1
0
mirror of https://github.com/trezor/trezor-firmware.git synced 2024-12-30 01:58:11 +00:00
trezor-firmware/core/embed/bootloader/messages.c

849 lines
28 KiB
C
Raw Normal View History

2018-02-26 13:06:10 +00:00
/*
* This file is part of the Trezor project, https://trezor.io/
2018-02-26 13:06:10 +00:00
*
* Copyright (c) SatoshiLabs
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <string.h>
2017-10-16 16:03:04 +00:00
#include <pb.h>
#include <pb_decode.h>
2017-06-14 18:40:31 +00:00
#include <pb_encode.h>
#include "messages.pb.h"
2017-04-15 15:44:19 +00:00
#include "boot_args.h"
2017-06-20 15:32:21 +00:00
#include "common.h"
#include "flash.h"
2017-10-16 16:03:04 +00:00
#include "image.h"
#include "secbool.h"
#include "secret.h"
#include "unit_variant.h"
#include "usb.h"
#include "version.h"
2017-12-17 00:09:45 +00:00
#include "bootui.h"
#include "messages.h"
#include "rust_ui.h"
#include "memzero.h"
#include "model.h"
#ifdef TREZOR_EMULATOR
#include "emulator.h"
#endif
#if USE_OPTIGA
#include "secret.h"
#endif
2017-10-16 16:03:04 +00:00
#define MSG_HEADER1_LEN 9
#define MSG_HEADER2_LEN 1
secbool msg_parse_header(const uint8_t *buf, uint16_t *msg_id,
uint32_t *msg_size) {
if (buf[0] != '?' || buf[1] != '#' || buf[2] != '#') {
return secfalse;
}
*msg_id = (buf[3] << 8) + buf[4];
*msg_size = (buf[5] << 24) + (buf[6] << 16) + (buf[7] << 8) + buf[8];
return sectrue;
2017-06-14 18:40:31 +00:00
}
2017-06-14 21:18:00 +00:00
typedef struct {
uint8_t iface_num;
uint8_t packet_index;
uint8_t packet_pos;
uint8_t buf[USB_PACKET_SIZE];
2017-06-14 21:18:00 +00:00
} usb_write_state;
/* we don't use secbool/sectrue/secfalse here as it is a nanopb api */
static bool _usb_write(pb_ostream_t *stream, const pb_byte_t *buf,
size_t count) {
usb_write_state *state = (usb_write_state *)(stream->state);
size_t written = 0;
// while we have data left
while (written < count) {
size_t remaining = count - written;
// if all remaining data fit into our packet
if (state->packet_pos + remaining <= USB_PACKET_SIZE) {
// append data from buf to state->buf
memcpy(state->buf + state->packet_pos, buf + written, remaining);
// advance position
state->packet_pos += remaining;
// and return
return true;
} else {
// append data that fits
memcpy(state->buf + state->packet_pos, buf + written,
USB_PACKET_SIZE - state->packet_pos);
written += USB_PACKET_SIZE - state->packet_pos;
// send packet
int r = usb_webusb_write_blocking(state->iface_num, state->buf,
USB_PACKET_SIZE, USB_TIMEOUT);
ensure(sectrue * (r == USB_PACKET_SIZE), NULL);
// prepare new packet
state->packet_index++;
memzero(state->buf, USB_PACKET_SIZE);
state->buf[0] = '?';
state->packet_pos = MSG_HEADER2_LEN;
2017-06-14 18:40:31 +00:00
}
}
2017-06-14 21:18:00 +00:00
return true;
2017-06-14 21:18:00 +00:00
}
static void _usb_write_flush(usb_write_state *state) {
// if packet is not filled up completely
if (state->packet_pos < USB_PACKET_SIZE) {
// pad it with zeroes
memzero(state->buf + state->packet_pos,
USB_PACKET_SIZE - state->packet_pos);
}
// send packet
int r = usb_webusb_write_blocking(state->iface_num, state->buf,
USB_PACKET_SIZE, USB_TIMEOUT);
ensure(sectrue * (r == USB_PACKET_SIZE), NULL);
2017-06-14 18:40:31 +00:00
}
static secbool _send_msg(uint8_t iface_num, uint16_t msg_id,
const pb_msgdesc_t *fields, const void *msg) {
// determine message size by serializing it into a dummy stream
pb_ostream_t sizestream = {.callback = NULL,
.state = NULL,
.max_size = SIZE_MAX,
.bytes_written = 0,
.errmsg = NULL};
if (false == pb_encode(&sizestream, fields, msg)) {
return secfalse;
}
const uint32_t msg_size = sizestream.bytes_written;
usb_write_state state = {
.iface_num = iface_num,
.packet_index = 0,
.packet_pos = MSG_HEADER1_LEN,
.buf =
{
'?',
'#',
'#',
(msg_id >> 8) & 0xFF,
msg_id & 0xFF,
(msg_size >> 24) & 0xFF,
(msg_size >> 16) & 0xFF,
(msg_size >> 8) & 0xFF,
msg_size & 0xFF,
},
};
pb_ostream_t stream = {.callback = &_usb_write,
.state = &state,
.max_size = SIZE_MAX,
.bytes_written = 0,
.errmsg = NULL};
if (false == pb_encode(&stream, fields, msg)) {
return secfalse;
}
_usb_write_flush(&state);
return sectrue;
2017-06-14 18:40:31 +00:00
}
#define MSG_SEND_INIT(TYPE) TYPE msg_send = TYPE##_init_default
#define MSG_SEND_ASSIGN_REQUIRED_VALUE(FIELD, VALUE) \
{ msg_send.FIELD = VALUE; }
#define MSG_SEND_ASSIGN_VALUE(FIELD, VALUE) \
{ \
msg_send.has_##FIELD = true; \
msg_send.FIELD = VALUE; \
}
#define MSG_SEND_ASSIGN_STRING(FIELD, VALUE) \
{ \
msg_send.has_##FIELD = true; \
memzero(msg_send.FIELD, sizeof(msg_send.FIELD)); \
strncpy(msg_send.FIELD, VALUE, sizeof(msg_send.FIELD) - 1); \
}
#define MSG_SEND_ASSIGN_STRING_LEN(FIELD, VALUE, LEN) \
{ \
msg_send.has_##FIELD = true; \
memzero(msg_send.FIELD, sizeof(msg_send.FIELD)); \
strncpy(msg_send.FIELD, VALUE, MIN(LEN, sizeof(msg_send.FIELD) - 1)); \
}
#define MSG_SEND_ASSIGN_BYTES(FIELD, VALUE, LEN) \
{ \
msg_send.has_##FIELD = true; \
memzero(msg_send.FIELD.bytes, sizeof(msg_send.FIELD.bytes)); \
memcpy(msg_send.FIELD.bytes, VALUE, \
MIN(LEN, sizeof(msg_send.FIELD.bytes))); \
msg_send.FIELD.size = MIN(LEN, sizeof(msg_send.FIELD.bytes)); \
}
#define MSG_SEND(TYPE) \
_send_msg(iface_num, MessageType_MessageType_##TYPE, TYPE##_fields, &msg_send)
typedef struct {
uint8_t iface_num;
uint8_t packet_index;
uint8_t packet_pos;
uint8_t *buf;
} usb_read_state;
2017-06-14 18:40:31 +00:00
static void _usb_webusb_read_retry(uint8_t iface_num, uint8_t *buf) {
for (int retry = 0;; retry++) {
int r =
usb_webusb_read_blocking(iface_num, buf, USB_PACKET_SIZE, USB_TIMEOUT);
if (r != USB_PACKET_SIZE) { // reading failed
if (r == 0 && retry < 10) {
// only timeout => let's try again
continue;
} else {
// error
error_shutdown_ex("USB ERROR",
"Error reading from USB. Try different USB cable.",
NULL);
}
}
return; // success
}
}
/* we don't use secbool/sectrue/secfalse here as it is a nanopb api */
static bool _usb_read(pb_istream_t *stream, uint8_t *buf, size_t count) {
usb_read_state *state = (usb_read_state *)(stream->state);
size_t read = 0;
// while we have data left
while (read < count) {
size_t remaining = count - read;
// if all remaining data fit into our packet
if (state->packet_pos + remaining <= USB_PACKET_SIZE) {
// append data from buf to state->buf
memcpy(buf + read, state->buf + state->packet_pos, remaining);
// advance position
state->packet_pos += remaining;
// and return
return true;
} else {
// append data that fits
memcpy(buf + read, state->buf + state->packet_pos,
USB_PACKET_SIZE - state->packet_pos);
read += USB_PACKET_SIZE - state->packet_pos;
// read next packet (with retry)
_usb_webusb_read_retry(state->iface_num, state->buf);
// prepare next packet
state->packet_index++;
state->packet_pos = MSG_HEADER2_LEN;
2017-06-16 13:40:27 +00:00
}
}
return true;
}
static void _usb_read_flush(usb_read_state *state) { (void)state; }
static secbool _recv_msg(uint8_t iface_num, uint32_t msg_size, uint8_t *buf,
const pb_msgdesc_t *fields, void *msg) {
usb_read_state state = {.iface_num = iface_num,
.packet_index = 0,
.packet_pos = MSG_HEADER1_LEN,
.buf = buf};
pb_istream_t stream = {.callback = &_usb_read,
.state = &state,
.bytes_left = msg_size,
.errmsg = NULL};
if (false == pb_decode_noinit(&stream, fields, msg)) {
return secfalse;
}
_usb_read_flush(&state);
return sectrue;
2017-06-16 13:40:27 +00:00
}
#define MSG_RECV_INIT(TYPE) TYPE msg_recv = TYPE##_init_default
#define MSG_RECV_CALLBACK(FIELD, CALLBACK, ARGUMENT) \
{ \
msg_recv.FIELD.funcs.decode = &CALLBACK; \
msg_recv.FIELD.arg = (void *)ARGUMENT; \
}
#define MSG_RECV(TYPE) \
_recv_msg(iface_num, msg_size, buf, TYPE##_fields, &msg_recv)
void send_user_abort(uint8_t iface_num, const char *msg) {
MSG_SEND_INIT(Failure);
MSG_SEND_ASSIGN_VALUE(code, FailureType_Failure_ActionCancelled);
MSG_SEND_ASSIGN_STRING(message, msg);
MSG_SEND(Failure);
}
static void send_msg_features(uint8_t iface_num,
const vendor_header *const vhdr,
const image_header *const hdr) {
MSG_SEND_INIT(Features);
MSG_SEND_ASSIGN_STRING(vendor, "trezor.io");
MSG_SEND_ASSIGN_REQUIRED_VALUE(major_version, VERSION_MAJOR);
MSG_SEND_ASSIGN_REQUIRED_VALUE(minor_version, VERSION_MINOR);
MSG_SEND_ASSIGN_REQUIRED_VALUE(patch_version, VERSION_PATCH);
MSG_SEND_ASSIGN_VALUE(bootloader_mode, true);
MSG_SEND_ASSIGN_STRING(model, MODEL_NAME);
MSG_SEND_ASSIGN_STRING(internal_model, MODEL_INTERNAL_NAME);
if (vhdr && hdr) {
MSG_SEND_ASSIGN_VALUE(firmware_present, true);
MSG_SEND_ASSIGN_VALUE(fw_major, (hdr->version & 0xFF));
MSG_SEND_ASSIGN_VALUE(fw_minor, ((hdr->version >> 8) & 0xFF));
MSG_SEND_ASSIGN_VALUE(fw_patch, ((hdr->version >> 16) & 0xFF));
MSG_SEND_ASSIGN_STRING_LEN(fw_vendor, vhdr->vstr, vhdr->vstr_len);
} else {
MSG_SEND_ASSIGN_VALUE(firmware_present, false);
}
if (unit_variant_present()) {
MSG_SEND_ASSIGN_VALUE(unit_color, unit_variant_get_color());
MSG_SEND_ASSIGN_VALUE(unit_packaging, unit_variant_get_packaging());
MSG_SEND_ASSIGN_VALUE(unit_btconly, unit_variant_get_btconly());
}
#if USE_OPTIGA
MSG_SEND_ASSIGN_VALUE(bootloader_locked,
(secret_bootloader_locked() == sectrue));
#endif
MSG_SEND(Features);
2017-06-14 18:40:31 +00:00
}
void process_msg_Initialize(uint8_t iface_num, uint32_t msg_size, uint8_t *buf,
const vendor_header *const vhdr,
const image_header *const hdr) {
MSG_RECV_INIT(Initialize);
MSG_RECV(Initialize);
send_msg_features(iface_num, vhdr, hdr);
}
void process_msg_GetFeatures(uint8_t iface_num, uint32_t msg_size, uint8_t *buf,
const vendor_header *const vhdr,
const image_header *const hdr) {
MSG_RECV_INIT(GetFeatures);
MSG_RECV(GetFeatures);
send_msg_features(iface_num, vhdr, hdr);
}
void process_msg_Ping(uint8_t iface_num, uint32_t msg_size, uint8_t *buf) {
MSG_RECV_INIT(Ping);
MSG_RECV(Ping);
2017-06-16 13:40:27 +00:00
MSG_SEND_INIT(Success);
MSG_SEND_ASSIGN_STRING(message, msg_recv.message);
MSG_SEND(Success);
2017-06-14 18:40:31 +00:00
}
static uint32_t firmware_remaining;
static uint32_t firmware_block;
static uint32_t chunk_requested;
static uint32_t erase_offset;
void process_msg_FirmwareErase(uint8_t iface_num, uint32_t msg_size,
uint8_t *buf) {
firmware_remaining = 0;
firmware_block = 0;
chunk_requested = 0;
erase_offset = 0;
MSG_RECV_INIT(FirmwareErase);
MSG_RECV(FirmwareErase);
firmware_remaining = msg_recv.has_length ? msg_recv.length : 0;
if ((firmware_remaining > 0) &&
((firmware_remaining % sizeof(uint32_t)) == 0) &&
(firmware_remaining <= FIRMWARE_IMAGE_MAXSIZE)) {
// request new firmware
chunk_requested = (firmware_remaining > IMAGE_INIT_CHUNK_SIZE)
? IMAGE_INIT_CHUNK_SIZE
: firmware_remaining;
MSG_SEND_INIT(FirmwareRequest);
MSG_SEND_ASSIGN_REQUIRED_VALUE(offset, 0);
MSG_SEND_ASSIGN_REQUIRED_VALUE(length, chunk_requested);
MSG_SEND(FirmwareRequest);
} else {
// invalid firmware size
MSG_SEND_INIT(Failure);
MSG_SEND_ASSIGN_VALUE(code, FailureType_Failure_ProcessError);
MSG_SEND_ASSIGN_STRING(message, "Wrong firmware size");
MSG_SEND(Failure);
}
}
static uint32_t chunk_size = 0;
__attribute__((section(".buf"))) uint32_t chunk_buffer[IMAGE_CHUNK_SIZE / 4];
#define CHUNK_BUFFER_PTR ((const uint8_t *const)&chunk_buffer)
/* we don't use secbool/sectrue/secfalse here as it is a nanopb api */
static bool _read_payload(pb_istream_t *stream, const pb_field_t *field,
void **arg) {
#define BUFSIZE 32768
size_t offset = (size_t)(*arg);
if (stream->bytes_left > IMAGE_CHUNK_SIZE) {
chunk_size = 0;
return false;
}
if (offset == 0) {
// clear chunk buffer
memset((uint8_t *)&chunk_buffer, 0xFF, IMAGE_CHUNK_SIZE);
}
uint32_t chunk_written = offset;
chunk_size = offset + stream->bytes_left;
while (stream->bytes_left) {
// update loader but skip first block
if (firmware_block > 0) {
ui_screen_install_progress_upload(
1000 * (firmware_block * IMAGE_CHUNK_SIZE + chunk_written) /
(firmware_block * IMAGE_CHUNK_SIZE + firmware_remaining));
}
// read data
if (!pb_read(
stream, (pb_byte_t *)(CHUNK_BUFFER_PTR + chunk_written),
(stream->bytes_left > BUFSIZE) ? BUFSIZE : stream->bytes_left)) {
chunk_size = 0;
return false;
}
chunk_written += BUFSIZE;
}
return true;
2017-06-14 18:40:31 +00:00
}
static int version_compare(uint32_t vera, uint32_t verb) {
/* Explicit casts so that we control how compiler does the unsigned shift
* and correctly then promote uint8_t to int without possibility of
* having implementation-defined right shift on negative int
* in case compiler promoted the wrong unsinged int
*/
int a, b;
a = (uint8_t)vera & 0xFF;
b = (uint8_t)verb & 0xFF;
if (a != b) return a - b;
a = (uint8_t)(vera >> 8) & 0xFF;
b = (uint8_t)(verb >> 8) & 0xFF;
if (a != b) return a - b;
a = (uint8_t)(vera >> 16) & 0xFF;
b = (uint8_t)(verb >> 16) & 0xFF;
if (a != b) return a - b;
a = (uint8_t)(vera >> 24) & 0xFF;
b = (uint8_t)(verb >> 24) & 0xFF;
return a - b;
}
static void detect_installation(const vendor_header *current_vhdr,
const image_header *current_hdr,
const vendor_header *const new_vhdr,
const image_header *const new_hdr,
secbool *is_new, secbool *keep_seed,
secbool *is_newvendor, secbool *is_upgrade) {
*is_new = secfalse;
*keep_seed = secfalse;
*is_newvendor = secfalse;
*is_upgrade = secfalse;
if (sectrue != check_vendor_header_keys(current_vhdr)) {
*is_new = sectrue;
return;
}
if (sectrue != check_image_model(current_hdr)) {
*is_new = sectrue;
return;
}
if (sectrue != check_image_header_sig(current_hdr, current_vhdr->vsig_m,
current_vhdr->vsig_n,
current_vhdr->vpub)) {
*is_new = sectrue;
return;
}
uint8_t hash1[32], hash2[32];
vendor_header_hash(new_vhdr, hash1);
vendor_header_hash(current_vhdr, hash2);
if (0 != memcmp(hash1, hash2, 32)) {
*is_newvendor = sectrue;
return;
}
if (version_compare(new_hdr->version, current_hdr->fix_version) < 0) {
return;
}
if (version_compare(new_hdr->version, current_hdr->version) > 0) {
*is_upgrade = sectrue;
}
*keep_seed = sectrue;
}
static int firmware_upload_chunk_retry = FIRMWARE_UPLOAD_CHUNK_RETRY_COUNT;
static size_t headers_offset = 0;
static size_t read_offset = 0;
int process_msg_FirmwareUpload(uint8_t iface_num, uint32_t msg_size,
uint8_t *buf) {
MSG_RECV_INIT(FirmwareUpload);
MSG_RECV_CALLBACK(payload, _read_payload, read_offset);
2021-03-04 10:59:38 +00:00
const secbool r = MSG_RECV(FirmwareUpload);
if (sectrue != r || chunk_size != (chunk_requested + read_offset)) {
MSG_SEND_INIT(Failure);
MSG_SEND_ASSIGN_VALUE(code, FailureType_Failure_ProcessError);
MSG_SEND_ASSIGN_STRING(message, "Invalid chunk size");
MSG_SEND(Failure);
return UPLOAD_ERR_INVALID_CHUNK_SIZE;
}
static image_header hdr;
if (firmware_block == 0) {
if (headers_offset == 0) {
// first block and headers are not yet parsed
vendor_header vhdr;
if (sectrue != read_vendor_header(CHUNK_BUFFER_PTR, &vhdr)) {
MSG_SEND_INIT(Failure);
MSG_SEND_ASSIGN_VALUE(code, FailureType_Failure_ProcessError);
MSG_SEND_ASSIGN_STRING(message, "Invalid vendor header");
MSG_SEND(Failure);
return UPLOAD_ERR_INVALID_VENDOR_HEADER;
}
if (sectrue != check_vendor_header_keys(&vhdr)) {
MSG_SEND_INIT(Failure);
MSG_SEND_ASSIGN_VALUE(code, FailureType_Failure_ProcessError);
MSG_SEND_ASSIGN_STRING(message, "Invalid vendor header signature");
MSG_SEND(Failure);
return UPLOAD_ERR_INVALID_VENDOR_HEADER_SIG;
}
const image_header *received_hdr =
read_image_header(CHUNK_BUFFER_PTR + vhdr.hdrlen,
FIRMWARE_IMAGE_MAGIC, FIRMWARE_IMAGE_MAXSIZE);
if (received_hdr !=
(const image_header *)(CHUNK_BUFFER_PTR + vhdr.hdrlen)) {
MSG_SEND_INIT(Failure);
MSG_SEND_ASSIGN_VALUE(code, FailureType_Failure_ProcessError);
MSG_SEND_ASSIGN_STRING(message, "Invalid firmware header");
MSG_SEND(Failure);
return UPLOAD_ERR_INVALID_IMAGE_HEADER;
}
if (sectrue != check_image_model(received_hdr)) {
MSG_SEND_INIT(Failure);
MSG_SEND_ASSIGN_VALUE(code, FailureType_Failure_ProcessError);
MSG_SEND_ASSIGN_STRING(message, "Wrong firmware model");
MSG_SEND(Failure);
return UPLOAD_ERR_INVALID_IMAGE_MODEL;
}
if (sectrue != check_image_header_sig(received_hdr, vhdr.vsig_m,
vhdr.vsig_n, vhdr.vpub)) {
MSG_SEND_INIT(Failure);
MSG_SEND_ASSIGN_VALUE(code, FailureType_Failure_ProcessError);
MSG_SEND_ASSIGN_STRING(message, "Invalid firmware signature");
MSG_SEND(Failure);
return UPLOAD_ERR_INVALID_IMAGE_HEADER_SIG;
}
memcpy(&hdr, received_hdr, sizeof(hdr));
vendor_header current_vhdr;
secbool is_new = secfalse;
if (sectrue !=
read_vendor_header((const uint8_t *)FIRMWARE_START, &current_vhdr)) {
is_new = sectrue;
}
const image_header *current_hdr = NULL;
if (is_new == secfalse) {
current_hdr = read_image_header(
(const uint8_t *)FIRMWARE_START + current_vhdr.hdrlen,
FIRMWARE_IMAGE_MAGIC, FIRMWARE_IMAGE_MAXSIZE);
if (current_hdr !=
(const image_header *)(FIRMWARE_START + current_vhdr.hdrlen)) {
is_new = sectrue;
}
}
secbool should_keep_seed = secfalse;
secbool is_newvendor = secfalse;
secbool is_upgrade = secfalse;
if (is_new == secfalse) {
detect_installation(&current_vhdr, current_hdr, &vhdr, &hdr, &is_new,
&should_keep_seed, &is_newvendor, &is_upgrade);
}
secbool is_ilu = secfalse; // interaction-less update
if (bootargs_get_command() == BOOT_COMMAND_INSTALL_UPGRADE) {
IMAGE_HASH_CTX ctx;
uint8_t hash[IMAGE_HASH_DIGEST_LENGTH];
IMAGE_HASH_INIT(&ctx);
IMAGE_HASH_UPDATE(&ctx, CHUNK_BUFFER_PTR,
vhdr.hdrlen + received_hdr->hdrlen);
IMAGE_HASH_FINAL(&ctx, hash);
// the firmware must be the same as confirmed by the user
if (memcmp(bootargs_get_args()->hash, hash, sizeof(hash)) != 0) {
MSG_SEND_INIT(Failure);
MSG_SEND_ASSIGN_VALUE(code, FailureType_Failure_ProcessError);
MSG_SEND_ASSIGN_STRING(message, "Firmware mismatch");
MSG_SEND(Failure);
return UPLOAD_ERR_FIRMWARE_MISMATCH;
}
// the firmware must be from the same vendor
// the firmware must be newer
if (is_upgrade != sectrue || is_newvendor != secfalse) {
MSG_SEND_INIT(Failure);
MSG_SEND_ASSIGN_VALUE(code, FailureType_Failure_ProcessError);
MSG_SEND_ASSIGN_STRING(message, "Not a firmware upgrade");
MSG_SEND(Failure);
return UPLOAD_ERR_NOT_FIRMWARE_UPGRADE;
}
if ((vhdr.vtrust & VTRUST_NO_WARNING) != VTRUST_NO_WARNING) {
MSG_SEND_INIT(Failure);
MSG_SEND_ASSIGN_VALUE(code, FailureType_Failure_ProcessError);
MSG_SEND_ASSIGN_STRING(message, "Not a full-trust image");
MSG_SEND(Failure);
return UPLOAD_ERR_NOT_FULLTRUST_IMAGE;
}
// upload the firmware without confirmation
is_ilu = sectrue;
}
#if defined USE_OPTIGA && !defined STM32U5
if (sectrue != secret_wiped() &&
((vhdr.vtrust & VTRUST_SECRET_MASK) != VTRUST_SECRET_ALLOW)) {
MSG_SEND_INIT(Failure);
MSG_SEND_ASSIGN_VALUE(code, FailureType_Failure_ProcessError);
MSG_SEND_ASSIGN_STRING(message, "Install restricted");
MSG_SEND(Failure);
return UPLOAD_ERR_BOOTLOADER_LOCKED;
}
#endif
uint32_t response = INPUT_CANCEL;
if (sectrue == is_new || sectrue == is_ilu) {
// new installation or interaction less updated - auto confirm
response = INPUT_CONFIRM;
} else {
int version_cmp = version_compare(hdr.version, current_hdr->version);
response = ui_screen_install_confirm(&vhdr, &hdr, should_keep_seed,
is_newvendor, version_cmp);
}
if (INPUT_CANCEL == response) {
send_user_abort(iface_num, "Firmware install cancelled");
return UPLOAD_ERR_USER_ABORT;
}
ui_screen_install_start();
// if firmware is not upgrade, erase storage
if (sectrue != should_keep_seed) {
#ifdef STM32U5
secret_bhk_regenerate();
#endif
ensure(flash_area_erase_bulk(STORAGE_AREAS, STORAGE_AREAS_COUNT, NULL),
NULL);
}
headers_offset = IMAGE_HEADER_SIZE + vhdr.hdrlen;
read_offset = IMAGE_INIT_CHUNK_SIZE;
// request the rest of the first chunk
MSG_SEND_INIT(FirmwareRequest);
uint32_t chunk_limit = (firmware_remaining > IMAGE_CHUNK_SIZE)
? IMAGE_CHUNK_SIZE
: firmware_remaining;
chunk_requested = chunk_limit - read_offset;
MSG_SEND_ASSIGN_REQUIRED_VALUE(offset, read_offset);
MSG_SEND_ASSIGN_REQUIRED_VALUE(length, chunk_requested);
MSG_SEND(FirmwareRequest);
firmware_remaining -= read_offset;
return (int)firmware_remaining;
} else {
// first block with the headers parsed -> the first chunk is now complete
read_offset = 0;
}
}
// should not happen, but double-check
if (flash_area_get_address(&FIRMWARE_AREA, firmware_block * IMAGE_CHUNK_SIZE,
0) == NULL) {
MSG_SEND_INIT(Failure);
MSG_SEND_ASSIGN_VALUE(code, FailureType_Failure_ProcessError);
MSG_SEND_ASSIGN_STRING(message, "Firmware too big");
MSG_SEND(Failure);
return UPLOAD_ERR_FIRMWARE_TOO_BIG;
}
if (sectrue != check_single_hash(hdr.hashes + firmware_block * 32,
CHUNK_BUFFER_PTR + headers_offset,
chunk_size - headers_offset)) {
if (firmware_upload_chunk_retry > 0) {
--firmware_upload_chunk_retry;
MSG_SEND_INIT(FirmwareRequest);
MSG_SEND_ASSIGN_REQUIRED_VALUE(offset, firmware_block * IMAGE_CHUNK_SIZE);
MSG_SEND_ASSIGN_REQUIRED_VALUE(length, chunk_requested);
MSG_SEND(FirmwareRequest);
return (int)firmware_remaining;
}
MSG_SEND_INIT(Failure);
MSG_SEND_ASSIGN_VALUE(code, FailureType_Failure_ProcessError);
MSG_SEND_ASSIGN_STRING(message, "Invalid chunk hash");
MSG_SEND(Failure);
return UPLOAD_ERR_INVALID_CHUNK_HASH;
}
// buffer with the received data
const uint32_t *src = (const uint32_t *)CHUNK_BUFFER_PTR;
// number of received bytes
uint32_t bytes_remaining = chunk_size;
// offset into the FIRMWARE_AREA part of the flash
uint32_t write_offset = firmware_block * IMAGE_CHUNK_SIZE;
ensure((chunk_size % FLASH_BLOCK_SIZE == 0) * sectrue, NULL);
while (bytes_remaining > 0) {
// erase flash before writing
uint32_t bytes_erased = 0;
if (write_offset >= erase_offset) {
// erase the next flash section
ensure(
flash_area_erase_partial(&FIRMWARE_AREA, erase_offset, &bytes_erased),
NULL);
erase_offset += bytes_erased;
} else {
// some erased space left from the previous round => use it
bytes_erased = erase_offset - write_offset;
}
// write the received data
uint32_t bytes_to_write = MIN(bytes_erased, bytes_remaining);
ensure(flash_unlock_write(), NULL);
ensure(flash_area_write_data(&FIRMWARE_AREA, write_offset, src,
bytes_to_write),
NULL);
ensure(flash_lock_write(), NULL);
write_offset += bytes_to_write;
src += bytes_to_write / sizeof(uint32_t);
bytes_remaining -= bytes_to_write;
}
firmware_remaining -= chunk_requested;
if (firmware_remaining == 0) {
// erase the rest (unused part) of the FIRMWARE_AREA
uint32_t bytes_erased = 0;
do {
ensure(
flash_area_erase_partial(&FIRMWARE_AREA, erase_offset, &bytes_erased),
NULL);
erase_offset += bytes_erased;
} while (bytes_erased > 0);
}
headers_offset = 0;
firmware_block++;
firmware_upload_chunk_retry = FIRMWARE_UPLOAD_CHUNK_RETRY_COUNT;
if (firmware_remaining > 0) {
chunk_requested = (firmware_remaining > IMAGE_CHUNK_SIZE)
? IMAGE_CHUNK_SIZE
: firmware_remaining;
MSG_SEND_INIT(FirmwareRequest);
MSG_SEND_ASSIGN_REQUIRED_VALUE(offset, firmware_block * IMAGE_CHUNK_SIZE);
MSG_SEND_ASSIGN_REQUIRED_VALUE(length, chunk_requested);
MSG_SEND(FirmwareRequest);
} else {
MSG_SEND_INIT(Success);
MSG_SEND(Success);
}
return (int)firmware_remaining;
}
2017-06-16 13:40:27 +00:00
secbool bootloader_WipeDevice(void) {
return flash_area_erase(&WIPE_AREA, ui_screen_wipe_progress);
}
int process_msg_WipeDevice(uint8_t iface_num, uint32_t msg_size, uint8_t *buf) {
secbool wipe_result = bootloader_WipeDevice();
if (sectrue != wipe_result) {
MSG_SEND_INIT(Failure);
MSG_SEND_ASSIGN_VALUE(code, FailureType_Failure_ProcessError);
MSG_SEND_ASSIGN_STRING(message, "Could not erase flash");
2017-06-14 18:40:31 +00:00
MSG_SEND(Failure);
return WIPE_ERR_CANNOT_ERASE;
} else {
MSG_SEND_INIT(Success);
MSG_SEND(Success);
return WIPE_OK;
}
}
void process_msg_unknown(uint8_t iface_num, uint32_t msg_size, uint8_t *buf) {
// consume remaining message
int remaining_chunks = 0;
if (msg_size > (USB_PACKET_SIZE - MSG_HEADER1_LEN)) {
// calculate how many blocks need to be read to drain the message (rounded
// up to not leave any behind)
remaining_chunks = (msg_size - (USB_PACKET_SIZE - MSG_HEADER1_LEN) +
((USB_PACKET_SIZE - MSG_HEADER2_LEN) - 1)) /
(USB_PACKET_SIZE - MSG_HEADER2_LEN);
}
for (int i = 0; i < remaining_chunks; i++) {
// read next packet (with retry)
_usb_webusb_read_retry(iface_num, buf);
}
MSG_SEND_INIT(Failure);
MSG_SEND_ASSIGN_VALUE(code, FailureType_Failure_UnexpectedMessage);
MSG_SEND_ASSIGN_STRING(message, "Unexpected message");
MSG_SEND(Failure);
2017-04-15 15:44:19 +00:00
}
#if defined USE_OPTIGA && !defined STM32U5
void process_msg_UnlockBootloader(uint8_t iface_num, uint32_t msg_size,
uint8_t *buf) {
secret_erase();
MSG_SEND_INIT(Success);
MSG_SEND(Success);
}
#endif