE_LOW>;
reg_my_spi_master: spi-dev-a@0 {
reg = <0>;
};
};
&flash0 {
partitions {
compatible = "fixed-partitions";
#address-cells = <1>;
#size-cells = <1>;
boot_partition: partition@0 {
label = "mcuboot";
reg = <0x00000000 0xc000>;
};
slot0_partition: partition@c000 {
label = "image-0";
reg = <0x0000C000 0x37000>;
};
slot1_partition: partition@43000 {
label = "image-1";
reg = <0x00043000 0x37000>;
};
storage_partition: partition@7a000 {
label = "storage";
reg = <0x0007a000 0x00006000>;
};
};
};

View File

@ -0,0 +1,15 @@
identifier: t3w1_revA_nrf52832
name: tw31-revA-NRF52832
type: mcu
arch: arm
ram: 64
flash: 512
toolchain:
- zephyr
- gnuarmemb
- xtools
supported:
- ble
- gpio
- watchdog
- counter

View File

@ -0,0 +1,22 @@
# SPDX-License-Identifier: Apache-2.0
# Enable MPU
CONFIG_ARM_MPU=y
# Enable hardware stack protection
CONFIG_HW_STACK_PROTECTION=y
# Enable RTT
CONFIG_USE_SEGGER_RTT=y
# enable GPIO
CONFIG_GPIO=y
# enable uart driver
CONFIG_SERIAL=y
# enable console
CONFIG_CONSOLE=y
CONFIG_UART_CONSOLE=y
CONFIG_PINCTRL=y

View File

@ -0,0 +1,23 @@
# Copyright (c) 2021 Nordic Semiconductor ASA
# SPDX-License-Identifier: Apache-2.0
description: |
An example sensor that reads the GPIO level defined in input-gpios. The
purpose of this sensor is to demonstrate how to create out-of-tree drivers.
Example definition in devicetree:
example-sensor {
compatible = "zephyr,example-sensor";
input-gpios = <&gpio0 0 (GPIO_PULL_UP | GPIO_ACTIVE_LOW)>;
};
compatible: "zephyr,example-sensor"
include: base.yaml
properties:
input-gpios:
type: phandle-array
required: true
description: Input GPIO to be sensed.

View File

@ -0,0 +1,49 @@
# Copyright (c) 2019 Foundries.io
# Copyright (c) 2022 Nordic Semiconductor ASA
# SPDX-License-Identifier: Apache-2.0
'''example_west_command.py
Example of a west extension in the example-application repository.'''
from west.commands import WestCommand # your extension must subclass this
from west import log # use this for user output
class ExampleWestCommand(WestCommand):
def __init__(self):
super().__init__(
'example-west-command', # gets stored as self.name
'an example west extension command', # self.help
# self.description:
'''\
A multi-line description of example-west-command.
You can split this up into multiple paragraphs and they'll get
reflowed for you. You can also pass
formatter_class=argparse.RawDescriptionHelpFormatter when calling
parser_adder.add_parser() below if you want to keep your line
endings.''')
def do_add_parser(self, parser_adder):
# This is a bit of boilerplate, which allows you full control over the
# type of argparse handling you want. The "parser_adder" argument is
# the return value of an argparse.ArgumentParser.add_subparsers() call.
parser = parser_adder.add_parser(self.name,
help=self.help,
description=self.description)
# Add some example options using the standard argparse module API.
parser.add_argument('-o', '--optional', help='an optional argument')
parser.add_argument('required', help='a required argument')
return parser # gets stored as self.parser
def do_run(self, args, unknown_args):
# This gets called when the user runs the command, e.g.:
#
# $ west my-command-name -o FOO BAR
# --optional is FOO
# required is BAR
log.inf('--optional is', args.optional)
log.inf('required is', args.required)

View File

@ -0,0 +1,6 @@
west-commands:
- file: scripts/example_west_command.py
commands:
- name: example-west-command
class: ExampleWestCommand
help: an example west extension command

View File

@ -0,0 +1,8 @@
# Copyright (c) 2021, Legrand North America, LLC.
# SPDX-License-Identifier: Apache-2.0
cmake_minimum_required(VERSION 3.20.0)
find_package(Zephyr REQUIRED HINTS $ENV{ZEPHYR_BASE})
project(app_lib_custom_test)
target_sources(app PRIVATE src/main.c)

View File

@ -0,0 +1,2 @@
CONFIG_ZTEST=y
CONFIG_CUSTOM=y

View File

@ -0,0 +1,38 @@
/*
* Copyright (c) 2021 Legrand North America, LLC.
*
* SPDX-License-Identifier: Apache-2.0
*/
/*
* @file test custom_lib library
*
* This suite verifies that the methods provided with the custom_lib
* library works correctly.
*/
#include <limits.h>
#include <zephyr/ztest.h>
#include <app/lib/custom.h>
ZTEST(custom_lib, test_get_value) {
/* Verify standard behavior */
zassert_equal(custom_get_value(INT_MIN), INT_MIN,
"get_value failed input of INT_MIN");
zassert_equal(custom_get_value(INT_MIN + 1), INT_MIN + 1,
"get_value failed input of INT_MIN + 1");
zassert_equal(custom_get_value(-1), -1, "get_value failed input of -1");
zassert_equal(custom_get_value(1), 1, "get_value failed input of 1");
zassert_equal(custom_get_value(INT_MAX - 1), INT_MAX - 1,
"get_value failed input of INT_MAX - 1");
zassert_equal(custom_get_value(INT_MAX), INT_MAX,
"get_value failed input of INT_MAX");
/* Verify override behavior */
zassert_equal(custom_get_value(0), CONFIG_CUSTOM_GET_VALUE_DEFAULT,
"get_value failed input of 0");
}
ZTEST_SUITE(custom_lib, NULL, NULL, NULL, NULL, NULL);

View File

@ -0,0 +1,9 @@
common:
tags: extensibility
integration_platforms:
- custom_plank
- qemu_cortex_m0
tests:
lib.custom: {}
lib.custom.non_default:
extra_args: CONFIG_CUSTOM_GET_VALUE_DEFAULT=6

View File

@ -0,0 +1,26 @@
#
# Copyright (c) 2018 Nordic Semiconductor
#
# SPDX-License-Identifier: LicenseRef-Nordic-5-Clause
#
cmake_minimum_required(VERSION 3.20.0)
find_package(Zephyr REQUIRED HINTS $ENV{ZEPHYR_BASE})
project(NONE)
# NORDIC SDK APP START
target_sources(app PRIVATE
src/main.c
src/connection.c
src/advertising.c
src/events.c
src/uart.c
src/spi.c
src/int_comm.c
src/trz_nus.c
)
# NORDIC SDK APP END
zephyr_library_include_directories(.)

View File

@ -0,0 +1,43 @@
#
# Copyright (c) 2018 Nordic Semiconductor
#
# SPDX-License-Identifier: LicenseRef-Nordic-5-Clause
#
source "Kconfig.zephyr"
menu "Nordic UART BLE GATT service sample"
config BT_NUS_THREAD_STACK_SIZE
int "Thread stack size"
default 1024
help
Stack size used in each of the two threads
config BT_NUS_UART_BUFFER_SIZE
int "UART payload buffer element size"
default 40
help
Size of the payload buffer in each RX and TX FIFO element
config BT_NUS_SECURITY_ENABLED
bool "Enable security"
default y
select BT_SMP
help
"Enable BLE security for the UART service"
config BT_NUS_UART_RX_WAIT_TIME
int "Timeout for UART RX complete event"
default 50000
help
Wait for RX complete event time in microseconds
config BT_NUS_UART_ASYNC_ADAPTER
bool "Enable UART async adapter"
select SERIAL_SUPPORT_ASYNC
help
Enables asynchronous adapter for UART drives that supports only
IRQ interface.
endmenu

View File

@ -0,0 +1,5 @@
VERSION_MAJOR = 1
VERSION_MINOR = 0
PATCHLEVEL = 0
VERSION_TWEAK = 0
EXTRAVERSION =

View File

@ -0,0 +1,16 @@
# This file is provided so that the application can be compiled using Twister,
# the Zephyr testing tool. In this file, multiple combinations can be specified,
# so that you can easily test all of them locally or in CI.
sample:
description: Trezor BLE gateway
name: W001
common:
sysbuild: true
build_only: true
integration_platforms:
- t3w1_d1_nrf52833, t3w1_revA_nrf52832
tests:
app.default: {}
app.debug:
extra_overlay_confs:
- debug.conf

View File

@ -0,0 +1,6 @@
#
# Copyright (c) 2022 Nordic Semiconductor ASA
#
# SPDX-License-Identifier: LicenseRef-Nordic-5-Clause
#

View File

@ -0,0 +1,11 @@
/*
* Copyright (c) 2022 Nordic Semiconductor ASA
*
* SPDX-License-Identifier: LicenseRef-Nordic-5-Clause
*/
/ {
chosen {
nordic,nus-uart = &uart0;
};
};

View File

@ -0,0 +1,6 @@
#
# Copyright (c) 2022 Nordic Semiconductor ASA
#
# SPDX-License-Identifier: LicenseRef-Nordic-5-Clause
#

View File

@ -0,0 +1,11 @@
/*
* Copyright (c) 2022 Nordic Semiconductor ASA
*
* SPDX-License-Identifier: LicenseRef-Nordic-5-Clause
*/
/ {
chosen {
nordic,nus-uart = &uart0;
};
};

View File

@ -0,0 +1,12 @@
# Copyright (c) 2021 Nordic Semiconductor ASA
# SPDX-License-Identifier: Apache-2.0
#
# This is a Kconfig fragment which can be used to enable debug-related options
# in the application. See the README for more details.
# compiler
CONFIG_DEBUG_OPTIMIZATIONS=y
# logging
CONFIG_LOG=y
CONFIG_APP_LOG_LEVEL_DBG=y

View File

@ -0,0 +1,91 @@
#
# Copyright (c) 2018 Nordic Semiconductor
#
# SPDX-License-Identifier: LicenseRef-Nordic-5-Clause
#
CONFIG_CLOCK_CONTROL=y
CONFIG_CLOCK_CONTROL_NRF_K32SRC_RC=y
CONFIG_CLOCK_CONTROL_NRF_K32SRC_RC_CALIBRATION=y
CONFIG_CLOCK_CONTROL_NRF_CALIBRATION_PERIOD=4000
# Enable the UART driver
CONFIG_UART_ASYNC_API=y
CONFIG_NRFX_UARTE0=y
CONFIG_SERIAL=y
# Enable the SPI driver
CONFIG_SPI=y
CONFIG_NRFX_SPIM0=y
CONFIG_SOC_NRF52832_ALLOW_SPIM_DESPITE_PAN_58=y
CONFIG_GPIO=y
CONFIG_HEAP_MEM_POOL_SIZE=2048
CONFIG_BT=y
CONFIG_BT_PERIPHERAL=y
CONFIG_BT_DEVICE_NAME="TrezorZephyr"
CONFIG_BT_DEVICE_APPEARANCE=833
CONFIG_BT_MAX_CONN=1
CONFIG_BT_MAX_PAIRED=8
CONFIG_BT_SMP=y
# CONFIG_BT_SMP_APP_PAIRING_ACCEPT=y
CONFIG_BT_SMP_ENFORCE_MITM=y
CONFIG_BT_SMP_SC_ONLY=y
CONFIG_BT_FILTER_ACCEPT_LIST=y
CONFIG_BT_BONDING_REQUIRED=y
CONFIG_BT_PRIVACY=y
CONFIG_BT_TINYCRYPT_ECC=y
CONFIG_BT_LL_SW_SPLIT=y
#CONFIG_BT_DEBUG_SMP=y
#PHY update needed for updating PHY request
CONFIG_BT_PHY_UPDATE=y
CONFIG_BT_USER_PHY_UPDATE=y
# HCI ACL buffers size
# BT_L2CAP_RX_MTU = CONFIG_BT_BUF_ACL_RX_SIZE - BT_L2CAP_HDR_SIZE
CONFIG_BT_BUF_ACL_RX_SIZE=251
# L2CAP SDU/PDU TX MTU
CONFIG_BT_L2CAP_TX_MTU=247
# Enable bonding
CONFIG_BT_SETTINGS=y
CONFIG_FLASH=y
CONFIG_FLASH_PAGE_LAYOUT=y
CONFIG_FLASH_MAP=y
CONFIG_NVS=y
CONFIG_SETTINGS=y
# Enable DK LED and Buttons library
CONFIG_DK_LIBRARY=y
# This example requires more stack
CONFIG_MAIN_STACK_SIZE=1152
CONFIG_SYSTEM_WORKQUEUE_STACK_SIZE=4096
# NFC
CONFIG_NFCT_PINS_AS_GPIOS=y
CONFIG_POLL=y
# Config logger
CONFIG_LOG=y
CONFIG_RTT_CONSOLE=y
CONFIG_UART_CONSOLE=n
CONFIG_USE_SEGGER_RTT=y
CONFIG_LOG_BACKEND_RTT=y
CONFIG_LOG_BACKEND_UART=n
CONFIG_LOG_PRINTK=n
CONFIG_NANOPB=n
CONFIG_ASSERT=y

View File

@ -0,0 +1,150 @@
#include <zephyr/kernel.h>
#include <zephyr/types.h>
#include <zephyr/bluetooth/bluetooth.h>
#include <zephyr/logging/log.h>
#include "connection.h"
#include "int_comm.h"
#include "trz_nus.h"
#define LOG_MODULE_NAME fw_int_advertising
LOG_MODULE_REGISTER(LOG_MODULE_NAME);
#define DEVICE_NAME CONFIG_BT_DEVICE_NAME
#define DEVICE_NAME_LEN (sizeof(DEVICE_NAME) - 1)
bool advertising = false;
bool advertising_wl = false;
int bond_cnt = 0;
int bond_cnt_tmp = 0;
uint8_t manufacturer_data[8] = {0xff, 0xff, 0, 3, 'T', '3', 'W', '1'};
static const struct bt_data advertising_data[] = {
BT_DATA_BYTES(BT_DATA_FLAGS, (BT_LE_AD_GENERAL | BT_LE_AD_NO_BREDR)),
BT_DATA(BT_DATA_NAME_COMPLETE, DEVICE_NAME, DEVICE_NAME_LEN),
};
static const struct bt_data scan_response_data[] = {
BT_DATA_BYTES(BT_DATA_UUID128_ALL, BT_UUID_NUS_VAL),
BT_DATA(BT_DATA_MANUFACTURER_DATA, manufacturer_data, 8),
};
static void add_to_whitelist(const struct bt_bond_info *info, void *user_data) {
char addr[BT_ADDR_LE_STR_LEN];
bt_addr_le_to_str(&info->addr, addr, sizeof(addr));
int err = bt_le_filter_accept_list_add(&info->addr);
if (err) {
LOG_WRN("whitelist add: %s FAILED!\n", addr);
} else {
LOG_INF("whitelist add: %s\n", addr);
}
bond_cnt_tmp++;
}
void advertising_setup_wl(void) {
bt_le_filter_accept_list_clear();
bond_cnt_tmp = 0;
bt_foreach_bond(BT_ID_DEFAULT, add_to_whitelist, NULL);
bond_cnt = bond_cnt_tmp;
}
void advertising_start(bool wl) {
if (advertising) {
if (wl != advertising_wl) {
LOG_WRN("Restarting advertising");
bt_le_adv_stop();
} else {
LOG_WRN("Already advertising");
send_status_event();
return;
}
}
int err;
manufacturer_data[3] = 0x03; // todo color
if (wl) {
advertising_setup_wl();
LOG_INF("Advertising with whitelist");
manufacturer_data[2] = 0x00;
err = bt_le_adv_start(
BT_LE_ADV_PARAM(BT_LE_ADV_OPT_CONNECTABLE | BT_LE_ADV_OPT_SCANNABLE |
BT_LE_ADV_OPT_FILTER_CONN |
BT_LE_ADV_OPT_FILTER_SCAN_REQ,
160, 1600, NULL),
advertising_data, ARRAY_SIZE(advertising_data), scan_response_data,
ARRAY_SIZE(scan_response_data));
} else {
LOG_INF("Advertising no whitelist");
manufacturer_data[2] = 0x01;
err = bt_le_adv_start(
BT_LE_ADV_PARAM(BT_LE_ADV_OPT_CONNECTABLE | BT_LE_ADV_OPT_SCANNABLE,
160, 1600, NULL),
advertising_data, ARRAY_SIZE(advertising_data), scan_response_data,
ARRAY_SIZE(scan_response_data));
}
if (err) {
LOG_ERR("Advertising failed to start (err %d)", err);
send_status_event();
return;
}
advertising = true;
advertising_wl = wl;
// oob_fetch_addr();
send_status_event();
}
void advertising_stop(void) {
if (!advertising) {
LOG_WRN("Not advertising");
send_status_event();
return;
}
int err = bt_le_adv_stop();
if (err) {
LOG_ERR("Advertising failed to stop (err %d)", err);
send_status_event();
return;
}
advertising = false;
advertising_wl = false;
send_status_event();
}
bool is_advertising(void) { return advertising; }
bool is_advertising_whitelist(void) { return advertising_wl; }
void advertising_init(void) {
LOG_INF("Advertising init");
advertising_setup_wl();
}
void erase_bonds(void) {
int err = bt_unpair(BT_ID_DEFAULT, BT_ADDR_LE_ANY);
if (err) {
LOG_INF("Cannot delete bonds (err: %d)\n", err);
} else {
bt_le_filter_accept_list_clear();
bond_cnt = 0;
LOG_INF("Bonds deleted successfully \n");
}
}
int advertising_get_bond_count(void) { return bond_cnt; }

View File

@ -0,0 +1,12 @@
#include <stdbool.h>
void advertising_start(bool wl);
void advertising_stop(void);
bool is_advertising(void);
bool is_advertising_whitelist(void);
void advertising_init(void);
void advertising_setup_wl(void);
int advertising_get_bond_count(void);
void erase_bonds(void);

View File

@ -0,0 +1,169 @@
#include <zephyr/kernel.h>
#include <zephyr/types.h>
#include <zephyr/bluetooth/bluetooth.h>
#include <zephyr/bluetooth/gatt.h>
#include <zephyr/bluetooth/hci.h>
#include <zephyr/bluetooth/uuid.h>
#include <zephyr/logging/log.h>
#include <dk_buttons_and_leds.h>
#include "advertising.h"
#include "connection.h"
#include "int_comm.h"
#define LOG_MODULE_NAME fw_int_connection
LOG_MODULE_REGISTER(LOG_MODULE_NAME);
static struct bt_conn *current_conn;
static struct bt_conn *auth_conn;
void connected(struct bt_conn *conn, uint8_t err) {
char addr[BT_ADDR_LE_STR_LEN];
if (err) {
LOG_ERR("Connection failed (err %u)", err);
return;
}
bt_addr_le_to_str(bt_conn_get_dst(conn), addr, sizeof(addr));
LOG_INF("Connected %s", addr);
current_conn = bt_conn_ref(conn);
// struct bt_le_conn_param params = BT_LE_CONN_PARAM_INIT(6,6,0,400);
//
// bt_conn_le_param_update(conn, &params);
// err = bt_conn_le_phy_update(current_conn, BT_CONN_LE_PHY_PARAM_2M);
// if (err) {
// LOG_ERR("Phy update request failed: %d", err);
// }
send_status_event();
}
void disconnected(struct bt_conn *conn, uint8_t reason) {
char addr[BT_ADDR_LE_STR_LEN];
bt_addr_le_to_str(bt_conn_get_dst(conn), addr, sizeof(addr));
LOG_INF("Disconnected: %s (reason %u)", addr, reason);
if (auth_conn) {
bt_conn_unref(auth_conn);
auth_conn = NULL;
}
if (current_conn) {
bt_conn_unref(current_conn);
current_conn = NULL;
}
send_status_event();
}
bool is_connected(void) { return current_conn != NULL; }
void disconnect(void) {
if (current_conn) {
LOG_INF("Remotely disconnected");
bt_conn_disconnect(current_conn, BT_HCI_ERR_REMOTE_USER_TERM_CONN);
bt_conn_unref(current_conn);
}
}
void num_comp_reply(bool accept) {
if (auth_conn != NULL) {
if (accept) {
bt_conn_auth_passkey_confirm(auth_conn);
LOG_INF("Numeric Match, conn %p", (void *)auth_conn);
} else {
bt_conn_auth_cancel(auth_conn);
LOG_INF("Numeric Reject, conn %p", (void *)auth_conn);
bt_conn_disconnect(auth_conn, BT_HCI_ERR_REMOTE_USER_TERM_CONN);
}
bt_conn_unref(auth_conn);
auth_conn = NULL;
}
}
void passkey_to_str(uint8_t buf[6], unsigned int passkey) {
buf[5] = (passkey % 10) + '0';
buf[4] = ((passkey / 10) % 10) + '0';
buf[3] = ((passkey / 100) % 10) + '0';
buf[2] = ((passkey / 1000) % 10) + '0';
buf[1] = ((passkey / 10000) % 10) + '0';
buf[0] = ((passkey / 100000) % 10) + '0';
}
void auth_passkey_display(struct bt_conn *conn, unsigned int passkey) {
char addr[BT_ADDR_LE_STR_LEN];
uint8_t passkey_str[6];
passkey_to_str(passkey_str, passkey);
bt_addr_le_to_str(bt_conn_get_dst(conn), addr, sizeof(addr));
// pb_comm_enqueue(PASSKEY_DISPLAY, passkey_str, 6);
}
void auth_passkey_confirm(struct bt_conn *conn, unsigned int passkey) {
char addr[BT_ADDR_LE_STR_LEN];
auth_conn = bt_conn_ref(conn);
bt_addr_le_to_str(bt_conn_get_dst(conn), addr, sizeof(addr));
uint8_t passkey_str[6];
passkey_to_str(passkey_str, passkey);
send_pairing_request_event(passkey_str, 6);
send_status_event();
}
void auth_cancel(struct bt_conn *conn) {
char addr[BT_ADDR_LE_STR_LEN];
bt_addr_le_to_str(bt_conn_get_dst(conn), addr, sizeof(addr));
disconnect();
send_pairing_cancelled_event();
send_status_event();
LOG_INF("Pairing cancelled: %s", addr);
}
void pairing_complete(struct bt_conn *conn, bool bonded) {
char addr[BT_ADDR_LE_STR_LEN];
bt_addr_le_to_str(bt_conn_get_dst(conn), addr, sizeof(addr));
// oob_signal();
// bt_le_oob_set_sc_flag(false);
// bt_le_oob_set_legacy_flag(false);
if (bonded) {
advertising_setup_wl();
}
LOG_INF("Pairing completed: %s, bonded: %d", addr, bonded);
}
void pairing_failed(struct bt_conn *conn, enum bt_security_err reason) {
char addr[BT_ADDR_LE_STR_LEN];
bt_addr_le_to_str(bt_conn_get_dst(conn), addr, sizeof(addr));
// oob_signal();
// bt_le_oob_set_sc_flag(false);
// bt_le_oob_set_legacy_flag(false);
LOG_INF("Pairing failed conn: %s, reason %d", addr, reason);
}
struct bt_conn *conn_get_current(void) { return current_conn; }

View File

@ -0,0 +1,30 @@
#include <stdbool.h>
#include <stdint.h>
#include <zephyr/kernel.h>
#include <zephyr/types.h>
#include <zephyr/bluetooth/bluetooth.h>
#include <zephyr/bluetooth/gatt.h>
#include <zephyr/bluetooth/hci.h>
#include <zephyr/bluetooth/uuid.h>
void connected(struct bt_conn *conn, uint8_t err);
void disconnect(void);
void disconnected(struct bt_conn *conn, uint8_t reason);
bool is_connected(void);
void num_comp_reply(bool accept);
void auth_passkey_display(struct bt_conn *conn, unsigned int passkey);
void auth_passkey_confirm(struct bt_conn *conn, unsigned int passkey);
void auth_cancel(struct bt_conn *conn);
void pairing_complete(struct bt_conn *conn, bool bonded);
void pairing_failed(struct bt_conn *conn, enum bt_security_err reason);
void num_comp_reply(bool accept);
struct bt_conn *conn_get_current(void);

View File

@ -0,0 +1,13 @@
#include <zephyr/kernel.h>
#define K_POOL_EVENTS_CNT (4)
static struct k_poll_event events[K_POOL_EVENTS_CNT];
void events_poll(void) { k_poll(events, ARRAY_SIZE(events), K_FOREVER); }
void events_init(void) {}
struct k_poll_event* events_get(int idx) { return &events[idx]; }

View File

@ -0,0 +1,11 @@
#include <zephyr/kernel.h>
#define INT_COMM_EVENT_NUM 3
void events_poll(void);
void events_init(void);
struct k_poll_event* events_get(int idx);

View File

@ -0,0 +1,161 @@
#include <stdbool.h>
#include <stdint.h>
#include <zephyr/kernel.h>
#include <zephyr/types.h>
#include <zephyr/logging/log.h>
#include <zephyr/sys/crc.h>
#include "advertising.h"
#include "connection.h"
#include "events.h"
#include "int_comm_defs.h"
#include "uart.h"
#define LOG_MODULE_NAME fw_int_comm
LOG_MODULE_REGISTER(LOG_MODULE_NAME);
static K_SEM_DEFINE(int_comm_ok, 0, 1);
void send_packet(uint8_t message_type, const uint8_t *tx_data, uint8_t len) {
uart_data_t *tx = k_malloc(sizeof(*tx));
if (tx == NULL) {
LOG_WRN("Not able to allocate UART send data buffer");
return;
}
LOG_DBG("ALLOC: Sending UART data");
tx->len = len + OVERHEAD_SIZE;
tx->data[0] = message_type;
tx->data[1] = tx->len;
memcpy(&tx->data[COMM_HEADER_SIZE], tx_data, len);
uint8_t crc = crc8(tx->data, tx->len - 1, 0x07, 0x00, false);
tx->data[tx->len - 1] = crc;
uart_send(tx);
}
void send_status_event(void) {
// ble_version_t version = {0};
//
// sd_ble_version_get(&version);
LOG_WRN(
"Sending status event: connected: %d, advertising: %d, "
"advertising_whitelist: %d, peer_count: %d",
is_connected(), is_advertising(), is_advertising_whitelist(),
advertising_get_bond_count());
event_status_msg_t msg = {0};
msg.msg_id = INTERNAL_EVENT_STATUS;
msg.connected = is_connected();
msg.advertising = is_advertising();
msg.advertising_whitelist = is_advertising_whitelist();
msg.peer_count = advertising_get_bond_count();
msg.sd_version_number = 0;
msg.sd_company_id = 0;
msg.sd_subversion_number = 0;
msg.app_version = 0;
msg.bld_version = 0;
send_packet(INTERNAL_EVENT, (uint8_t *)&msg, sizeof(msg));
}
void send_success_event(void) {
uint8_t tx_data[] = {
INTERNAL_EVENT_SUCCESS,
};
send_packet(INTERNAL_EVENT, tx_data, sizeof(tx_data));
}
void send_pairing_cancelled_event(void) {
uint8_t tx_data[1] = {0};
tx_data[0] = INTERNAL_EVENT_PAIRING_CANCELLED;
send_packet(INTERNAL_EVENT, tx_data, sizeof(tx_data));
}
void send_pairing_request_event(uint8_t *data, uint16_t len) {
uint8_t tx_data[7] = {0};
tx_data[0] = INTERNAL_EVENT_PAIRING_REQUEST;
tx_data[1] = data[0];
tx_data[2] = data[1];
tx_data[3] = data[2];
tx_data[4] = data[3];
tx_data[5] = data[4];
tx_data[6] = data[5];
send_packet(INTERNAL_EVENT, tx_data, sizeof(tx_data));
}
uint16_t get_message_type(const uint8_t *rx_data) {
return (rx_data[3] << 8) | rx_data[4];
}
void process_command(uint8_t *data, uint16_t len) {
uint8_t cmd = data[0];
switch (cmd) {
case INTERNAL_CMD_SEND_STATE:
send_status_event();
break;
case INTERNAL_CMD_ADVERTISING_ON:
advertising_start(data[1] != 0);
break;
case INTERNAL_CMD_ADVERTISING_OFF:
advertising_stop();
break;
case INTERNAL_CMD_ERASE_BONDS:
erase_bonds();
send_success_event();
break;
case INTERNAL_CMD_DISCONNECT:
disconnect();
send_success_event();
case INTERNAL_CMD_ACK:
// pb_msg_ack();
break;
case INTERNAL_CMD_ALLOW_PAIRING:
num_comp_reply(true);
send_success_event();
break;
case INTERNAL_CMD_REJECT_PAIRING:
num_comp_reply(false);
send_success_event();
break;
default:
break;
}
}
void int_comm_start(void) { k_sem_give(&int_comm_ok); }
void int_comm_thread(void) {
/* Don't go any further until BLE is initialized */
k_sem_take(&int_comm_ok, K_FOREVER);
for (;;) {
// events_poll();
// if (events_get(INT_COMM_EVENT_NUM)->state == K_POLL_STATE_SIGNALED) {
uart_data_t *buf = uart_get_data_int();
process_command(buf->data, buf->len);
k_free(buf);
// k_poll_signal_reset(events_get(INT_COMM_EVENT_NUM)->signal);
// events_get(INT_COMM_EVENT_NUM)->state = K_POLL_STATE_NOT_READY;
//}
}
}
K_THREAD_DEFINE(int_comm_thread_id, CONFIG_BT_NUS_THREAD_STACK_SIZE,
int_comm_thread, NULL, NULL, NULL, 7, 0, 0);

View File

@ -0,0 +1,21 @@
#ifndef INT_COMM__
#define INT_COMM__
#include <stdint.h>
void process_command(uint8_t *data, uint16_t len);
void send_status_event(void);
void send_pairing_request_event(uint8_t *data, uint16_t len);
void send_pairing_cancelled_event(void);
void int_comm_start(void);
void int_comm_thread(void);
void send_packet(uint8_t message_type, const uint8_t *tx_data, uint16_t len);
void pb_msg_ack(void);
#endif

View File

@ -0,0 +1,52 @@
#ifndef __INT_COMM_DEFS__
#define __INT_COMM_DEFS__
#define BLE_PACKET_SIZE (244)
#define USB_DATA_SIZE (64)
#define COMM_HEADER_SIZE (2)
#define COMM_FOOTER_SIZE (1)
#define OVERHEAD_SIZE (COMM_HEADER_SIZE + COMM_FOOTER_SIZE)
#define UART_PACKET_SIZE (USB_DATA_SIZE + OVERHEAD_SIZE)
#define EXTERNAL_MESSAGE (0xA0)
#define INTERNAL_EVENT (0xA1)
typedef struct {
uint8_t msg_id;
uint8_t connected;
uint8_t advertising;
uint8_t advertising_whitelist;
uint8_t peer_count;
uint8_t reserved[2];
uint8_t sd_version_number;
uint16_t sd_company_id;
uint16_t sd_subversion_number;
uint32_t app_version;
uint32_t bld_version;
} event_status_msg_t;
typedef enum {
INTERNAL_EVENT_STATUS = 0x01,
INTERNAL_EVENT_SUCCESS = 0x02,
INTERNAL_EVENT_FAILURE = 0x03,
INTERNAL_EVENT_PAIRING_REQUEST = 0x04,
INTERNAL_EVENT_PAIRING_CANCELLED = 0x05,
} InternalEvent_t;
typedef enum {
INTERNAL_CMD_SEND_STATE = 0x00,
INTERNAL_CMD_ADVERTISING_ON = 0x01,
INTERNAL_CMD_ADVERTISING_OFF = 0x02,
INTERNAL_CMD_ERASE_BONDS = 0x03,
INTERNAL_CMD_DISCONNECT = 0x04,
INTERNAL_CMD_ACK = 0x05,
INTERNAL_CMD_ALLOW_PAIRING = 0x06,
INTERNAL_CMD_REJECT_PAIRING = 0x07,
} InternalCmd_t;
#endif

View File

@ -0,0 +1,263 @@
/*
* Copyright (c) 2018 Nordic Semiconductor ASA
*
* SPDX-License-Identifier: LicenseRef-Nordic-5-Clause
*/
/** @file
* @brief Nordic UART Bridge Service (NUS) sample
*/
#include <zephyr/drivers/gpio.h>
#include <zephyr/drivers/uart.h>
#include <zephyr/kernel.h>
#include <zephyr/types.h>
#include <soc.h>
#include <zephyr/device.h>
#include <zephyr/devicetree.h>
#include <zephyr/bluetooth/bluetooth.h>
#include <zephyr/bluetooth/conn.h>
#include <zephyr/bluetooth/gatt.h>
#include <zephyr/bluetooth/hci.h>
#include <zephyr/bluetooth/uuid.h>
#include <dk_buttons_and_leds.h>
#include <zephyr/settings/settings.h>
#include <zephyr/logging/log.h>
#include "advertising.h"
#include "connection.h"
#include "events.h"
#include "int_comm.h"
#include "spi.h"
#include "trz_nus.h"
#include "uart.h"
#define LOG_MODULE_NAME fw
LOG_MODULE_REGISTER(LOG_MODULE_NAME);
#define STACKSIZE CONFIG_BT_NUS_THREAD_STACK_SIZE
#define PRIORITY 7
#define RUN_STATUS_LED DK_LED1
#define RUN_LED_BLINK_INTERVAL 1000
#define FW_RUNNING_SIG DK_LED3
#define CON_STATUS_LED DK_LED2
static K_SEM_DEFINE(ble_init_ok, 0, 1);
static K_SEM_DEFINE(led_init_ok, 0, 1);
#define AUTH_SC_FLAG 0x08
static void security_changed(struct bt_conn *conn, bt_security_t level,
enum bt_security_err err) {
char addr[BT_ADDR_LE_STR_LEN];
bt_addr_le_to_str(bt_conn_get_dst(conn), addr, sizeof(addr));
if (!err) {
LOG_INF("Security changed: %s level %u", addr, level);
} else {
LOG_WRN("Security failed: %s level %u err %d", addr, level, err);
}
}
BT_CONN_CB_DEFINE(conn_callbacks) = {
.connected = connected,
.disconnected = disconnected,
.security_changed = security_changed,
};
// static enum bt_security_err pairing_accept(struct bt_conn *conn,
// const struct bt_conn_pairing_feat
// *const feat)
//{
// if (feat->oob_data_flag && (!(feat->auth_req & AUTH_SC_FLAG))) {
// bt_le_oob_set_legacy_flag(true);
// }
//
// return BT_SECURITY_ERR_SUCCESS;
//
// }
static struct bt_conn_auth_cb conn_auth_callbacks = {
// .pairing_accept = pairing_accept,
.passkey_display = auth_passkey_display,
.passkey_confirm = auth_passkey_confirm,
.cancel = auth_cancel,
};
static struct bt_conn_auth_info_cb conn_auth_info_callbacks = {
.pairing_complete = pairing_complete, .pairing_failed = pairing_failed};
static void bt_receive_cb(struct bt_conn *conn, const uint8_t *const data,
uint16_t len) {
if ((dk_get_buttons() & DK_BTN2_MSK) == 0) {
LOG_INF("Trezor not ready, rejecting data");
// send_error_response();
return;
}
char addr[BT_ADDR_LE_STR_LEN] = {0};
bt_addr_le_to_str(bt_conn_get_dst(conn), addr, ARRAY_SIZE(addr));
LOG_DBG("Received data from: %s, %d", addr, len);
spi_send(data, len);
}
static struct bt_nus_cb nus_cb = {
.received = bt_receive_cb,
};
void error(void) {
dk_set_leds_state(DK_ALL_LEDS_MSK, DK_NO_LEDS_MSK);
while (true) {
/* Spin for ever */
k_sleep(K_MSEC(1000));
}
}
void button_changed(uint32_t button_state, uint32_t has_changed) {}
static void configure_gpio(void) {
int err;
err = dk_buttons_init(button_changed);
if (err) {
LOG_ERR("Cannot init buttons (err: %d)", err);
}
err = dk_leds_init();
if (err) {
LOG_ERR("Cannot init LEDs (err: %d)", err);
}
}
int main(void) {
int err = 0;
LOG_INF("Initializing");
configure_gpio();
err = uart_init();
if (err) {
error();
}
spi_init();
err = bt_conn_auth_cb_register(&conn_auth_callbacks);
if (err) {
printk("Failed to register authorization callbacks.\n");
return 0;
}
err = bt_conn_auth_info_cb_register(&conn_auth_info_callbacks);
if (err) {
printk("Failed to register authorization info callbacks.\n");
return 0;
}
err = bt_enable(NULL);
if (err) {
error();
}
LOG_INF("Bluetooth initialized");
k_sem_give(&ble_init_ok);
if (IS_ENABLED(CONFIG_SETTINGS)) {
settings_load();
}
err = bt_nus_init(&nus_cb);
if (err) {
LOG_ERR("Failed to initialize UART service (err: %d)", err);
return 0;
}
bt_set_name("TrezorGAP");
events_init();
advertising_init();
int_comm_start();
dk_set_led(FW_RUNNING_SIG, 1);
// dk_set_led(FW_RUNNING_SIG, 0);
// while(true) {
// dk_set_led(FW_RUNNING_SIG, 1);
// dk_set_led(FW_RUNNING_SIG, 0);
// }
send_status_event();
// oob_init();
k_sem_give(&led_init_ok);
for (;;) {
events_poll();
printk("Event occurred\n");
// oob_process();
// int_comm_thread();
}
}
void ble_write_thread(void) {
/* Don't go any further until BLE is initialized */
k_sem_take(&ble_init_ok, K_FOREVER);
for (;;) {
/* Wait indefinitely for data to be sent over bluetooth */
uart_data_t *buf = uart_get_data_ext();
if (bt_nus_send(conn_get_current(), buf)) {
LOG_WRN("Failed to send data over BLE connection: %d", buf->len);
k_free(buf);
}
LOG_DBG("Freeing UART data");
}
}
void led_thread(void) {
bool connected = false;
int blink_status = 0;
/* Don't go any further until BLE is initialized */
k_sem_take(&led_init_ok, K_FOREVER);
for (;;) {
blink_status++;
dk_set_led(RUN_STATUS_LED, (blink_status) % 2);
connected = is_connected();
if (connected) {
dk_set_led_on(CON_STATUS_LED);
} else {
if (is_advertising() && !is_advertising_whitelist()) {
dk_set_led(CON_STATUS_LED, (blink_status) % 2);
} else {
dk_set_led_off(CON_STATUS_LED);
}
}
k_sleep(K_MSEC(RUN_LED_BLINK_INTERVAL));
}
}
K_THREAD_DEFINE(ble_write_thread_id, STACKSIZE, ble_write_thread, NULL, NULL,
NULL, PRIORITY, 0, 0);
K_THREAD_DEFINE(led_thread_id, STACKSIZE, led_thread, NULL, NULL, NULL,
PRIORITY, 0, 0);

View File

@ -0,0 +1,499 @@
#include <zephyr/kernel.h>
#include <zephyr/bluetooth/bluetooth.h>
#include <zephyr/bluetooth/gatt.h>
#include <zephyr/bluetooth/hci.h>
#include <zephyr/bluetooth/uuid.h>
#include <nfc/t4t/ndef_file.h>
#include <nfc_t4t_lib.h>
#include <nfc/ndef/ch.h>
#include <nfc/ndef/ch_msg.h>
#include <nfc/ndef/le_oob_rec.h>
#include <nfc/ndef/le_oob_rec_parser.h>
#include <nfc/ndef/msg.h>
#include <nfc/tnep/ch.h>
#include <nfc/tnep/tag.h>
#include "events.h"
#define NDEF_MSG_BUF_SIZE 256
#define AUTH_SC_FLAG 0x08
// #define NFC_FIELD_LED DK_LED2
// #define CON_STATUS_LED DK_LED1
//
// #define KEY_BOND_REMOVE_MASK DK_BTN4_MSK
#define NFC_NDEF_LE_OOB_REC_PARSER_BUFF_SIZE 150
#define NFC_TNEP_BUFFER_SIZE 1024
static struct bt_le_oob oob_local;
static struct k_work adv_work;
static uint8_t conn_cnt;
static uint8_t tk_value[NFC_NDEF_LE_OOB_REC_TK_LEN];
static uint8_t remote_tk_value[NFC_NDEF_LE_OOB_REC_TK_LEN];
static struct bt_le_oob oob_remote;
/* Bonded address queue. */
K_MSGQ_DEFINE(bonds_queue, sizeof(bt_addr_le_t), CONFIG_BT_MAX_PAIRED, 4);
static struct k_poll_signal pair_signal;
static uint8_t tnep_buffer[NFC_TNEP_BUFFER_SIZE];
static uint8_t tnep_swap_buffer[NFC_TNEP_BUFFER_SIZE];
static bool use_remote_tk;
static bool adv_permission;
static int tk_value_generate(void) {
int err;
err = bt_rand(tk_value, sizeof(tk_value));
if (err) {
printk("Random TK value generation failed: %d\n", err);
}
return err;
}
static void pair_key_generate_init(void) {
k_poll_signal_init(&pair_signal);
k_poll_event_init(events_get(NFC_TNEP_EVENTS_NUMBER), K_POLL_TYPE_SIGNAL,
K_POLL_MODE_NOTIFY_ONLY, &pair_signal);
}
static int paring_key_generate(void) {
int err;
printk("Generating new pairing keys\n");
err = bt_le_oob_get_local(BT_ID_DEFAULT, &oob_local);
if (err) {
printk("Error while fetching local OOB data: %d\n", err);
}
return tk_value_generate();
}
static void paring_key_process(void) {
int err;
if (events_get(NFC_TNEP_EVENTS_NUMBER)->state == K_POLL_STATE_SIGNALED) {
err = paring_key_generate();
if (err) {
printk("Pairing key generation error: %d\n", err);
}
k_poll_signal_reset(events_get(NFC_TNEP_EVENTS_NUMBER)->signal);
events_get(NFC_TNEP_EVENTS_NUMBER)->state = K_POLL_STATE_NOT_READY;
}
}
static void bond_find(const struct bt_bond_info *info, void *user_data) {
int err;
struct bt_conn *conn;
/* Filter already connected peers. */
conn = bt_conn_lookup_addr_le(BT_ID_DEFAULT, &info->addr);
if (conn) {
bt_conn_unref(conn);
return;
}
err = k_msgq_put(&bonds_queue, (void *)&info->addr, K_NO_WAIT);
if (err) {
printk("No space in the queue for the bond\n");
}
}
/**
* @brief Callback function for handling NFC events.
*/
static void nfc_callback(void *context, nfc_t4t_event_t event,
const uint8_t *data, size_t data_length,
uint32_t flags) {
ARG_UNUSED(context);
ARG_UNUSED(data);
ARG_UNUSED(flags);
switch (event) {
case NFC_T4T_EVENT_FIELD_ON:
printk("NFC callback 1\n");
nfc_tnep_tag_on_selected();
// dk_set_led_on(NFC_FIELD_LED);
// adv_permission = true;
break;
case NFC_T4T_EVENT_FIELD_OFF:
printk("NFC callback 2\n");
nfc_tnep_tag_on_selected();
// dk_set_led_off(NFC_FIELD_LED);
break;
case NFC_T4T_EVENT_NDEF_READ:
printk("NFC callback 3\n");
// if (adv_permission) {
// advertising_start();
// adv_permission = false;
// }
break;
case NFC_T4T_EVENT_NDEF_UPDATED:
printk("NFC callback 4\n");
if (data_length > 0) {
nfc_tnep_tag_rx_msg_indicate(nfc_t4t_ndef_file_msg_get(data),
data_length);
}
default:
break;
}
}
/** .. include_startingpoint_pair_msg_rst */
static int tnep_initial_msg_encode(struct nfc_ndef_msg_desc *msg) {
int err;
struct nfc_ndef_ch_msg_records ch_records;
static struct nfc_ndef_le_oob_rec_payload_desc rec_payload;
NFC_NDEF_LE_OOB_RECORD_DESC_DEF(oob_rec, '0', &rec_payload);
NFC_NDEF_CH_AC_RECORD_DESC_DEF(oob_ac, NFC_AC_CPS_ACTIVE, 1, "0", 0);
NFC_NDEF_CH_HS_RECORD_DESC_DEF(hs_rec, NFC_NDEF_CH_MSG_MAJOR_VER,
NFC_NDEF_CH_MSG_MINOR_VER, 1);
memset(&rec_payload, 0, sizeof(rec_payload));
rec_payload.addr = &oob_local.addr;
rec_payload.le_sc_data = &oob_local.le_sc_data;
rec_payload.tk_value = tk_value;
rec_payload.local_name = bt_get_name();
rec_payload.le_role =
NFC_NDEF_LE_OOB_REC_LE_ROLE(NFC_NDEF_LE_OOB_REC_LE_ROLE_PERIPH_ONLY);
rec_payload.appearance =
NFC_NDEF_LE_OOB_REC_APPEARANCE(CONFIG_BT_DEVICE_APPEARANCE);
rec_payload.flags = NFC_NDEF_LE_OOB_REC_FLAGS(BT_LE_AD_NO_BREDR);
ch_records.ac = &NFC_NDEF_CH_AC_RECORD_DESC(oob_ac);
ch_records.carrier = &NFC_NDEF_LE_OOB_RECORD_DESC(oob_rec);
ch_records.cnt = 1;
err = nfc_ndef_ch_msg_hs_create(msg, &NFC_NDEF_CH_RECORD_DESC(hs_rec),
&ch_records);
printk("mac0: %X:%X:%X:%X:%X:%X\n", rec_payload.addr->a.val[5],
rec_payload.addr->a.val[4], rec_payload.addr->a.val[3],
rec_payload.addr->a.val[2], rec_payload.addr->a.val[1],
rec_payload.addr->a.val[0]);
if (err) {
return err;
}
return nfc_tnep_initial_msg_encode(msg, NULL, 0);
}
/** .. include_endpoint_pair_msg_rst */
static int check_oob_carrier(const struct nfc_tnep_ch_record *ch_record,
const struct nfc_ndef_record_desc **oob_data) {
const struct nfc_ndef_ch_ac_rec *ac_rec = NULL;
for (size_t i = 0; i < ch_record->count; i++) {
if (nfc_ndef_le_oob_rec_check(ch_record->carrier[i])) {
*oob_data = ch_record->carrier[i];
}
}
if (!oob_data) {
printk("Connection Handover Requester not supporting OOB BLE\n");
return -EINVAL;
}
/* Look for the corresponding Alternative Carrier Record. */
for (size_t i = 0; i < ch_record->count; i++) {
if (((*oob_data)->id_length == ch_record->ac[i].carrier_data_ref.length) &&
(memcmp((*oob_data)->id, ch_record->ac[i].carrier_data_ref.data,
(*oob_data)->id_length) == 0)) {
ac_rec = &ch_record->ac[i];
}
}
if (!ac_rec) {
printk("No Alternative Carrier Record for OOB LE carrier\n");
return -EINVAL;
}
/* Check carrier state */
if ((ac_rec->cps != NFC_AC_CPS_ACTIVE) &&
(ac_rec->cps != NFC_AC_CPS_ACTIVATING)) {
printk("LE OBB Carrier inactive\n");
return -EINVAL;
}
return 0;
}
static void lesc_oob_data_set(struct bt_conn *conn,
struct bt_conn_oob_info *oob_info) {
int err;
char addr[BT_ADDR_LE_STR_LEN];
struct bt_conn_info info;
err = bt_conn_get_info(conn, &info);
if (err) {
return;
}
struct bt_le_oob_sc_data *oob_data_local =
oob_info->lesc.oob_config != BT_CONN_OOB_REMOTE_ONLY
? &oob_local.le_sc_data
: NULL;
struct bt_le_oob_sc_data *oob_data_remote =
oob_info->lesc.oob_config != BT_CONN_OOB_LOCAL_ONLY
? &oob_remote.le_sc_data
: NULL;
if (oob_data_remote && bt_addr_le_cmp(info.le.remote, &oob_remote.addr)) {
bt_addr_le_to_str(info.le.remote, addr, sizeof(addr));
printk("No OOB data available for remote %s", addr);
bt_conn_auth_cancel(conn);
return;
}
if (oob_data_local && bt_addr_le_cmp(info.le.local, &oob_local.addr)) {
bt_addr_le_to_str(info.le.local, addr, sizeof(addr));
printk("No OOB data available for local %s", addr);
bt_conn_auth_cancel(conn);
return;
}
err = bt_le_oob_set_sc_data(conn, oob_data_local, oob_data_remote);
if (err) {
printk("Error while setting OOB data: %d\n", err);
}
}
// static void legacy_tk_value_set(struct bt_conn *conn)
//{
// int err;
// const uint8_t *tk = use_remote_tk ? remote_tk_value : tk_value;
//
// err = bt_le_oob_set_legacy_tk(conn, tk);
// if (err) {
// printk("TK value set error: %d\n", err);
// }
//
// use_remote_tk = false;
// }
void auth_oob_data_request(struct bt_conn *conn,
struct bt_conn_oob_info *info) {
printk("OOB data requested\n");
if (info->type == BT_CONN_OOB_LE_SC) {
printk("LESC OOB data requested\n");
lesc_oob_data_set(conn, info);
}
// if (info->type == BT_CONN_OOB_LE_LEGACY) {
// printk("Legacy TK value requested\n");
// legacy_tk_value_set(conn);
// }
}
static int oob_le_data_handle(const struct nfc_ndef_record_desc *rec,
bool request) {
int err;
const struct nfc_ndef_le_oob_rec_payload_desc *oob;
uint8_t desc_buf[NFC_NDEF_LE_OOB_REC_PARSER_BUFF_SIZE];
uint32_t desc_buf_len = sizeof(desc_buf);
err = nfc_ndef_le_oob_rec_parse(rec, desc_buf, &desc_buf_len);
if (err) {
printk("Error during NDEF LE OOB Record parsing, err: %d.\n", err);
}
oob = (struct nfc_ndef_le_oob_rec_payload_desc *)desc_buf;
nfc_ndef_le_oob_rec_printout(oob);
if ((*oob->le_role != NFC_NDEF_LE_OOB_REC_LE_ROLE_CENTRAL_ONLY) &&
(*oob->le_role != NFC_NDEF_LE_OOB_REC_LE_ROLE_CENTRAL_PREFFERED)) {
printk("Unsupported Device LE Role\n");
return -EINVAL;
}
if (oob->le_sc_data) {
bt_le_oob_set_sc_flag(true);
oob_remote.le_sc_data = *oob->le_sc_data;
bt_addr_le_copy(&oob_remote.addr, oob->addr);
}
if (oob->tk_value) {
bt_le_oob_set_legacy_flag(true);
memcpy(remote_tk_value, oob->tk_value, sizeof(remote_tk_value));
use_remote_tk = request;
}
// advertising_start();
return 0;
}
/** .. include_startingpoint_nfc_tnep_ch_tag_rst */
static int carrier_prepare(void) {
static struct nfc_ndef_le_oob_rec_payload_desc rec_payload;
NFC_NDEF_LE_OOB_RECORD_DESC_DEF(oob_rec, '0', &rec_payload);
NFC_NDEF_CH_AC_RECORD_DESC_DEF(oob_ac, NFC_AC_CPS_ACTIVE, 1, "0", 0);
memset(&rec_payload, 0, sizeof(rec_payload));
rec_payload.addr = &oob_local.addr;
rec_payload.le_sc_data = &oob_local.le_sc_data;
rec_payload.tk_value = tk_value;
rec_payload.local_name = bt_get_name();
rec_payload.le_role =
NFC_NDEF_LE_OOB_REC_LE_ROLE(NFC_NDEF_LE_OOB_REC_LE_ROLE_PERIPH_ONLY);
rec_payload.appearance =
NFC_NDEF_LE_OOB_REC_APPEARANCE(CONFIG_BT_DEVICE_APPEARANCE);
rec_payload.flags = NFC_NDEF_LE_OOB_REC_FLAGS(BT_LE_AD_NO_BREDR);
return nfc_tnep_ch_carrier_set(&NFC_NDEF_CH_AC_RECORD_DESC(oob_ac),
&NFC_NDEF_LE_OOB_RECORD_DESC(oob_rec), 1);
}
#if defined(CONFIG_NFC_TAG_CH_REQUESTER)
static int tnep_ch_request_prepare(void) {
bt_le_adv_stop();
return carrier_prepare();
}
static int tnep_ch_select_received(const struct nfc_tnep_ch_record *ch_select,
bool inactive) {
int err;
const struct nfc_ndef_record_desc *oob_data = NULL;
if (!ch_select->count) {
return -EINVAL;
}
/* All alternative carrier are inactive */
if (inactive) {
/* Try send request again. */
return carrier_prepare();
}
err = check_oob_carrier(ch_select, &oob_data);
if (err) {
return err;
}
err = oob_le_data_handle(oob_data, false);
if (err) {
return err;
}
return 0;
}
#endif /* defined(CONFIG_NFC_TAG_CH_REQUESTER) */
static int tnep_ch_request_received(const struct nfc_tnep_ch_request *ch_req) {
int err;
const struct nfc_ndef_record_desc *oob_data = NULL;
if (!ch_req->ch_record.count) {
return -EINVAL;
}
err = check_oob_carrier(&ch_req->ch_record, &oob_data);
if (err) {
return err;
}
bt_le_adv_stop();
err = oob_le_data_handle(oob_data, true);
if (err) {
return err;
}
return carrier_prepare();
}
static struct nfc_tnep_ch_cb ch_cb = {
#if defined(CONFIG_NFC_TAG_CH_REQUESTER)
.request_msg_prepare = tnep_ch_request_prepare,
.select_msg_recv = tnep_ch_select_received,
#endif
.request_msg_recv = tnep_ch_request_received};
/** .. include_endpoint_nfc_tnep_ch_tag_rst */
static void nfc_init(void) {
int err;
/* TNEP init */
err = nfc_tnep_tag_tx_msg_buffer_register(tnep_buffer, tnep_swap_buffer,
sizeof(tnep_buffer));
if (err) {
printk("Cannot register tnep buffer, err: %d\n", err);
return;
}
err = nfc_tnep_tag_init(events_get(0), NFC_TNEP_EVENTS_NUMBER,
nfc_t4t_ndef_rwpayload_set);
if (err) {
printk("Cannot initialize TNEP protocol, err: %d\n", err);
return;
}
/* Set up NFC */
err = nfc_t4t_setup(nfc_callback, NULL);
if (err) {
printk("Cannot setup NFC T4T library!\n");
return;
}
err = nfc_tnep_tag_initial_msg_create(2, tnep_initial_msg_encode);
if (err) {
printk("Cannot create initial TNEP message, err: %d\n", err);
}
err = nfc_tnep_ch_service_init(&ch_cb);
if (err) {
printk("TNEP CH Service init error: %d\n", err);
return;
}
/* Start sensing NFC field */
err = nfc_t4t_emulation_start();
if (err) {
printk("Cannot start emulation!\n");
return;
}
printk("NFC configuration done\n");
}
void oob_init(void) {
paring_key_generate();
pair_key_generate_init();
nfc_init();
}
void oob_process(void) {
nfc_tnep_tag_process();
paring_key_process();
}
// K_THREAD_DEFINE(oob_thread_id, CONFIG_BT_NUS_THREAD_STACK_SIZE, oob_thread,
// NULL, NULL,
// NULL, 7, 0, 0);
void oob_signal(void) { k_poll_signal_raise(&pair_signal, 0); }
void oob_fetch_addr(void) { bt_le_oob_get_local(BT_ID_DEFAULT, &oob_local); }

View File

@ -0,0 +1,14 @@
#include <zephyr/bluetooth/bluetooth.h>
#include <zephyr/bluetooth/gatt.h>
void auth_oob_data_request(struct bt_conn *conn, struct bt_conn_oob_info *info);
void oob_init(void);
void oob_signal(void);
void oob_process(void);
void oob_fetch_addr(void);

View File

@ -0,0 +1,108 @@
#include <stdbool.h>
#include <stdint.h>
#include <zephyr/types.h>
#include <zephyr/kernel.h>
#include <zephyr/drivers/spi.h>
#include <zephyr/logging/log.h>
#include <zephyr/device.h>
#include <zephyr/devicetree.h>
#include <zephyr/sys/crc.h>
#include "int_comm_defs.h"
#include "spi.h"
#define MY_SPI_MASTER DT_NODELABEL(spi0)
static K_SEM_DEFINE(spi_comm_ok, 0, 1);
static K_FIFO_DEFINE(fifo_spi_tx_data);
typedef struct {
void *fifo_reserved;
uint8_t data[BLE_PACKET_SIZE + 2];
uint16_t len;
} spi_data_t;
const struct device *spi_dev;
static struct k_poll_signal spi_done_sig =
K_POLL_SIGNAL_INITIALIZER(spi_done_sig);
struct spi_cs_control spim_cs = {
.gpio = SPI_CS_GPIOS_DT_SPEC_GET(DT_NODELABEL(reg_my_spi_master)),
.delay = 0,
};
static const struct spi_config spi_cfg = {
.operation = SPI_WORD_SET(8) | SPI_TRANSFER_MSB,
.frequency = 8000000,
.slave = 0,
.cs =
{
.gpio = SPI_CS_GPIOS_DT_SPEC_GET(DT_NODELABEL(reg_my_spi_master)),
.delay = 0,
},
};
void spi_init(void) {
spi_dev = DEVICE_DT_GET(MY_SPI_MASTER);
if (!device_is_ready(spi_dev)) {
printk("SPI master device not ready!\n");
}
if (!device_is_ready(spim_cs.gpio.port)) {
printk("SPI master chip select device not ready!\n");
}
k_sem_give(&spi_comm_ok);
}
void spi_send(const uint8_t *data, uint32_t len) {
if (len != 244) {
// unexpected length
return;
}
spi_data_t *tx = k_malloc(sizeof(*tx));
if (!tx) {
printk("Not able to allocate SPI send data buffer\n");
return;
}
tx->len = len + 2;
tx->data[0] = EXTERNAL_MESSAGE;
memcpy(&tx->data[1], data, len);
uint8_t crc = crc8(tx->data, len + 1, 0x07, 0x00, false);
tx->data[len + 1] = crc;
k_fifo_put(&fifo_spi_tx_data, tx);
}
void spi_thread(void) {
/* Don't go any further until BLE is initialized */
k_sem_take(&spi_comm_ok, K_FOREVER);
for (;;) {
/* Wait indefinitely for data to process */
spi_data_t *buf = k_fifo_get(&fifo_spi_tx_data, K_FOREVER);
const struct spi_buf tx_buf = {
.buf = buf->data,
.len = buf->len,
};
const struct spi_buf_set tx = {.buffers = &tx_buf, .count = 1};
spi_transceive(spi_dev, &spi_cfg, &tx, NULL);
printk("SPI Data sent\n");
k_free(buf);
}
}
K_THREAD_DEFINE(spi_thread_id, CONFIG_BT_NUS_THREAD_STACK_SIZE, spi_thread,
NULL, NULL, NULL, 7, 0, 0);

View File

@ -0,0 +1,6 @@
#include <stdint.h>
void spi_init(void);
void spi_send(const uint8_t* data, uint32_t len);

View File

@ -0,0 +1,90 @@
/*
* Copyright (c) 2018 Nordic Semiconductor ASA
*
* SPDX-License-Identifier: LicenseRef-Nordic-5-Clause
*/
#include <zephyr/bluetooth/conn.h>
#include <zephyr/bluetooth/gatt.h>
#include <zephyr/bluetooth/uuid.h>
#include <zephyr/logging/log.h>
#include "trz_nus.h"
LOG_MODULE_REGISTER(trznus);
static struct bt_nus_cb nus_cb;
static void nus_ccc_cfg_changed(const struct bt_gatt_attr *attr,
uint16_t value) {
if (nus_cb.send_enabled) {
LOG_DBG("Notification has been turned %s",
value == BT_GATT_CCC_NOTIFY ? "on" : "off");
nus_cb.send_enabled(value == BT_GATT_CCC_NOTIFY
? BT_NUS_SEND_STATUS_ENABLED
: BT_NUS_SEND_STATUS_DISABLED);
}
}
static ssize_t on_receive(struct bt_conn *conn, const struct bt_gatt_attr *attr,
const void *buf, uint16_t len, uint16_t offset,
uint8_t flags) {
LOG_DBG("Received data, handle %d, conn %p", attr->handle, (void *)conn);
if (nus_cb.received) {
nus_cb.received(conn, buf, len);
}
return len;
}
static void on_sent(struct bt_conn *conn, void *user_data) {
uart_data_t *data = (uart_data_t *)user_data;
k_free(data);
LOG_DBG("Data send, conn %p", (void *)conn);
if (nus_cb.sent) {
nus_cb.sent(conn);
}
}
/* UART Service Declaration */
BT_GATT_SERVICE_DEFINE(
nus_svc, BT_GATT_PRIMARY_SERVICE(BT_UUID_NUS_SERVICE),
BT_GATT_CHARACTERISTIC(BT_UUID_NUS_TX, BT_GATT_CHRC_NOTIFY,
BT_GATT_PERM_READ_ENCRYPT, NULL, NULL, NULL),
BT_GATT_CCC(nus_ccc_cfg_changed,
BT_GATT_PERM_READ_ENCRYPT | BT_GATT_PERM_WRITE_ENCRYPT),
BT_GATT_CHARACTERISTIC(BT_UUID_NUS_RX,
BT_GATT_CHRC_WRITE | BT_GATT_CHRC_WRITE_WITHOUT_RESP,
BT_GATT_PERM_READ_ENCRYPT |
BT_GATT_PERM_WRITE_ENCRYPT,
NULL, on_receive, NULL), );
int bt_nus_init(struct bt_nus_cb *callbacks) {
if (callbacks) {
nus_cb.received = callbacks->received;
nus_cb.sent = callbacks->sent;
}
return 0;
}
int bt_nus_send(struct bt_conn *conn, uart_data_t *data) {
struct bt_gatt_notify_params params = {0};
const struct bt_gatt_attr *attr = &nus_svc.attrs[2];
params.attr = attr;
params.data = data->data;
params.len = data->len;
params.func = on_sent;
params.user_data = (void *)data;
if (conn && bt_gatt_is_subscribed(conn, attr, BT_GATT_CCC_NOTIFY)) {
return bt_gatt_notify_cb(conn, &params);
} else {
return -EINVAL;
}
}

View File

@ -0,0 +1,137 @@
/*
* Copyright (c) 2018 Nordic Semiconductor ASA
*
* SPDX-License-Identifier: LicenseRef-Nordic-5-Clause
*/
#ifndef BT_NUS_H_
#define BT_NUS_H_
/**
* @file
* @defgroup bt_nus Nordic UART (NUS) GATT Service
* @{
* @brief Nordic UART (NUS) GATT Service API.
*/
#include <zephyr/bluetooth/conn.h>
#include <zephyr/bluetooth/gatt.h>
#include <zephyr/bluetooth/uuid.h>
#include <zephyr/types.h>
#include "uart.h"
#ifdef __cplusplus
extern "C" {
#endif
/** @brief UUID of the NUS Service. **/
#define BT_UUID_NUS_VAL \
BT_UUID_128_ENCODE(0x8c000001, 0xa59b, 0x4d58, 0xa9ad, 0x073df69fa1b1)
/** @brief UUID of the TX Characteristic. **/
#define BT_UUID_NUS_TX_VAL \
BT_UUID_128_ENCODE(0x8c000003, 0xa59b, 0x4d58, 0xa9ad, 0x073df69fa1b1)
/** @brief UUID of the RX Characteristic. **/
#define BT_UUID_NUS_RX_VAL \
BT_UUID_128_ENCODE(0x8c000002, 0xa59b, 0x4d58, 0xa9ad, 0x073df69fa1b1)
#define BT_UUID_NUS_SERVICE BT_UUID_DECLARE_128(BT_UUID_NUS_VAL)
#define BT_UUID_NUS_RX BT_UUID_DECLARE_128(BT_UUID_NUS_RX_VAL)
#define BT_UUID_NUS_TX BT_UUID_DECLARE_128(BT_UUID_NUS_TX_VAL)
/** @brief NUS send status. */
enum bt_nus_send_status {
/** Send notification enabled. */
BT_NUS_SEND_STATUS_ENABLED,
/** Send notification disabled. */
BT_NUS_SEND_STATUS_DISABLED,
};
/** @brief Pointers to the callback functions for service events. */
struct bt_nus_cb {
/** @brief Data received callback.
*
* The data has been received as a write request on the NUS RX
* Characteristic.
*
* @param[in] conn Pointer to connection object that has received data.
* @param[in] data Received data.
* @param[in] len Length of received data.
*/
void (*received)(struct bt_conn *conn, const uint8_t *const data,
uint16_t len);
/** @brief Data sent callback.
*
* The data has been sent as a notification and written on the NUS TX
* Characteristic.
*
* @param[in] conn Pointer to connection object, or NULL if sent to all
* connected peers.
*/
void (*sent)(struct bt_conn *conn);
/** @brief Send state callback.
*
* Indicate the
* CCCD descriptor status of the NUS TX characteristic.
*
* @param[in] status Send notification status.
*/
void (*send_enabled)(enum bt_nus_send_status status);
};
/**@brief Initialize the service.
*
* @details This function registers a GATT service with two characteristics,
* TX and RX. A remote device that is connected to this service
* can send data to the RX Characteristic. When the remote enables
* notifications, it is notified when data is sent to the TX
* Characteristic.
*
* @param[in] callbacks Struct with function pointers to callbacks for service
* events. If no callbacks are needed, this parameter can
* be NULL.
*
* @retval 0 If initialization is successful.
* Otherwise, a negative value is returned.
*/
int bt_nus_init(struct bt_nus_cb *callbacks);
/**@brief Send data.
*
* @details This function sends data to a connected peer, or all connected
* peers.
*
* @param[in] conn Pointer to connection object, or NULL to send to all
* connected peers.
* @param[in] buf Pointer to a data buffer.
*
* @retval 0 If the data is sent.
* Otherwise, a negative value is returned.
*/
int bt_nus_send(struct bt_conn *conn, uart_data_t *data);
/**@brief Get maximum data length that can be used for @ref bt_nus_send.
*
* @param[in] conn Pointer to connection Object.
*
* @return Maximum data length.
*/
static inline uint32_t bt_nus_get_mtu(struct bt_conn *conn) {
/* According to 3.4.7.1 Handle Value Notification off the ATT protocol.
* Maximum supported notification is ATT_MTU - 3 */
return bt_gatt_get_mtu(conn) - 3;
}
#ifdef __cplusplus
}
#endif
/**
*@}
*/
#endif /* BT_NUS_H_ */

View File

@ -0,0 +1,360 @@
#include <zephyr/drivers/uart.h>
#include <zephyr/kernel.h>
#include <zephyr/types.h>
#include <zephyr/device.h>
#include <zephyr/devicetree.h>
#include <dk_buttons_and_leds.h>
#include <zephyr/logging/log.h>
#include <zephyr/settings/settings.h>
#include <zephyr/sys/crc.h>
#include "events.h"
#include "int_comm.h"
#include "int_comm_defs.h"
#include "uart.h"
#define LOG_MODULE_NAME fw_uart
LOG_MODULE_REGISTER(LOG_MODULE_NAME);
#define UART_WAIT_FOR_BUF_DELAY K_MSEC(50)
#define UART_WAIT_FOR_RX CONFIG_BT_NUS_UART_RX_WAIT_TIME
static const struct device *uart = DEVICE_DT_GET(DT_CHOSEN(nordic_nus_uart));
static K_FIFO_DEFINE(fifo_uart_tx_data);
static K_FIFO_DEFINE(fifo_uart_rx_data);
static K_FIFO_DEFINE(fifo_uart_rx_data_int);
static struct k_work_delayable uart_work;
static volatile bool g_uart_rx_running = false;
static void uart_cb(const struct device *dev, struct uart_event *evt,
void *user_data) {
ARG_UNUSED(dev);
static size_t aborted_len;
uart_data_t *buf;
static uint8_t *aborted_buf;
static bool disable_req;
static uint8_t rx_phase = 0;
static uint8_t rx_msg_type = 0;
static uint8_t rx_data_len = 0;
static uint8_t rx_len = 0;
static uint8_t crc = 0;
switch (evt->type) {
case UART_TX_DONE:
LOG_DBG("UART_TX_DONE");
if (evt->data.tx.buf == NULL) {
return;
}
if (evt->data.tx.len == 0) {
buf = CONTAINER_OF(evt->data.tx.buf, uart_data_t, data[0]);
LOG_DBG("Free uart data");
k_free(buf);
return;
}
if (aborted_buf) {
buf = CONTAINER_OF(aborted_buf, uart_data_t, data[0]);
aborted_buf = NULL;
aborted_len = 0;
} else {
buf = CONTAINER_OF(evt->data.tx.buf, uart_data_t, data[0]);
}
LOG_DBG("Free uart data");
k_free(buf);
buf = k_fifo_get(&fifo_uart_tx_data, K_NO_WAIT);
if (!buf) {
return;
}
if (!uart_tx(uart, buf->data, buf->len, SYS_FOREVER_MS)) {
LOG_WRN("FREE: Failed to send data over UART");
}
break;
case UART_RX_RDY:
// LOG_WRN("UART_RX_RDY");
buf = CONTAINER_OF(evt->data.rx.buf, uart_data_t, data[0]);
buf->len += evt->data.rx.len;
switch (rx_phase) {
case 0:
if (buf->len == 1 && (buf->data[0] == INTERNAL_EVENT ||
buf->data[0] == EXTERNAL_MESSAGE)) {
rx_phase = 1;
rx_msg_type = buf->data[0];
crc = crc8(buf->data, buf->len, 0x07, 0x00, false);
} else {
rx_phase = 0;
}
break;
case 1:
if (buf->len == 1) {
rx_data_len = buf->data[0];
crc = crc8(buf->data, buf->len, 0x07, crc, false);
rx_phase = 2;
} else {
rx_phase = 0;
}
break;
case 2:
if (buf->len != rx_data_len - COMM_HEADER_SIZE) {
rx_phase = 0;
}
crc = crc8(buf->data, buf->len - 1, 0x07, crc, false);
if (crc != buf->data[buf->len - 1]) {
LOG_WRN("UART_RX CRC ERROR");
rx_phase = 0;
}
rx_phase = 3;
break;
}
// if (disable_req) {
// return;
// }
// if ((evt->data.rx.buf[buf->len - 1] == '\n') ||
// (evt->data.rx.buf[buf->len - 1] == '\r')) {
// disable_req = true;
// uart_rx_disable(uart);
// }
break;
case UART_RX_DISABLED:
LOG_DBG("UART_RX_DISABLED");
disable_req = false;
LOG_DBG("UART_RX_MALLOC");
buf = k_malloc(sizeof(*buf));
if (buf) {
switch (rx_phase) {
case 0:
rx_len = 1;
break;
case 1:
rx_len = 1;
break;
case 2:
rx_len = rx_data_len - COMM_HEADER_SIZE;
break;
default:
rx_len = 1;
break;
}
buf->len = 0;
uart_rx_enable(uart, buf->data, rx_len, SYS_FOREVER_US);
} else {
LOG_WRN("Not able to allocate UART receive buffer");
k_work_reschedule(&uart_work, UART_WAIT_FOR_BUF_DELAY);
g_uart_rx_running = false;
}
// buf = k_malloc(sizeof(*buf));
// if (buf) {
// buf->len = 0;
// } else {
// LOG_WRN("Not able to allocate UART receive
// buffer");
//
// return;
// }
//
// uart_rx_enable(uart, buf->data, sizeof(buf->data),
// UART_WAIT_FOR_RX);
break;
// case UART_RX_BUF_REQUEST:
// LOG_INF("UART_RX_BUF_REQUEST");
// buf = k_malloc(sizeof(*buf));
//
//
// if (buf) {
//
// switch (rx_phase) {
// case 0:
// rx_len = 1;
// break;
// case 1:
// rx_len = 2;
// break;
// default:
// rx_len = 1;
// break;
// }
//
// buf->len = 0;
// LOG_INF("Providing buf %d", rx_len);
// uart_rx_buf_rsp(uart, buf->data, rx_len);
// } else {
// LOG_WRN("Not able to allocate UART receive
// buffer");
// }
//
// break;
case UART_RX_BUF_RELEASED:
LOG_DBG("UART_RX_BUF_RELEASED");
buf = CONTAINER_OF(evt->data.rx_buf.buf, uart_data_t, data[0]);
if (rx_phase == 3 && buf->len > 0) {
buf->len -= COMM_FOOTER_SIZE;
if (rx_msg_type == EXTERNAL_MESSAGE) {
k_fifo_put(&fifo_uart_rx_data, buf);
} else if (rx_msg_type == INTERNAL_EVENT) {
k_fifo_put(&fifo_uart_rx_data_int, buf);
} else {
// LOG_WRN("UART_RX BAD MASSAGE TYPE");
k_free(buf);
}
rx_data_len = 0;
rx_len = 0;
rx_msg_type = 0;
rx_phase = 0;
} else {
k_free(buf);
}
break;
case UART_RX_STOPPED:
LOG_DBG("UART_RX_STOPPED");
g_uart_rx_running = false;
rx_data_len = 0;
rx_len = 0;
rx_msg_type = 0;
rx_phase = 0;
k_work_reschedule(&uart_work, UART_WAIT_FOR_BUF_DELAY);
break;
case UART_TX_ABORTED:
LOG_DBG("UART_TX_ABORTED");
if (!aborted_buf) {
aborted_buf = (uint8_t *)evt->data.tx.buf;
}
aborted_len += evt->data.tx.len;
buf = CONTAINER_OF(aborted_buf, uart_data_t, data[0]);
uart_tx(uart, &buf->data[aborted_len], buf->len - aborted_len,
SYS_FOREVER_MS);
break;
default:
break;
}
}
int uart_start_rx(void) {
int err;
uart_data_t *rx;
rx = k_malloc(sizeof(*rx));
if (rx) {
rx->len = 0;
} else {
return -ENOMEM;
}
// receive message type
err = uart_rx_enable(uart, rx->data, 1, SYS_FOREVER_US);
if (err) {
LOG_ERR("Cannot enable uart reception (err: %d)", err);
/* Free the rx buffer only because the tx buffer will be handled in the
* callback */
k_free(rx);
} else {
g_uart_rx_running = true;
}
return err;
}
static void uart_work_handler(struct k_work *item) {
uart_data_t *buf;
buf = k_malloc(sizeof(*buf));
if (buf) {
buf->len = 0;
} else {
LOG_WRN("Not able to allocate UART receive buffer");
k_work_reschedule(&uart_work, UART_WAIT_FOR_BUF_DELAY);
return;
}
uart_rx_enable(uart, buf->data, 1, SYS_FOREVER_US);
}
int uart_init(void) {
int err;
if (!device_is_ready(uart)) {
return -ENODEV;
}
k_work_init_delayable(&uart_work, uart_work_handler);
struct uart_config cfg = {
.baudrate = 1000000,
.parity = UART_CFG_PARITY_NONE,
.stop_bits = UART_CFG_STOP_BITS_1,
.data_bits = UART_CFG_DATA_BITS_8,
.flow_ctrl = UART_CFG_FLOW_CTRL_RTS_CTS,
};
uart_configure(uart, &cfg);
err = uart_callback_set(uart, uart_cb, NULL);
if (err) {
LOG_ERR("Cannot initialize UART callback");
return err;
}
return uart_start_rx();
}
void uart_send_ext(uart_data_t *tx) { k_fifo_put(&fifo_uart_rx_data, tx); }
uart_data_t *uart_get_data_ext(void) {
return k_fifo_get(&fifo_uart_rx_data, K_FOREVER);
}
uart_data_t *uart_get_data_int(void) {
return k_fifo_get(&fifo_uart_rx_data_int, K_FOREVER);
}
//
// uart_data_t *uart_get_data_pb(void)
//{
// return k_fifo_get(&fifo_uart_rx_data_pb, K_MSEC(100));
//}
//
// void uart_data_pb_flush(void){
// while(uart_get_data_pb() != NULL);
//}
void uart_send(uart_data_t *tx) {
int err = uart_tx(uart, tx->data, tx->len, SYS_FOREVER_MS);
if (err) {
k_fifo_put(&fifo_uart_tx_data, tx);
}
}

View File

@ -0,0 +1,22 @@
#ifndef UART_H
#define UART_H
#define UART_BUF_SIZE 247
typedef struct {
void *fifo_reserved;
uint8_t data[UART_BUF_SIZE];
uint16_t len;
} uart_data_t;
int uart_init(void);
uart_data_t *uart_get_data_ext(void);
uart_data_t *uart_get_data_int(void);
// uart_data_t * uart_get_data_pb(void);
// void uart_data_pb_flush(void);
void uart_send(uart_data_t *data);
void uart_send_ext(uart_data_t *tx);
#endif

21
west/trezor/west.yml Normal file
View File

@ -0,0 +1,21 @@
# Copyright (c) 2021 Nordic Semiconductor ASA
# SPDX-License-Identifier: Apache-2.0
manifest:
self:
west-commands: scripts/west-commands.yml
remotes:
- name: ncs
url-base: https://github.com/nrfconnect
projects:
- name: nrf
remote: ncs
repo-path: sdk-nrf
revision: v2.7.0
import: true
- name: mcuboot
url: https://github.com/hiviah/mcuboot
path: bootloader/mcuboot
revision: edfe1e1465dbc698bf9a195816247913490ab391

View File

@ -0,0 +1,20 @@
# Copyright (c) 2021 Nordic Semiconductor ASA
# SPDX-License-Identifier: Apache-2.0
build:
# Path to the Kconfig file that will be sourced into Zephyr Kconfig tree under
# Zephyr > Modules > example-application. Path is relative from root of this
# repository.
kconfig: Kconfig
# Path to the folder that contains the CMakeLists.txt file to be included by
# Zephyr build system. The `.` is the root of this repository.
cmake: .
settings:
# Additional roots for boards and DTS files. Zephyr will use the
# `<board_root>/boards` for additional boards. The `.` is the root of this
# repository.
board_root: .
# Zephyr will use the `<dts_root>/dts` for additional dts files and
# `<dts_root>/dts/bindings` for additional dts binding files. The `.` is
# the root of this repository.
dts_root: .