1
0
mirror of https://github.com/trezor/trezor-firmware.git synced 2025-01-01 11:01:00 +00:00
trezor-firmware/legacy/firmware/config.c

938 lines
28 KiB
C
Raw Normal View History

2019-01-25 10:58:23 +00:00
/*
* This file is part of the Trezor project, https://trezor.io/
2019-01-25 10:58:23 +00:00
*
* Copyright (C) 2014 Pavol Rusnak <stick@satoshilabs.com>
*
* This library is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this library. If not, see <http://www.gnu.org/licenses/>.
*/
#include <libopencm3/stm32/flash.h>
#include <stdint.h>
#include <string.h>
2019-01-25 10:58:23 +00:00
#include "messages.pb.h"
#include "aes/aes.h"
#include "bip32.h"
#include "bip39.h"
#include "common.h"
2019-01-25 10:58:23 +00:00
#include "config.h"
#include "curves.h"
2019-01-25 10:58:23 +00:00
#include "debug.h"
#include "gettext.h"
#include "hmac.h"
#include "layout2.h"
#include "memory.h"
2019-01-25 10:58:23 +00:00
#include "memzero.h"
#include "pbkdf2.h"
#include "protect.h"
#include "rng.h"
#include "sha2.h"
2019-01-25 10:58:23 +00:00
#include "storage.h"
#include "supervise.h"
#include "trezor.h"
#include "u2f.h"
#include "usb.h"
#include "util.h"
2019-01-25 10:58:23 +00:00
/* Magic constants to check validity of storage block for storage versions 1
* to 10. */
static const uint32_t CONFIG_MAGIC_V10 = 0x726f7473; // 'stor' as uint32_t
#if !EMULATOR
static const uint32_t META_MAGIC_V10 = 0x525a5254; // 'TRZR' as uint32_t
#else
static const uint32_t META_MAGIC_V10 = 0xFFFFFFFF;
#endif
2019-01-25 10:58:23 +00:00
#define APP 0x0100
2019-01-25 10:58:23 +00:00
#define FLAG_PUBLIC 0x8000
#define FLAGS_WRITE 0xC000
2019-01-25 10:58:23 +00:00
#define KEY_UUID (0 | APP | FLAG_PUBLIC) // bytes(12)
#define KEY_VERSION (1 | APP) // uint32
#define KEY_MNEMONIC (2 | APP) // string(241)
#define KEY_LANGUAGE (3 | APP | FLAG_PUBLIC) // string(17)
#define KEY_LABEL (4 | APP | FLAG_PUBLIC) // string(33)
#define KEY_PASSPHRASE_PROTECTION (5 | APP | FLAG_PUBLIC) // bool
#define KEY_HOMESCREEN (6 | APP | FLAG_PUBLIC) // bytes(1024)
#define KEY_NEEDS_BACKUP (7 | APP) // bool
#define KEY_FLAGS (8 | APP) // uint32
#define KEY_U2F_COUNTER (9 | APP | FLAGS_WRITE) // uint32
#define KEY_UNFINISHED_BACKUP (11 | APP) // bool
#define KEY_AUTO_LOCK_DELAY_MS (12 | APP) // uint32
#define KEY_NO_BACKUP (13 | APP) // bool
#define KEY_INITIALIZED (14 | APP | FLAG_PUBLIC) // uint32
#define KEY_NODE (15 | APP) // node
#define KEY_IMPORTED (16 | APP) // bool
#define KEY_U2F_ROOT (17 | APP | FLAG_PUBLIC) // node
#define KEY_DEBUG_LINK_PIN (255 | APP | FLAG_PUBLIC) // string(10)
2019-01-25 10:58:23 +00:00
// The PIN value corresponding to an empty PIN.
static const uint32_t PIN_EMPTY = 1;
static uint32_t config_uuid[UUID_SIZE / sizeof(uint32_t)];
_Static_assert(sizeof(config_uuid) == UUID_SIZE, "config_uuid has wrong size");
char config_uuid_str[2 * UUID_SIZE + 1];
2019-01-25 10:58:23 +00:00
/*
Old storage layout:
offset | type/length | description
--------+--------------+-------------------------------
0x0000 | 4 bytes | magic = 'stor'
0x0004 | 12 bytes | uuid
0x0010 | ? bytes | Storage structure
--------+--------------+-------------------------------
0x4000 | 4 kbytes | area for pin failures
0x5000 | 256 bytes | area for u2f counter updates
0x5100 | 11.75 kbytes | reserved
The area for pin failures looks like this:
0 ... 0 pinfail 0xffffffff .. 0xffffffff
The pinfail is a binary number of the form 1...10...0,
the number of zeros is the number of pin failures.
This layout is used because we can only clear bits without
2019-01-25 10:58:23 +00:00
erasing the flash.
The area for u2f counter updates is just a sequence of zero-bits
followed by a sequence of one-bits. The bits in a byte are numbered
from LSB to MSB. The number of zero bits is the offset that should
be added to the storage u2f_counter to get the real counter value.
*/
/* Current u2f offset, i.e. u2f counter is
* storage.u2f_counter + config_u2f_offset.
* This corresponds to the number of cleared bits in the U2FAREA.
*/
static secbool sessionSeedCached, sessionSeedUsesPassphrase;
2019-01-25 10:58:23 +00:00
static uint8_t CONFIDENTIAL sessionSeed[64];
static secbool sessionPassphraseCached = secfalse;
2019-01-25 10:58:23 +00:00
static char CONFIDENTIAL sessionPassphrase[51];
#define autoLockDelayMsDefault (10 * 60 * 1000U) // 10 minutes
2019-02-12 16:56:33 +00:00
static secbool autoLockDelayMsCached = secfalse;
static uint32_t autoLockDelayMs = autoLockDelayMsDefault;
static const uint32_t CONFIG_VERSION = 11;
2019-01-25 10:58:23 +00:00
static const uint8_t FALSE_BYTE = '\x00';
static const uint8_t TRUE_BYTE = '\x01';
static uint32_t pin_to_int(const char *pin) {
uint32_t val = 1;
size_t i = 0;
for (i = 0; i < MAX_PIN_LEN && pin[i] != '\0'; ++i) {
if (pin[i] < '0' || pin[i] > '9') {
return 0;
2019-01-25 10:58:23 +00:00
}
val = 10 * val + pin[i] - '0';
}
2019-01-25 10:58:23 +00:00
if (pin[i] != '\0') {
return 0;
}
return val;
}
static secbool config_set_bool(uint16_t key, bool value) {
if (value) {
return storage_set(key, &TRUE_BYTE, sizeof(TRUE_BYTE));
} else {
return storage_set(key, &FALSE_BYTE, sizeof(FALSE_BYTE));
}
2019-01-25 10:58:23 +00:00
}
static secbool config_get_bool(uint16_t key, bool *value) {
uint8_t val = 0;
uint16_t len = 0;
if (sectrue == storage_get(key, &val, sizeof(val), &len) &&
len == sizeof(TRUE_BYTE)) {
*value = (val == TRUE_BYTE);
return sectrue;
} else {
*value = false;
return secfalse;
}
}
static secbool config_get_bytes(uint16_t key, uint8_t *dest, uint16_t dest_size,
uint16_t *real_size) {
if (dest_size == 0) {
return secfalse;
}
if (sectrue != storage_get(key, dest, dest_size, real_size)) {
return secfalse;
}
return sectrue;
}
static secbool config_get_string(uint16_t key, char *dest, uint16_t dest_size) {
if (dest_size == 0) {
return secfalse;
}
uint16_t len = 0;
if (sectrue != storage_get(key, dest, dest_size - 1, &len)) {
dest[0] = '\0';
return secfalse;
}
dest[len] = '\0';
return sectrue;
}
static secbool config_get_uint32(uint16_t key, uint32_t *value) {
uint16_t len = 0;
if (sectrue != storage_get(key, value, sizeof(uint32_t), &len) ||
len != sizeof(uint32_t)) {
*value = 0;
return secfalse;
}
return sectrue;
}
#define FLASH_META_START 0x08008000
#define FLASH_META_LEN 0x100
static secbool config_upgrade_v10(void) {
#define OLD_STORAGE_SIZE(last_member) \
(((offsetof(Storage, last_member) + pb_membersize(Storage, last_member)) + \
3) & \
~3)
if (memcmp(FLASH_PTR(FLASH_META_START), &META_MAGIC_V10,
sizeof(META_MAGIC_V10)) != 0 ||
memcmp(FLASH_PTR(FLASH_META_START + FLASH_META_LEN), &CONFIG_MAGIC_V10,
sizeof(CONFIG_MAGIC_V10)) != 0) {
// wrong magic
return secfalse;
}
Storage config __attribute__((aligned(4)));
_Static_assert((sizeof(config) & 3) == 0, "storage unaligned");
memcpy(
config_uuid,
FLASH_PTR(FLASH_META_START + FLASH_META_LEN + sizeof(CONFIG_MAGIC_V10)),
sizeof(config_uuid));
memcpy(&config,
FLASH_PTR(FLASH_META_START + FLASH_META_LEN +
sizeof(CONFIG_MAGIC_V10) + sizeof(config_uuid)),
sizeof(config));
// version 1: since 1.0.0
// version 2: since 1.2.1
// version 3: since 1.3.1
// version 4: since 1.3.2
// version 5: since 1.3.3
// version 6: since 1.3.6
// version 7: since 1.5.1
// version 8: since 1.5.2
// version 9: since 1.6.1
// version 10: since 1.7.2
if (config.version > CONFIG_VERSION) {
// downgrade -> clear storage
config_wipe();
return secfalse;
}
size_t old_config_size = 0;
if (config.version == 0) {
} else if (config.version <= 2) {
old_config_size = OLD_STORAGE_SIZE(imported);
} else if (config.version <= 5) {
// added homescreen
old_config_size = OLD_STORAGE_SIZE(homescreen);
} else if (config.version <= 7) {
// added u2fcounter
old_config_size = OLD_STORAGE_SIZE(u2f_counter);
} else if (config.version <= 8) {
// added flags and needsBackup
old_config_size = OLD_STORAGE_SIZE(flags);
} else if (config.version <= 9) {
// added u2froot, unfinished_backup and auto_lock_delay_ms
old_config_size = OLD_STORAGE_SIZE(auto_lock_delay_ms);
} else if (config.version <= 10) {
// added no_backup
old_config_size = OLD_STORAGE_SIZE(no_backup);
}
// Erase newly added fields.
if (old_config_size != sizeof(Storage)) {
memzero((char *)&config + old_config_size,
sizeof(Storage) - old_config_size);
}
const uint32_t FLASH_STORAGE_PINAREA = FLASH_META_START + 0x4000;
uint32_t pin_wait = 0;
if (config.version <= 5) {
// Get PIN failure counter from version 5 format.
uint32_t pinctr =
config.has_pin_failed_attempts ? config.pin_failed_attempts : 0;
if (pinctr > 31) {
pinctr = 31;
}
pin_wait = (1 << pinctr) - 1;
} else {
// Get PIN failure counter from version 10 format.
uint32_t flash_pinfails = FLASH_STORAGE_PINAREA;
while (*(const uint32_t *)FLASH_PTR(flash_pinfails) == 0) {
flash_pinfails += sizeof(uint32_t);
}
pin_wait = ~*(const uint32_t *)FLASH_PTR(flash_pinfails);
}
uint32_t u2f_offset = 0;
if (config.has_u2f_counter) {
const uint32_t FLASH_STORAGE_U2FAREA = FLASH_STORAGE_PINAREA + 0x1000;
const uint32_t *u2fptr = (const uint32_t *)FLASH_PTR(FLASH_STORAGE_U2FAREA);
while (*u2fptr == 0) {
u2fptr++;
}
u2f_offset =
32 * (u2fptr - (const uint32_t *)FLASH_PTR(FLASH_STORAGE_U2FAREA));
uint32_t u2fword = *u2fptr;
while ((u2fword & 1) == 0) {
u2f_offset++;
u2fword >>= 1;
}
}
storage_init(NULL, HW_ENTROPY_DATA, HW_ENTROPY_LEN);
storage_unlock(PIN_EMPTY);
if (config.has_pin) {
storage_change_pin(PIN_EMPTY, pin_to_int(config.pin));
}
while (pin_wait != 0) {
storage_pin_fails_increase();
pin_wait >>= 1;
}
storage_set(KEY_UUID, config_uuid, sizeof(config_uuid));
storage_set(KEY_VERSION, &CONFIG_VERSION, sizeof(CONFIG_VERSION));
if (config.has_node) {
if (sectrue == storage_set(KEY_NODE, &config.node, sizeof(config.node))) {
config_set_bool(KEY_INITIALIZED, true);
}
}
if (config.has_mnemonic) {
config_setMnemonic(config.mnemonic);
}
if (config.has_passphrase_protection) {
config_setPassphraseProtection(config.passphrase_protection);
}
if (config.has_language) {
config_setLanguage(config.language);
}
if (config.has_label) {
config_setLabel(config.label);
}
if (config.has_imported) {
config_setImported(config.imported);
}
if (config.has_homescreen) {
config_setHomescreen(config.homescreen.bytes, config.homescreen.size);
}
if (config.has_u2f_counter) {
config_setU2FCounter(config.u2f_counter + u2f_offset);
}
if (config.has_needs_backup) {
config_setNeedsBackup(config.needs_backup);
}
if (config.has_flags) {
config_applyFlags(config.flags);
}
if (config.has_unfinished_backup) {
config_setUnfinishedBackup(config.unfinished_backup);
}
if (config.has_auto_lock_delay_ms) {
config_setAutoLockDelayMs(config.auto_lock_delay_ms);
}
if (config.has_no_backup && config.no_backup) {
config_setNoBackup();
}
memzero(&config, sizeof(config));
session_clear(true);
return sectrue;
}
void config_init(void) {
char oldTiny = usbTiny(1);
config_upgrade_v10();
storage_init(&protectPinUiCallback, HW_ENTROPY_DATA, HW_ENTROPY_LEN);
memzero(HW_ENTROPY_DATA, sizeof(HW_ENTROPY_DATA));
// Auto-unlock storage if no PIN is set.
if (storage_is_unlocked() == secfalse && storage_has_pin() == secfalse) {
2019-01-25 10:58:23 +00:00
storage_unlock(PIN_EMPTY);
}
2019-01-25 10:58:23 +00:00
uint16_t len = 0;
// If UUID is not set, then the config is uninitialized.
if (sectrue !=
storage_get(KEY_UUID, config_uuid, sizeof(config_uuid), &len) ||
len != sizeof(config_uuid)) {
random_buffer((uint8_t *)config_uuid, sizeof(config_uuid));
2019-01-25 10:58:23 +00:00
storage_set(KEY_UUID, config_uuid, sizeof(config_uuid));
storage_set(KEY_VERSION, &CONFIG_VERSION, sizeof(CONFIG_VERSION));
}
data2hex(config_uuid, sizeof(config_uuid), config_uuid_str);
usbTiny(oldTiny);
}
void session_clear(bool lock) {
sessionSeedCached = secfalse;
memzero(&sessionSeed, sizeof(sessionSeed));
sessionPassphraseCached = secfalse;
memzero(&sessionPassphrase, sizeof(sessionPassphrase));
if (lock) {
storage_lock();
}
}
static void get_u2froot_callback(uint32_t iter, uint32_t total) {
layoutProgress(_("Updating"), 1000 * iter / total);
}
static void config_compute_u2froot(const char *mnemonic,
StorageHDNode *u2froot) {
static CONFIDENTIAL HDNode node;
char oldTiny = usbTiny(1);
mnemonic_to_seed(mnemonic, "", sessionSeed,
get_u2froot_callback); // BIP-0039
usbTiny(oldTiny);
hdnode_from_seed(sessionSeed, 64, NIST256P1_NAME, &node);
hdnode_private_ckd(&node, U2F_KEY_PATH);
u2froot->depth = node.depth;
u2froot->child_num = U2F_KEY_PATH;
u2froot->chain_code.size = sizeof(node.chain_code);
memcpy(u2froot->chain_code.bytes, node.chain_code, sizeof(node.chain_code));
u2froot->has_private_key = true;
u2froot->private_key.size = sizeof(node.private_key);
memcpy(u2froot->private_key.bytes, node.private_key,
sizeof(node.private_key));
memzero(&node, sizeof(node));
session_clear(false); // invalidate seed cache
2019-01-25 10:58:23 +00:00
}
static void config_setNode(const HDNodeType *node) {
StorageHDNode storageHDNode;
memzero(&storageHDNode, sizeof(storageHDNode));
storageHDNode.depth = node->depth;
storageHDNode.fingerprint = node->fingerprint;
storageHDNode.child_num = node->child_num;
storageHDNode.chain_code.size = 32;
memcpy(storageHDNode.chain_code.bytes, node->chain_code.bytes, 32);
if (node->has_private_key) {
storageHDNode.has_private_key = true;
storageHDNode.private_key.size = 32;
memcpy(storageHDNode.private_key.bytes, node->private_key.bytes, 32);
}
if (sectrue == storage_set(KEY_NODE, &storageHDNode, sizeof(storageHDNode))) {
config_set_bool(KEY_INITIALIZED, true);
}
memzero(&storageHDNode, sizeof(storageHDNode));
2019-01-25 10:58:23 +00:00
}
#if DEBUG_LINK
bool config_dumpNode(HDNodeType *node) {
memzero(node, sizeof(HDNodeType));
StorageHDNode storageNode;
uint16_t len = 0;
if (sectrue !=
storage_get(KEY_NODE, &storageNode, sizeof(storageNode), &len) ||
len != sizeof(StorageHDNode)) {
memzero(&storageNode, sizeof(storageNode));
return false;
}
2019-01-25 10:58:23 +00:00
node->depth = storageNode.depth;
node->fingerprint = storageNode.fingerprint;
node->child_num = storageNode.child_num;
2019-01-25 10:58:23 +00:00
node->chain_code.size = 32;
memcpy(node->chain_code.bytes, storageNode.chain_code.bytes, 32);
2019-01-25 10:58:23 +00:00
if (storageNode.has_private_key) {
node->has_private_key = true;
node->private_key.size = 32;
memcpy(node->private_key.bytes, storageNode.private_key.bytes, 32);
}
2019-01-25 10:58:23 +00:00
memzero(&storageNode, sizeof(storageNode));
return true;
2019-01-25 10:58:23 +00:00
}
#endif
void config_loadDevice(const LoadDevice *msg) {
session_clear(false);
config_set_bool(KEY_IMPORTED, true);
config_setPassphraseProtection(msg->has_passphrase_protection &&
msg->passphrase_protection);
2019-01-25 10:58:23 +00:00
if (msg->has_pin) {
config_changePin("", msg->pin);
}
2019-01-25 10:58:23 +00:00
if (msg->has_node) {
storage_delete(KEY_MNEMONIC);
config_setNode(&(msg->node));
} else if (msg->mnemonics_count) {
storage_delete(KEY_NODE);
config_setMnemonic(msg->mnemonics[0]);
}
2019-01-25 10:58:23 +00:00
if (msg->has_language) {
config_setLanguage(msg->language);
}
2019-01-25 10:58:23 +00:00
config_setLabel(msg->has_label ? msg->label : "");
2019-01-25 10:58:23 +00:00
if (msg->has_u2f_counter) {
config_setU2FCounter(msg->u2f_counter);
}
2019-01-25 10:58:23 +00:00
}
void config_setLabel(const char *label) {
if (label == NULL || label[0] == '\0') {
storage_delete(KEY_LABEL);
} else {
storage_set(KEY_LABEL, label, strnlen(label, MAX_LABEL_LEN));
}
2019-01-25 10:58:23 +00:00
}
void config_setLanguage(const char *lang) {
if (lang == NULL) {
return;
}
2019-01-25 10:58:23 +00:00
// Sanity check.
if (strcmp(lang, "english") != 0) {
return;
}
storage_set(KEY_LANGUAGE, lang, strnlen(lang, MAX_LANGUAGE_LEN));
2019-01-25 10:58:23 +00:00
}
void config_setPassphraseProtection(bool passphrase_protection) {
sessionSeedCached = secfalse;
sessionPassphraseCached = secfalse;
config_set_bool(KEY_PASSPHRASE_PROTECTION, passphrase_protection);
2019-01-25 10:58:23 +00:00
}
bool config_getPassphraseProtection(bool *passphrase_protection) {
return sectrue ==
config_get_bool(KEY_PASSPHRASE_PROTECTION, passphrase_protection);
2019-01-25 10:58:23 +00:00
}
void config_setHomescreen(const uint8_t *data, uint32_t size) {
if (data != NULL && size == HOMESCREEN_SIZE) {
storage_set(KEY_HOMESCREEN, data, size);
} else {
storage_delete(KEY_HOMESCREEN);
}
2019-01-25 10:58:23 +00:00
}
static void get_root_node_callback(uint32_t iter, uint32_t total) {
usbSleep(1);
layoutProgress(_("Waking up"), 1000 * iter / total);
2019-01-25 10:58:23 +00:00
}
const uint8_t *config_getSeed(bool usePassphrase) {
// root node is properly cached
if (usePassphrase == (sectrue == sessionSeedUsesPassphrase) &&
sectrue == sessionSeedCached) {
return sessionSeed;
}
2019-01-25 10:58:23 +00:00
// if storage has mnemonic, convert it to node and use it
char mnemonic[MAX_MNEMONIC_LEN + 1];
if (config_getMnemonic(mnemonic, sizeof(mnemonic))) {
if (usePassphrase && !protectPassphrase()) {
memzero(mnemonic, sizeof(mnemonic));
return NULL;
}
// if storage was not imported (i.e. it was properly generated or recovered)
bool imported = false;
config_get_bool(KEY_IMPORTED, &imported);
if (!imported) {
// test whether mnemonic is a valid BIP-0039 mnemonic
if (!mnemonic_check(mnemonic)) {
// and if not then halt the device
error_shutdown(_("Storage failure"), _("detected."), NULL, NULL);
}
2019-01-25 10:58:23 +00:00
}
char oldTiny = usbTiny(1);
mnemonic_to_seed(mnemonic, usePassphrase ? sessionPassphrase : "",
sessionSeed, get_root_node_callback); // BIP-0039
memzero(mnemonic, sizeof(mnemonic));
usbTiny(oldTiny);
sessionSeedCached = sectrue;
sessionSeedUsesPassphrase = usePassphrase ? sectrue : secfalse;
return sessionSeed;
}
2019-01-25 10:58:23 +00:00
return NULL;
2019-01-25 10:58:23 +00:00
}
static bool config_loadNode(const StorageHDNode *node, const char *curve,
HDNode *out) {
return hdnode_from_xprv(node->depth, node->child_num, node->chain_code.bytes,
node->private_key.bytes, curve, out);
2019-01-25 10:58:23 +00:00
}
bool config_getU2FRoot(HDNode *node) {
StorageHDNode u2fNode;
uint16_t len = 0;
if (sectrue != storage_get(KEY_U2F_ROOT, &u2fNode, sizeof(u2fNode), &len) ||
len != sizeof(StorageHDNode)) {
2019-01-25 10:58:23 +00:00
memzero(&u2fNode, sizeof(u2fNode));
return false;
}
bool ret = config_loadNode(&u2fNode, NIST256P1_NAME, node);
memzero(&u2fNode, sizeof(u2fNode));
return ret;
}
bool config_getRootNode(HDNode *node, const char *curve, bool usePassphrase) {
// if storage has node, decrypt and use it
StorageHDNode storageHDNode;
uint16_t len = 0;
if (strcmp(curve, SECP256K1_NAME) == 0 &&
sectrue ==
storage_get(KEY_NODE, &storageHDNode, sizeof(storageHDNode), &len) &&
len == sizeof(StorageHDNode)) {
if (!protectPassphrase()) {
memzero(&storageHDNode, sizeof(storageHDNode));
return false;
}
if (!config_loadNode(&storageHDNode, curve, node)) {
memzero(&storageHDNode, sizeof(storageHDNode));
return false;
}
bool passphrase_protection = false;
config_getPassphraseProtection(&passphrase_protection);
if (passphrase_protection && sectrue == sessionPassphraseCached &&
sessionPassphrase[0] != '\0') {
// decrypt hd node
uint8_t secret[64];
PBKDF2_HMAC_SHA512_CTX pctx;
char oldTiny = usbTiny(1);
pbkdf2_hmac_sha512_Init(&pctx, (const uint8_t *)sessionPassphrase,
strlen(sessionPassphrase),
(const uint8_t *)"TREZORHD", 8, 1);
get_root_node_callback(0, BIP39_PBKDF2_ROUNDS);
for (int i = 0; i < 8; i++) {
pbkdf2_hmac_sha512_Update(&pctx, BIP39_PBKDF2_ROUNDS / 8);
get_root_node_callback((i + 1) * BIP39_PBKDF2_ROUNDS / 8,
BIP39_PBKDF2_ROUNDS);
}
pbkdf2_hmac_sha512_Final(&pctx, secret);
usbTiny(oldTiny);
aes_decrypt_ctx ctx;
aes_decrypt_key256(secret, &ctx);
aes_cbc_decrypt(node->chain_code, node->chain_code, 32, secret + 32,
&ctx);
aes_cbc_decrypt(node->private_key, node->private_key, 32, secret + 32,
&ctx);
2019-01-25 10:58:23 +00:00
}
return true;
}
memzero(&storageHDNode, sizeof(storageHDNode));
2019-01-25 10:58:23 +00:00
const uint8_t *seed = config_getSeed(usePassphrase);
if (seed == NULL) {
return false;
}
return hdnode_from_seed(seed, 64, curve, node);
2019-01-25 10:58:23 +00:00
}
bool config_getLabel(char *dest, uint16_t dest_size) {
return sectrue == config_get_string(KEY_LABEL, dest, dest_size);
2019-01-25 10:58:23 +00:00
}
bool config_getLanguage(char *dest, uint16_t dest_size) {
return sectrue == config_get_string(KEY_LANGUAGE, dest, dest_size);
2019-01-25 10:58:23 +00:00
}
bool config_getHomescreen(uint8_t *dest, uint16_t dest_size) {
uint16_t len = 0;
secbool ret = storage_get(KEY_HOMESCREEN, dest, dest_size, &len);
if (sectrue != ret || len != HOMESCREEN_SIZE) {
return false;
}
return true;
2019-01-25 10:58:23 +00:00
}
bool config_setMnemonic(const char *mnemonic) {
if (mnemonic == NULL) {
return false;
}
2019-01-25 10:58:23 +00:00
if (sectrue != storage_set(KEY_MNEMONIC, mnemonic,
strnlen(mnemonic, MAX_MNEMONIC_LEN))) {
return false;
}
StorageHDNode u2fNode;
memzero(&u2fNode, sizeof(u2fNode));
config_compute_u2froot(mnemonic, &u2fNode);
secbool ret = storage_set(KEY_U2F_ROOT, &u2fNode, sizeof(u2fNode));
memzero(&u2fNode, sizeof(u2fNode));
if (sectrue != ret) {
storage_delete(KEY_MNEMONIC);
return false;
}
2019-01-25 10:58:23 +00:00
config_set_bool(KEY_INITIALIZED, true);
2019-01-25 10:58:23 +00:00
return true;
2019-01-25 10:58:23 +00:00
}
bool config_getMnemonicBytes(uint8_t *dest, uint16_t dest_size,
uint16_t *real_size) {
return sectrue == config_get_bytes(KEY_MNEMONIC, dest, dest_size, real_size);
}
bool config_getMnemonic(char *dest, uint16_t dest_size) {
return sectrue == config_get_string(KEY_MNEMONIC, dest, dest_size);
2019-01-25 10:58:23 +00:00
}
/* Check whether mnemonic matches storage. The mnemonic must be
* a null-terminated string.
*/
bool config_containsMnemonic(const char *mnemonic) {
uint16_t len = 0;
uint8_t stored_mnemonic[MAX_MNEMONIC_LEN];
if (sectrue != storage_get(KEY_MNEMONIC, stored_mnemonic,
sizeof(stored_mnemonic), &len)) {
return false;
}
// Compare the digests to mitigate side-channel attacks.
uint8_t digest_stored[SHA256_DIGEST_LENGTH];
sha256_Raw(stored_mnemonic, len, digest_stored);
memzero(stored_mnemonic, sizeof(stored_mnemonic));
uint8_t digest_input[SHA256_DIGEST_LENGTH];
sha256_Raw((const uint8_t *)mnemonic, strnlen(mnemonic, MAX_MNEMONIC_LEN),
digest_input);
uint8_t diff = 0;
for (size_t i = 0; i < sizeof(digest_input); i++) {
diff |= (digest_stored[i] - digest_input[i]);
}
memzero(digest_stored, sizeof(digest_stored));
memzero(digest_input, sizeof(digest_input));
return diff == 0;
2019-01-25 10:58:23 +00:00
}
/* Check whether pin matches storage. The pin must be
* a null-terminated string with at most 9 characters.
*/
bool config_unlock(const char *pin) {
char oldTiny = usbTiny(1);
secbool ret = storage_unlock(pin_to_int(pin));
usbTiny(oldTiny);
return sectrue == ret;
2019-01-25 10:58:23 +00:00
}
bool config_hasPin(void) { return sectrue == storage_has_pin(); }
2019-01-25 10:58:23 +00:00
bool config_changePin(const char *old_pin, const char *new_pin) {
uint32_t new_pin_int = pin_to_int(new_pin);
if (new_pin_int == 0) {
return false;
}
2019-01-25 10:58:23 +00:00
char oldTiny = usbTiny(1);
secbool ret = storage_change_pin(pin_to_int(old_pin), new_pin_int);
usbTiny(oldTiny);
#if DEBUG_LINK
if (sectrue == ret) {
if (new_pin_int != PIN_EMPTY) {
storage_set(KEY_DEBUG_LINK_PIN, new_pin, strnlen(new_pin, MAX_PIN_LEN));
} else {
storage_delete(KEY_DEBUG_LINK_PIN);
2019-01-25 10:58:23 +00:00
}
}
#endif
memzero(&new_pin_int, sizeof(new_pin_int));
return sectrue == ret;
2019-01-25 10:58:23 +00:00
}
#if DEBUG_LINK
bool config_getPin(char *dest, uint16_t dest_size) {
return sectrue == config_get_string(KEY_DEBUG_LINK_PIN, dest, dest_size);
}
#endif
void session_cachePassphrase(const char *passphrase) {
strlcpy(sessionPassphrase, passphrase, sizeof(sessionPassphrase));
sessionPassphraseCached = sectrue;
2019-01-25 10:58:23 +00:00
}
bool session_isPassphraseCached(void) {
return sectrue == sessionPassphraseCached;
2019-01-25 10:58:23 +00:00
}
bool session_getState(const uint8_t *salt, uint8_t *state,
const char *passphrase) {
if (!passphrase && sectrue != sessionPassphraseCached) {
return false;
} else {
passphrase = sessionPassphrase;
}
if (!salt) {
// if salt is not provided fill the first half of the state with random data
random_buffer(state, 32);
} else {
// if salt is provided fill the first half of the state with salt
memcpy(state, salt, 32);
}
// state[0:32] = salt
// state[32:64] = HMAC(passphrase, salt || device_id)
HMAC_SHA256_CTX ctx;
hmac_sha256_Init(&ctx, (const uint8_t *)passphrase, strlen(passphrase));
hmac_sha256_Update(&ctx, state, 32);
hmac_sha256_Update(&ctx, (const uint8_t *)config_uuid, sizeof(config_uuid));
hmac_sha256_Final(&ctx, state + 32);
2019-01-25 10:58:23 +00:00
memzero(&ctx, sizeof(ctx));
2019-01-25 10:58:23 +00:00
return true;
2019-01-25 10:58:23 +00:00
}
bool session_isUnlocked(void) { return sectrue == storage_is_unlocked(); }
2019-01-25 10:58:23 +00:00
bool config_isInitialized(void) {
bool initialized = false;
config_get_bool(KEY_INITIALIZED, &initialized);
return initialized;
2019-01-25 10:58:23 +00:00
}
bool config_getImported(bool *imported) {
return sectrue == config_get_bool(KEY_IMPORTED, imported);
2019-01-25 10:58:23 +00:00
}
void config_setImported(bool imported) {
config_set_bool(KEY_IMPORTED, imported);
2019-01-25 10:58:23 +00:00
}
bool config_getNeedsBackup(bool *needs_backup) {
return sectrue == config_get_bool(KEY_NEEDS_BACKUP, needs_backup);
2019-01-25 10:58:23 +00:00
}
void config_setNeedsBackup(bool needs_backup) {
config_set_bool(KEY_NEEDS_BACKUP, needs_backup);
2019-01-25 10:58:23 +00:00
}
bool config_getUnfinishedBackup(bool *unfinished_backup) {
return sectrue == config_get_bool(KEY_UNFINISHED_BACKUP, unfinished_backup);
2019-01-25 10:58:23 +00:00
}
void config_setUnfinishedBackup(bool unfinished_backup) {
config_set_bool(KEY_UNFINISHED_BACKUP, unfinished_backup);
2019-01-25 10:58:23 +00:00
}
bool config_getNoBackup(bool *no_backup) {
return sectrue == config_get_bool(KEY_NO_BACKUP, no_backup);
2019-01-25 10:58:23 +00:00
}
void config_setNoBackup(void) { config_set_bool(KEY_NO_BACKUP, true); }
2019-01-25 10:58:23 +00:00
void config_applyFlags(uint32_t flags) {
uint32_t old_flags = 0;
config_get_uint32(KEY_FLAGS, &old_flags);
flags |= old_flags;
if (flags == old_flags) {
return; // no new flags
}
storage_set(KEY_FLAGS, &flags, sizeof(flags));
2019-01-25 10:58:23 +00:00
}
bool config_getFlags(uint32_t *flags) {
return sectrue == config_get_uint32(KEY_FLAGS, flags);
2019-01-25 10:58:23 +00:00
}
uint32_t config_nextU2FCounter(void) {
uint32_t u2fcounter = 0;
storage_next_counter(KEY_U2F_COUNTER, &u2fcounter);
return u2fcounter;
2019-01-25 10:58:23 +00:00
}
void config_setU2FCounter(uint32_t u2fcounter) {
storage_set_counter(KEY_U2F_COUNTER, u2fcounter);
2019-01-25 10:58:23 +00:00
}
uint32_t config_getAutoLockDelayMs() {
if (sectrue == autoLockDelayMsCached) {
return autoLockDelayMs;
}
2019-02-12 16:56:33 +00:00
if (sectrue != storage_is_unlocked()) {
return autoLockDelayMsDefault;
}
2019-02-12 16:56:33 +00:00
if (sectrue != config_get_uint32(KEY_AUTO_LOCK_DELAY_MS, &autoLockDelayMs)) {
autoLockDelayMs = autoLockDelayMsDefault;
}
autoLockDelayMsCached = sectrue;
return autoLockDelayMs;
2019-01-25 10:58:23 +00:00
}
void config_setAutoLockDelayMs(uint32_t auto_lock_delay_ms) {
const uint32_t min_delay_ms = 10 * 1000U; // 10 seconds
auto_lock_delay_ms = MAX(auto_lock_delay_ms, min_delay_ms);
if (sectrue == storage_set(KEY_AUTO_LOCK_DELAY_MS, &auto_lock_delay_ms,
sizeof(auto_lock_delay_ms))) {
autoLockDelayMs = auto_lock_delay_ms;
autoLockDelayMsCached = sectrue;
}
2019-01-25 10:58:23 +00:00
}
void config_wipe(void) {
char oldTiny = usbTiny(1);
storage_wipe();
if (storage_is_unlocked() != sectrue) {
storage_unlock(PIN_EMPTY);
}
usbTiny(oldTiny);
random_buffer((uint8_t *)config_uuid, sizeof(config_uuid));
data2hex(config_uuid, sizeof(config_uuid), config_uuid_str);
autoLockDelayMsCached = secfalse;
storage_set(KEY_UUID, config_uuid, sizeof(config_uuid));
storage_set(KEY_VERSION, &CONFIG_VERSION, sizeof(CONFIG_VERSION));
session_clear(false);
2019-01-25 10:58:23 +00:00
}