2014-11-15 01:01:21 +00:00
|
|
|
/*
|
|
|
|
* This file is part of the TREZOR project.
|
|
|
|
*
|
|
|
|
* Copyright (C) 2014 Pavol Rusnak <stick@satoshilabs.com>
|
|
|
|
*
|
|
|
|
* This library is free software: you can redistribute it and/or modify
|
|
|
|
* it under the terms of the GNU Lesser General Public License as published by
|
|
|
|
* the Free Software Foundation, either version 3 of the License, or
|
|
|
|
* (at your option) any later version.
|
|
|
|
*
|
|
|
|
* This library is distributed in the hope that it will be useful,
|
|
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
|
|
* GNU Lesser General Public License for more details.
|
|
|
|
*
|
|
|
|
* You should have received a copy of the GNU Lesser General Public License
|
|
|
|
* along with this library. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include <string.h>
|
|
|
|
#include "crypto.h"
|
|
|
|
#include "sha2.h"
|
|
|
|
#include "ecdsa.h"
|
|
|
|
#include "pbkdf2.h"
|
|
|
|
#include "aes.h"
|
|
|
|
#include "hmac.h"
|
|
|
|
|
|
|
|
uint32_t ser_length(uint32_t len, uint8_t *out)
|
|
|
|
{
|
|
|
|
if (len < 253) {
|
|
|
|
out[0] = len & 0xFF;
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
if (len < 0x10000) {
|
|
|
|
out[0] = 253;
|
|
|
|
out[1] = len & 0xFF;
|
|
|
|
out[2] = (len >> 8) & 0xFF;
|
|
|
|
return 3;
|
|
|
|
}
|
|
|
|
out[0] = 254;
|
|
|
|
out[1] = len & 0xFF;
|
|
|
|
out[2] = (len >> 8) & 0xFF;
|
|
|
|
out[3] = (len >> 16) & 0xFF;
|
|
|
|
out[4] = (len >> 24) & 0xFF;
|
|
|
|
return 5;
|
|
|
|
}
|
|
|
|
|
|
|
|
uint32_t deser_length(const uint8_t *in, uint32_t *out)
|
|
|
|
{
|
|
|
|
if (in[0] < 253) {
|
|
|
|
*out = in[0];
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
if (in[0] == 253) {
|
|
|
|
*out = in[1] + (in[2] << 8);
|
|
|
|
return 1 + 2;
|
|
|
|
}
|
|
|
|
if (in[0] == 254) {
|
|
|
|
*out = in[1] + (in[2] << 8) + (in[3] << 16) + (in[4] << 24);
|
|
|
|
return 1 + 4;
|
|
|
|
}
|
|
|
|
*out = 0; // ignore 64 bit
|
|
|
|
return 1 + 8;
|
|
|
|
}
|
|
|
|
|
2014-12-08 20:21:44 +00:00
|
|
|
int cryptoMessageSign(const uint8_t *message, pb_size_t message_len, const uint8_t *privkey, uint8_t *signature)
|
2014-11-15 01:01:21 +00:00
|
|
|
{
|
|
|
|
SHA256_CTX ctx;
|
|
|
|
sha256_Init(&ctx);
|
|
|
|
sha256_Update(&ctx, (const uint8_t *)"\x18" "Bitcoin Signed Message:" "\n", 25);
|
|
|
|
uint8_t varint[5];
|
|
|
|
uint32_t l = ser_length(message_len, varint);
|
|
|
|
sha256_Update(&ctx, varint, l);
|
|
|
|
sha256_Update(&ctx, message, message_len);
|
|
|
|
uint8_t hash[32];
|
|
|
|
sha256_Final(hash, &ctx);
|
|
|
|
sha256_Raw(hash, 32, hash);
|
2014-12-08 20:21:44 +00:00
|
|
|
uint8_t pby;
|
|
|
|
ecdsa_sign_digest(privkey, hash, signature + 1, &pby);
|
|
|
|
signature[0] = 27 + pby + 4;
|
|
|
|
return 0;
|
2014-11-15 01:01:21 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
int cryptoMessageVerify(const uint8_t *message, pb_size_t message_len, const uint8_t *address_raw, const uint8_t *signature)
|
|
|
|
{
|
|
|
|
bignum256 r, s, e;
|
|
|
|
curve_point cp, cp2;
|
|
|
|
SHA256_CTX ctx;
|
|
|
|
uint8_t pubkey[65], addr_raw[21], hash[32];
|
|
|
|
|
|
|
|
uint8_t nV = signature[0];
|
|
|
|
if (nV < 27 || nV >= 35) {
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
bool compressed;
|
|
|
|
compressed = (nV >= 31);
|
|
|
|
if (compressed) {
|
|
|
|
nV -= 4;
|
|
|
|
}
|
|
|
|
uint8_t recid = nV - 27;
|
|
|
|
// read r and s
|
|
|
|
bn_read_be(signature + 1, &r);
|
|
|
|
bn_read_be(signature + 33, &s);
|
2014-12-08 20:21:44 +00:00
|
|
|
// x = r
|
|
|
|
memcpy(&cp.x, &r, sizeof(bignum256));
|
2014-11-15 01:01:21 +00:00
|
|
|
// compute y from x
|
|
|
|
uncompress_coords(recid % 2, &cp.x, &cp.y);
|
|
|
|
// calculate hash
|
|
|
|
sha256_Init(&ctx);
|
|
|
|
sha256_Update(&ctx, (const uint8_t *)"\x18" "Bitcoin Signed Message:" "\n", 25);
|
|
|
|
uint8_t varint[5];
|
|
|
|
uint32_t l = ser_length(message_len, varint);
|
|
|
|
sha256_Update(&ctx, varint, l);
|
|
|
|
sha256_Update(&ctx, message, message_len);
|
|
|
|
sha256_Final(hash, &ctx);
|
|
|
|
sha256_Raw(hash, 32, hash);
|
|
|
|
// e = -hash
|
|
|
|
bn_read_be(hash, &e);
|
|
|
|
bn_substract_noprime(&order256k1, &e, &e);
|
|
|
|
// r = r^-1
|
|
|
|
bn_inverse(&r, &order256k1);
|
|
|
|
point_multiply(&s, &cp, &cp);
|
|
|
|
scalar_multiply(&e, &cp2);
|
|
|
|
point_add(&cp2, &cp);
|
|
|
|
point_multiply(&r, &cp, &cp);
|
|
|
|
pubkey[0] = 0x04;
|
|
|
|
bn_write_be(&cp.x, pubkey + 1);
|
|
|
|
bn_write_be(&cp.y, pubkey + 33);
|
|
|
|
// check if the address is correct
|
|
|
|
if (compressed) {
|
|
|
|
pubkey[0] = 0x02 | (cp.y.val[0] & 0x01);
|
|
|
|
}
|
|
|
|
ecdsa_get_address_raw(pubkey, address_raw[0], addr_raw);
|
|
|
|
if (memcmp(addr_raw, address_raw, 21) != 0) {
|
|
|
|
return 2;
|
|
|
|
}
|
|
|
|
// check if signature verifies the digest
|
|
|
|
if (ecdsa_verify_digest(pubkey, signature + 1, hash) != 0) {
|
|
|
|
return 3;
|
|
|
|
}
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
// internal from ecdsa.c
|
|
|
|
int generate_k_random(bignum256 *k);
|
|
|
|
|
|
|
|
int cryptoMessageEncrypt(curve_point *pubkey, const uint8_t *msg, pb_size_t msg_size, bool display_only, uint8_t *nonce, pb_size_t *nonce_len, uint8_t *payload, pb_size_t *payload_len, uint8_t *hmac, pb_size_t *hmac_len, const uint8_t *privkey, const uint8_t *address_raw)
|
|
|
|
{
|
|
|
|
if (privkey && address_raw) { // signing == true
|
|
|
|
payload[0] = display_only ? 0x81 : 0x01;
|
|
|
|
uint32_t l = ser_length(msg_size, payload + 1);
|
|
|
|
memcpy(payload + 1 + l, msg, msg_size);
|
|
|
|
memcpy(payload + 1 + l + msg_size, address_raw, 21);
|
2014-12-08 20:21:44 +00:00
|
|
|
if (cryptoMessageSign(msg, msg_size, privkey, payload + 1 + l + msg_size + 21) != 0) {
|
2014-11-15 01:01:21 +00:00
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
*payload_len = 1 + l + msg_size + 21 + 65;
|
|
|
|
} else {
|
|
|
|
payload[0] = display_only ? 0x80 : 0x00;
|
|
|
|
uint32_t l = ser_length(msg_size, payload + 1);
|
|
|
|
memcpy(payload + 1 + l, msg, msg_size);
|
|
|
|
*payload_len = 1 + l + msg_size;
|
|
|
|
}
|
|
|
|
// generate random nonce
|
|
|
|
curve_point R;
|
|
|
|
bignum256 k;
|
|
|
|
if (generate_k_random(&k) != 0) {
|
|
|
|
return 2;
|
|
|
|
}
|
|
|
|
// compute k*G
|
|
|
|
scalar_multiply(&k, &R);
|
|
|
|
nonce[0] = 0x02 | (R.y.val[0] & 0x01);
|
|
|
|
bn_write_be(&R.x, nonce + 1);
|
|
|
|
*nonce_len = 33;
|
|
|
|
// compute shared secret
|
|
|
|
point_multiply(&k, pubkey, &R);
|
|
|
|
uint8_t shared_secret[33];
|
|
|
|
shared_secret[0] = 0x02 | (R.y.val[0] & 0x01);
|
|
|
|
bn_write_be(&R.x, shared_secret + 1);
|
|
|
|
// generate keying bytes
|
|
|
|
uint8_t keying_bytes[80];
|
|
|
|
uint8_t salt[22 + 33 + 4];
|
|
|
|
memcpy(salt, "Bitcoin Secure Message", 22);
|
|
|
|
memcpy(salt + 22, nonce, 33);
|
|
|
|
pbkdf2_hmac_sha256(shared_secret, 33, salt, 22 + 33, 2048, keying_bytes, 80, NULL);
|
|
|
|
// encrypt payload
|
|
|
|
aes_encrypt_ctx ctx;
|
|
|
|
aes_encrypt_key256(keying_bytes, &ctx);
|
|
|
|
aes_cfb_encrypt(payload, payload, *payload_len, keying_bytes + 64, &ctx);
|
|
|
|
// compute hmac
|
|
|
|
uint8_t out[32];
|
|
|
|
hmac_sha256(keying_bytes + 32, 32, payload, *payload_len, out);
|
|
|
|
memcpy(hmac, out, 8);
|
|
|
|
*hmac_len = 8;
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
int cryptoMessageDecrypt(curve_point *nonce, uint8_t *payload, pb_size_t payload_len, const uint8_t *hmac, pb_size_t hmac_len, const uint8_t *privkey, uint8_t *msg, pb_size_t *msg_len, bool *display_only, bool *signing, uint8_t *address_raw)
|
|
|
|
{
|
|
|
|
if (hmac_len != 8) {
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
// compute shared secret
|
|
|
|
curve_point R;
|
|
|
|
bignum256 k;
|
|
|
|
bn_read_be(privkey, &k);
|
|
|
|
point_multiply(&k, nonce, &R);
|
|
|
|
uint8_t shared_secret[33];
|
|
|
|
shared_secret[0] = 0x02 | (R.y.val[0] & 0x01);
|
|
|
|
bn_write_be(&R.x, shared_secret + 1);
|
|
|
|
// generate keying bytes
|
|
|
|
uint8_t keying_bytes[80];
|
|
|
|
uint8_t salt[22 + 33 + 4];
|
|
|
|
memcpy(salt, "Bitcoin Secure Message", 22);
|
|
|
|
salt[22] = 0x02 | (nonce->y.val[0] & 0x01);
|
|
|
|
bn_write_be(&(nonce->x), salt + 23);
|
|
|
|
pbkdf2_hmac_sha256(shared_secret, 33, salt, 22 + 33, 2048, keying_bytes, 80, NULL);
|
|
|
|
// compute hmac
|
|
|
|
uint8_t out[32];
|
|
|
|
hmac_sha256(keying_bytes + 32, 32, payload, payload_len, out);
|
|
|
|
if (memcmp(hmac, out, 8) != 0) {
|
|
|
|
return 2;
|
|
|
|
}
|
|
|
|
// decrypt payload
|
|
|
|
aes_encrypt_ctx ctx;
|
|
|
|
aes_encrypt_key256(keying_bytes, &ctx);
|
|
|
|
aes_cfb_decrypt(payload, payload, payload_len, keying_bytes + 64, &ctx);
|
|
|
|
// check first byte
|
|
|
|
if (payload[0] != 0x00 && payload[0] != 0x01 && payload[0] != 0x80 && payload[0] != 0x81) {
|
|
|
|
return 3;
|
|
|
|
}
|
|
|
|
*signing = payload[0] & 0x01;
|
|
|
|
*display_only = payload[0] & 0x80;
|
|
|
|
uint32_t l, o;
|
|
|
|
l = deser_length(payload + 1, &o);
|
|
|
|
if (*signing) {
|
|
|
|
if (1 + l + o + 21 + 65 != payload_len) {
|
|
|
|
return 4;
|
|
|
|
}
|
|
|
|
if (cryptoMessageVerify(payload + 1 + l, o, payload + 1 + l + o, payload + 1 + l + o + 21) != 0) {
|
|
|
|
return 5;
|
|
|
|
}
|
|
|
|
memcpy(address_raw, payload + 1 + l + o, 21);
|
|
|
|
} else {
|
|
|
|
if (1 + l + o != payload_len) {
|
|
|
|
return 4;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
memcpy(msg, payload + 1 + l, o);
|
|
|
|
*msg_len = o;
|
|
|
|
return 0;
|
|
|
|
}
|