1
0
mirror of https://github.com/trezor/trezor-firmware.git synced 2024-11-15 12:08:59 +00:00
trezor-firmware/ecdsa.c

834 lines
22 KiB
C
Raw Normal View History

2013-08-17 12:20:15 +00:00
/**
2014-05-22 18:54:58 +00:00
* Copyright (c) 2013-2014 Tomas Dzetkulic
* Copyright (c) 2013-2014 Pavol Rusnak
2013-08-17 12:20:15 +00:00
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES
* OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*/
#include <stdint.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>
2013-08-17 12:20:15 +00:00
2013-09-12 01:15:22 +00:00
#include "bignum.h"
2013-08-17 12:20:15 +00:00
#include "rand.h"
#include "sha2.h"
2013-09-19 12:52:52 +00:00
#include "ripemd160.h"
2013-09-11 17:02:22 +00:00
#include "hmac.h"
2013-08-17 12:20:15 +00:00
#include "ecdsa.h"
#include "base58.h"
2013-08-17 12:20:15 +00:00
// Set cp2 = cp1
void point_copy(const curve_point *cp1, curve_point *cp2)
{
memcpy(&(cp2->x), &(cp1->x), sizeof(bignum256));
memcpy(&(cp2->y), &(cp1->y), sizeof(bignum256));
}
2013-08-19 10:40:58 +00:00
// cp2 = cp1 + cp2
void point_add(const curve_point *cp1, curve_point *cp2)
2013-08-17 12:20:15 +00:00
{
int i;
uint32_t temp;
bignum256 lambda, inv, xr, yr;
if (point_is_infinity(cp1)) {
return;
}
if (point_is_infinity(cp2)) {
point_copy(cp1, cp2);
return;
}
if (point_is_equal(cp1, cp2)) {
point_double(cp2);
return;
}
if (point_is_negative_of(cp1, cp2)) {
point_set_infinity(cp2);
return;
}
2015-03-15 12:24:50 +00:00
bn_subtractmod(&(cp2->x), &(cp1->x), &inv, &prime256k1);
2013-09-12 01:15:22 +00:00
bn_inverse(&inv, &prime256k1);
2015-03-15 12:24:50 +00:00
bn_subtractmod(&(cp2->y), &(cp1->y), &lambda, &prime256k1);
2013-09-12 01:15:22 +00:00
bn_multiply(&inv, &lambda, &prime256k1);
2013-08-17 12:20:15 +00:00
memcpy(&xr, &lambda, sizeof(bignum256));
2013-09-12 01:15:22 +00:00
bn_multiply(&xr, &xr, &prime256k1);
2015-03-15 12:24:50 +00:00
temp = 1;
2013-08-17 12:32:25 +00:00
for (i = 0; i < 9; i++) {
2015-03-15 12:24:50 +00:00
temp += 0x3FFFFFFF + xr.val[i] + 2u * prime256k1.val[i] - cp1->x.val[i] - cp2->x.val[i];
2013-08-17 12:20:15 +00:00
xr.val[i] = temp & 0x3FFFFFFF;
temp >>= 30;
}
2013-09-12 01:15:22 +00:00
bn_fast_mod(&xr, &prime256k1);
2015-03-15 12:24:50 +00:00
bn_subtractmod(&(cp1->x), &xr, &yr, &prime256k1);
2013-08-17 12:20:15 +00:00
// no need to fast_mod here
2013-09-12 01:15:22 +00:00
// bn_fast_mod(&yr);
bn_multiply(&lambda, &yr, &prime256k1);
2015-03-15 12:24:50 +00:00
bn_subtractmod(&yr, &(cp1->y), &yr, &prime256k1);
2013-09-12 01:15:22 +00:00
bn_fast_mod(&yr, &prime256k1);
2013-08-19 10:40:58 +00:00
memcpy(&(cp2->x), &xr, sizeof(bignum256));
memcpy(&(cp2->y), &yr, sizeof(bignum256));
bn_mod(&(cp2->x), &prime256k1);
bn_mod(&(cp2->y), &prime256k1);
2013-08-17 12:20:15 +00:00
}
2013-08-19 10:40:58 +00:00
// cp = cp + cp
void point_double(curve_point *cp)
2013-08-17 12:20:15 +00:00
{
int i;
uint32_t temp;
bignum256 lambda, inverse_y, xr, yr;
if (point_is_infinity(cp)) {
return;
}
if (bn_is_zero(&(cp->y))) {
point_set_infinity(cp);
return;
}
2013-08-19 10:40:58 +00:00
memcpy(&inverse_y, &(cp->y), sizeof(bignum256));
2013-09-12 01:15:22 +00:00
bn_inverse(&inverse_y, &prime256k1);
2013-08-17 12:20:15 +00:00
memcpy(&lambda, &three_over_two256k1, sizeof(bignum256));
2013-09-12 01:15:22 +00:00
bn_multiply(&inverse_y, &lambda, &prime256k1);
bn_multiply(&(cp->x), &lambda, &prime256k1);
bn_multiply(&(cp->x), &lambda, &prime256k1);
2013-08-17 12:20:15 +00:00
memcpy(&xr, &lambda, sizeof(bignum256));
2013-09-12 01:15:22 +00:00
bn_multiply(&xr, &xr, &prime256k1);
2015-03-15 12:24:50 +00:00
temp = 1;
2013-08-17 12:32:25 +00:00
for (i = 0; i < 9; i++) {
2015-03-15 12:24:50 +00:00
temp += 0x3FFFFFFF + xr.val[i] + 2u * (prime256k1.val[i] - cp->x.val[i]);
2013-08-17 12:20:15 +00:00
xr.val[i] = temp & 0x3FFFFFFF;
temp >>= 30;
}
2013-09-12 01:15:22 +00:00
bn_fast_mod(&xr, &prime256k1);
2015-03-15 12:24:50 +00:00
bn_subtractmod(&(cp->x), &xr, &yr, &prime256k1);
2013-08-17 12:20:15 +00:00
// no need to fast_mod here
2013-09-12 01:15:22 +00:00
// bn_fast_mod(&yr);
bn_multiply(&lambda, &yr, &prime256k1);
2015-03-15 12:24:50 +00:00
bn_subtractmod(&yr, &(cp->y), &yr, &prime256k1);
2013-09-12 01:15:22 +00:00
bn_fast_mod(&yr, &prime256k1);
2013-08-19 10:40:58 +00:00
memcpy(&(cp->x), &xr, sizeof(bignum256));
memcpy(&(cp->y), &yr, sizeof(bignum256));
bn_mod(&(cp->x), &prime256k1);
bn_mod(&(cp->y), &prime256k1);
2013-08-17 12:20:15 +00:00
}
2014-02-05 22:38:37 +00:00
// res = k * p
void point_multiply(const bignum256 *k, const curve_point *p, curve_point *res)
{
int i, j;
// result is zero
int is_zero = 1;
curve_point curr;
// initial res
memcpy(&curr, p, sizeof(curve_point));
for (i = 0; i < 9; i++) {
for (j = 0; j < 30; j++) {
if (i == 8 && (k->val[i] >> j) == 0) break;
if (k->val[i] & (1u << j)) {
if (is_zero) {
memcpy(res, &curr, sizeof(curve_point));
is_zero = 0;
} else {
point_add(&curr, res);
}
}
point_double(&curr);
}
}
}
// set point to internal representation of point at infinity
void point_set_infinity(curve_point *p)
{
bn_zero(&(p->x));
bn_zero(&(p->y));
}
// return true iff p represent point at infinity
// both coords are zero in internal representation
int point_is_infinity(const curve_point *p)
{
return bn_is_zero(&(p->x)) && bn_is_zero(&(p->y));
}
// return true iff both points are equal
int point_is_equal(const curve_point *p, const curve_point *q)
{
return bn_is_equal(&(p->x), &(q->x)) && bn_is_equal(&(p->y), &(q->y));
}
// returns true iff p == -q
// expects p and q be valid points on curve other than point at infinity
int point_is_negative_of(const curve_point *p, const curve_point *q)
{
// if P == (x, y), then -P would be (x, -y) on this curve
if (!bn_is_equal(&(p->x), &(q->x))) {
return 0;
}
// we shouldn't hit this for a valid point
if (bn_is_zero(&(p->y))) {
return 0;
}
return !bn_is_equal(&(p->y), &(q->y));
}
#if USE_PRECOMPUTED_CP
// Negate a (modulo prime) if cond is 0xffffffff, keep it if cond is 0.
// The timing of this function does not depend on cond.
static void conditional_negate(uint32_t cond, bignum256 *a, const bignum256 *prime)
{
int j;
uint32_t tmp = 1;
for (j = 0; j < 8; j++) {
tmp += 0x3fffffff + prime->val[j] - a->val[j];
a->val[j] = ((tmp & 0x3fffffff) & cond) | (a->val[j] & ~cond);
tmp >>= 30;
}
tmp += 0x3fffffff + prime->val[j] - a->val[j];
a->val[j] = ((tmp & 0x3fffffff) & cond) | (a->val[j] & ~cond);
}
typedef struct jacobian_curve_point {
bignum256 x, y, z;
} jacobian_curve_point;
static void curve_to_jacobian(const curve_point *p, jacobian_curve_point *jp) {
int i;
// randomize z coordinate
for (i = 0; i < 8; i++) {
jp->z.val[i] = random32() & 0x3FFFFFFF;
}
jp->z.val[8] = (random32() & 0x7fff) + 1;
jp->x = jp->z;
bn_multiply(&jp->z, &jp->x, &prime256k1);
// x = z^2
jp->y = jp->x;
bn_multiply(&jp->z, &jp->y, &prime256k1);
// y = z^3
bn_multiply(&p->x, &jp->x, &prime256k1);
bn_multiply(&p->y, &jp->y, &prime256k1);
bn_mod(&jp->x, &prime256k1);
bn_mod(&jp->y, &prime256k1);
}
static void jacobian_to_curve(const jacobian_curve_point *jp, curve_point *p) {
p->y = jp->z;
bn_mod(&p->y, &prime256k1);
bn_inverse(&p->y, &prime256k1);
// p->y = z^-1
p->x = p->y;
bn_multiply(&p->x, &p->x, &prime256k1);
// p->x = z^-2
bn_multiply(&p->x, &p->y, &prime256k1);
// p->y = z^-3
bn_multiply(&jp->x, &p->x, &prime256k1);
// p->x = jp->x * z^-2
bn_multiply(&jp->y, &p->y, &prime256k1);
// p->y = jp->y * z^-3
bn_mod(&p->x, &prime256k1);
bn_mod(&p->y, &prime256k1);
}
static void point_jacobian_add(const curve_point *p1, jacobian_curve_point *p2) {
bignum256 r, h;
bignum256 rsq, hcb, hcby2, hsqx2;
int j;
uint64_t tmp1, tmp2;
/* usual algorithm:
*
* lambda = (y1 - y2/z2^3) / (x1 - x2/z2^2)
* x3/z3^2 = lambda^2 - x1 - x2/z2^2
* y3/z3^3 = lambda * (x3/z3 - x2/z2) - y2/z2^3
*
* to get rid of fraction we set
* r = (y1 * z2^3 - y2) (the numerator of lambda * z2^3)
* h = (x1 * z2^2 - x2) (the denominator of lambda * z2^2)
* Hence,
* lambda = r / (h*z2)
*
* With z3 = h*z2 (the denominator of lambda)
* we get x3 = lambda^2*z3^2 - x1*z3^2 - x2/z2^2*z3^2
* = r^2 - x1*h^2*z2^2 - x2*h^2
* = r^2 - h^2*(x1*z2^2 + x2)
* = r^2 - h^2*(h + 2*x2)
* = r^2 - h^3 - 2*h^2*x2
* and y3 = (lambda * (x2/z2^2 - x3/z3^2) - y2/z2^3) * z3^3
* = r * (h^2*x2 - x3) - h^3*y2
*/
/* h = x1*z2^2 - x2
* r = y1*z2^3 - y2
* x3 = r^2 - h^3 - 2*h^2*x2
* y3 = r*(h^2*x2 - x3) - h^3*y2
* z3 = h*z2
*/
// h = x1 * z2^2 - x2;
// r = y1 * z2^3 - y2;
h = p2->z;
bn_multiply(&h, &h, &prime256k1); // h = z2^2
r = p2->z;
bn_multiply(&h, &r, &prime256k1); // r = z2^3
bn_multiply(&p1->x, &h, &prime256k1);
bn_subtractmod(&h, &p2->x, &h, &prime256k1);
// h = x1 * z2^2 - x2;
bn_multiply(&p1->y, &r, &prime256k1);
bn_subtractmod(&r, &p2->y, &r, &prime256k1);
// r = y1 * z2^3 - y2;
// hsqx2 = h^2
hsqx2 = h;
bn_multiply(&hsqx2, &hsqx2, &prime256k1);
// hcb = h^3
hcb = h;
bn_multiply(&hsqx2, &hcb, &prime256k1);
// hsqx2 = h^2 * x2
bn_multiply(&p2->x, &hsqx2, &prime256k1);
// hcby2 = h^3 * y2
hcby2 = hcb;
bn_multiply(&p2->y, &hcby2, &prime256k1);
// rsq = r^2
rsq = r;
bn_multiply(&rsq, &rsq, &prime256k1);
// z3 = h*z2
bn_multiply(&h, &p2->z, &prime256k1);
// x3 = r^2 - h^3 - 2h^2x2
// y3 = r*(h^2x2 - x3) - h^3y2
// compute h^2x2 - x3 = h^3 + 3h^2x2 - r^2 first.
tmp1 = 0;
tmp2 = 0;
for (j = 0; j < 9; j++) {
tmp1 += (uint64_t) rsq.val[j] + 4*prime256k1.val[j] - hcb.val[j] - 2*hsqx2.val[j];
tmp2 += (uint64_t) hcb.val[j] + 3*hsqx2.val[j] + 2*prime256k1.val[j] - rsq.val[j];
assert(tmp1 < 5 * 0x40000000ull);
assert(tmp2 < 6 * 0x40000000ull);
p2->x.val[j] = tmp1 & 0x3fffffff;
p2->y.val[j] = tmp2 & 0x3fffffff;
tmp1 >>= 30;
tmp2 >>= 30;
}
// y3 = r*(h^2x2 - x3) - y2*h^3
bn_multiply(&r, &p2->y, &prime256k1);
bn_subtractmod(&p2->y, &hcby2, &p2->y, &prime256k1);
// normalize the numbers
bn_fast_mod(&p2->x, &prime256k1);
bn_mod(&p2->x, &prime256k1);
bn_fast_mod(&p2->y, &prime256k1);
bn_mod(&p2->y, &prime256k1);
bn_mod(&p2->z, &prime256k1);
}
2013-08-17 12:20:15 +00:00
// res = k * G
// k must be a normalized number with 0 <= k < order256k1
2014-02-05 22:38:37 +00:00
void scalar_multiply(const bignum256 *k, curve_point *res)
2013-08-17 12:20:15 +00:00
{
assert (bn_is_less(k, &order256k1));
int i, j;
bignum256 a;
uint32_t is_even = (k->val[0] & 1) - 1;
uint32_t lowbits;
jacobian_curve_point jres;
// is_even = 0xffffffff if k is even, 0 otherwise.
// add 2^256.
// make number odd: subtract order256k1 if even
uint32_t tmp = 1;
uint32_t is_non_zero = 0;
for (j = 0; j < 8; j++) {
is_non_zero |= k->val[j];
tmp += 0x3fffffff + k->val[j] - (order256k1.val[j] & is_even);
a.val[j] = tmp & 0x3fffffff;
tmp >>= 30;
}
is_non_zero |= k->val[j];
a.val[j] = tmp + 0xffff + k->val[j] - (order256k1.val[j] & is_even);
assert((a.val[0] & 1) != 0);
// special case 0*G: just return zero. We don't care about constant time.
if (!is_non_zero) {
point_set_infinity(res);
return;
}
// Now a = k + 2^256 (mod order256k1) and a is odd.
//
// The idea is to bring the new a into the form.
// sum_{i=0..64} a[i] 16^i, where |a[i]| < 16 and a[i] is odd.
// a[0] is odd, since a is odd. If a[i] would be even, we can
// add 1 to it and subtract 16 from a[i-1]. Afterwards,
// a[64] = 1, which is the 2^256 that we added before.
//
// Since k = a - 2^256 (mod order256k1), we can compute
// k*G = sum_{i=0..63} a[i] 16^i * G
//
// We have a big table secp256k1_cp that stores all possible
// values of |a[i]| 16^i * G.
// secp256k1_cp[i][j] = (2*j+1) * 16^i * G
// now compute res = sum_{i=0..63} a[i] * 16^i * G step by step.
// initial res = |a[0]| * G. Note that a[0] = a & 0xf if (a&0x10) != 0
// and - (16 - (a & 0xf)) otherwise. We can compute this as
// ((a ^ (((a >> 4) & 1) - 1)) & 0xf) >> 1
// since a is odd.
lowbits = a.val[0] & ((1 << 5) - 1);
lowbits ^= (lowbits >> 4) - 1;
lowbits &= 15;
curve_to_jacobian(&secp256k1_cp[0][lowbits >> 1], &jres);
for (i = 1; i < 64; i ++) {
// invariant res = sign(a[i-1]) sum_{j=0..i-1} (a[j] * 16^j * G)
// Note that sign(a[i-1]
// shift a by 4 places.
for (j = 0; j < 8; j++) {
a.val[j] = (a.val[j] >> 4) | ((a.val[j + 1] & 0xf) << 26);
2014-07-03 08:16:19 +00:00
}
a.val[j] >>= 4;
// a = old(a)>>(4*i)
// a is even iff sign(a[i-1]) = -1
lowbits = a.val[0] & ((1 << 5) - 1);
lowbits ^= (lowbits >> 4) - 1;
lowbits &= 15;
// negate last result to make signs of this round and the
// last round equal.
conditional_negate((lowbits & 1) - 1, &jres.y, &prime256k1);
// add odd factor
point_jacobian_add(&secp256k1_cp[i][lowbits >> 1], &jres);
}
conditional_negate(((a.val[0] >> 4) & 1) - 1, &jres.y, &prime256k1);
jacobian_to_curve(&jres, res);
2013-09-12 01:15:22 +00:00
}
#else
void scalar_multiply(const bignum256 *k, curve_point *res)
{
point_multiply(k, &G256k1, res);
}
#endif
2013-09-09 23:03:24 +00:00
// generate random K for signing
int generate_k_random(bignum256 *k) {
int i, j;
for (j = 0; j < 10000; j++) {
2013-09-09 23:03:24 +00:00
for (i = 0; i < 8; i++) {
k->val[i] = random32() & 0x3FFFFFFF;
}
k->val[8] = random32() & 0xFFFF;
// if k is too big or too small, we don't like it
2013-10-03 16:19:30 +00:00
if ( !bn_is_zero(k) && bn_is_less(k, &order256k1) ) {
return 0; // good number - no error
}
2013-09-09 23:03:24 +00:00
}
// we generated 10000 numbers, none of them is good -> fail
return 1;
2013-09-09 23:03:24 +00:00
}
// generate K in a deterministic way, according to RFC6979
// http://tools.ietf.org/html/rfc6979
int generate_k_rfc6979(bignum256 *secret, const uint8_t *priv_key, const uint8_t *hash)
2013-09-11 17:02:22 +00:00
{
int i;
uint8_t v[32], k[32], bx[2*32], buf[32 + 1 + sizeof(bx)];
2013-09-11 17:02:22 +00:00
bignum256 z1;
memcpy(bx, priv_key, 32);
2013-09-12 01:15:22 +00:00
bn_read_be(hash, &z1);
bn_mod(&z1, &order256k1);
bn_write_be(&z1, bx + 32);
2013-09-11 17:02:22 +00:00
memset(v, 1, sizeof(v));
memset(k, 0, sizeof(k));
memcpy(buf, v, sizeof(v));
buf[sizeof(v)] = 0x00;
memcpy(buf + sizeof(v) + 1, bx, 64);
hmac_sha256(k, sizeof(k), buf, sizeof(buf), k);
hmac_sha256(k, sizeof(k), v, sizeof(v), v);
memcpy(buf, v, sizeof(v));
buf[sizeof(v)] = 0x01;
memcpy(buf + sizeof(v) + 1, bx, 64);
hmac_sha256(k, sizeof(k), buf, sizeof(buf), k);
hmac_sha256(k, sizeof(k), v, sizeof(k), v);
for (i = 0; i < 10000; i++) {
hmac_sha256(k, sizeof(k), v, sizeof(v), v);
bn_read_be(v, secret);
2013-09-12 01:15:22 +00:00
if ( !bn_is_zero(secret) && bn_is_less(secret, &order256k1) ) {
return 0; // good number -> no error
2013-09-11 17:02:22 +00:00
}
memcpy(buf, v, sizeof(v));
buf[sizeof(v)] = 0x00;
hmac_sha256(k, sizeof(k), buf, sizeof(v) + 1, k);
hmac_sha256(k, sizeof(k), v, sizeof(v), v);
}
// we generated 10000 numbers, none of them is good -> fail
return 1;
2013-09-09 23:03:24 +00:00
}
2013-08-19 10:40:58 +00:00
// msg is a data to be signed
// msg_len is the message length
2014-12-08 19:17:47 +00:00
int ecdsa_sign(const uint8_t *priv_key, const uint8_t *msg, uint32_t msg_len, uint8_t *sig, uint8_t *pby)
2013-08-17 12:20:15 +00:00
{
uint8_t hash[32];
sha256_Raw(msg, msg_len, hash);
2014-12-08 19:17:47 +00:00
return ecdsa_sign_digest(priv_key, hash, sig, pby);
}
// msg is a data to be signed
// msg_len is the message length
2014-12-08 19:17:47 +00:00
int ecdsa_sign_double(const uint8_t *priv_key, const uint8_t *msg, uint32_t msg_len, uint8_t *sig, uint8_t *pby)
{
uint8_t hash[32];
sha256_Raw(msg, msg_len, hash);
sha256_Raw(hash, 32, hash);
2014-12-08 19:17:47 +00:00
return ecdsa_sign_digest(priv_key, hash, sig, pby);
}
// uses secp256k1 curve
// priv_key is a 32 byte big endian stored number
// sig is 64 bytes long array for the signature
// digest is 32 bytes of digest
2014-12-08 19:17:47 +00:00
int ecdsa_sign_digest(const uint8_t *priv_key, const uint8_t *digest, uint8_t *sig, uint8_t *pby)
{
uint32_t i;
2013-08-17 12:20:15 +00:00
curve_point R;
bignum256 k, z;
bignum256 *da = &R.y;
bn_read_be(digest, &z);
2013-09-11 17:02:22 +00:00
2013-10-03 16:19:30 +00:00
#if USE_RFC6979
// generate K deterministically
if (generate_k_rfc6979(&k, priv_key, digest) != 0) {
return 1;
}
2013-10-03 16:19:30 +00:00
#else
// generate random number k
if (generate_k_random(&k) != 0) {
return 1;
}
#endif
2013-09-11 17:02:22 +00:00
// compute k*G
scalar_multiply(&k, &R);
2014-12-08 19:17:47 +00:00
if (pby) {
*pby = R.y.val[0] & 1;
}
// r = (rx mod n)
bn_mod(&R.x, &order256k1);
// if r is zero, we fail
if (bn_is_zero(&R.x)) return 2;
bn_inverse(&k, &order256k1);
bn_read_be(priv_key, da);
bn_multiply(&R.x, da, &order256k1);
for (i = 0; i < 8; i++) {
da->val[i] += z.val[i];
da->val[i + 1] += (da->val[i] >> 30);
da->val[i] &= 0x3FFFFFFF;
}
da->val[8] += z.val[8];
bn_multiply(da, &k, &order256k1);
bn_mod(&k, &order256k1);
// if k is zero, we fail
if (bn_is_zero(&k)) return 3;
// if S > order/2 => S = -S
if (bn_is_less(&order256k1_half, &k)) {
bn_subtract(&order256k1, &k, &k);
if (pby) {
*pby = !*pby;
}
}
// we are done, R.x and k is the result signature
bn_write_be(&R.x, sig);
bn_write_be(&k, sig + 32);
2013-09-27 13:42:52 +00:00
return 0;
2013-08-17 12:20:15 +00:00
}
void ecdsa_get_public_key33(const uint8_t *priv_key, uint8_t *pub_key)
{
curve_point R;
bignum256 k;
2013-09-12 01:15:22 +00:00
bn_read_be(priv_key, &k);
// compute k*G
scalar_multiply(&k, &R);
pub_key[0] = 0x02 | (R.y.val[0] & 0x01);
bn_write_be(&R.x, pub_key + 1);
}
void ecdsa_get_public_key65(const uint8_t *priv_key, uint8_t *pub_key)
{
curve_point R;
bignum256 k;
bn_read_be(priv_key, &k);
// compute k*G
scalar_multiply(&k, &R);
pub_key[0] = 0x04;
bn_write_be(&R.x, pub_key + 1);
bn_write_be(&R.y, pub_key + 33);
}
2014-02-21 22:33:14 +00:00
void ecdsa_get_pubkeyhash(const uint8_t *pub_key, uint8_t *pubkeyhash)
{
uint8_t h[32];
if (pub_key[0] == 0x04) { // uncompressed format
2014-02-21 22:33:14 +00:00
sha256_Raw(pub_key, 65, h);
} else if (pub_key[0] == 0x00) { // point at infinity
sha256_Raw(pub_key, 1, h);
2014-02-21 22:33:14 +00:00
} else {
sha256_Raw(pub_key, 33, h); // expecting compressed format
2014-02-21 22:33:14 +00:00
}
ripemd160(h, 32, pubkeyhash);
}
2014-11-16 20:17:39 +00:00
void ecdsa_get_address_raw(const uint8_t *pub_key, uint8_t version, uint8_t *addr_raw)
{
addr_raw[0] = version;
ecdsa_get_pubkeyhash(pub_key, addr_raw + 1);
}
2014-12-23 00:17:58 +00:00
void ecdsa_get_address(const uint8_t *pub_key, uint8_t version, char *addr, int addrsize)
2013-09-19 12:52:52 +00:00
{
2014-11-16 20:17:39 +00:00
uint8_t raw[21];
ecdsa_get_address_raw(pub_key, version, raw);
2014-12-23 00:17:58 +00:00
base58_encode_check(raw, 21, addr, addrsize);
}
2013-09-19 12:52:52 +00:00
2014-12-23 00:17:58 +00:00
void ecdsa_get_wif(const uint8_t *priv_key, uint8_t version, char *wif, int wifsize)
{
uint8_t data[34];
data[0] = version;
memcpy(data + 1, priv_key, 32);
2014-12-23 00:17:58 +00:00
data[33] = 0x01;
base58_encode_check(data, 34, wif, wifsize);
2013-09-19 12:52:52 +00:00
}
int ecdsa_address_decode(const char *addr, uint8_t *out)
2014-01-30 19:34:05 +00:00
{
if (!addr) return 0;
2014-12-23 00:17:58 +00:00
return base58_decode_check(addr, out, 21) == 21;
2014-01-30 19:34:05 +00:00
}
2014-02-04 17:55:17 +00:00
void uncompress_coords(uint8_t odd, const bignum256 *x, bignum256 *y)
{
// y^2 = x^3 + 0*x + 7
memcpy(y, x, sizeof(bignum256)); // y is x
bn_multiply(x, y, &prime256k1); // y is x^2
bn_multiply(x, y, &prime256k1); // y is x^3
bn_addmodi(y, 7, &prime256k1); // y is x^3 + 7
bn_sqrt(y, &prime256k1); // y = sqrt(y)
if ((odd & 0x01) != (y->val[0] & 1)) {
bn_subtract(&prime256k1, y, y); // y = -y
2014-02-04 17:55:17 +00:00
}
}
2014-01-14 13:35:13 +00:00
int ecdsa_read_pubkey(const uint8_t *pub_key, curve_point *pub)
{
if (pub_key[0] == 0x04) {
bn_read_be(pub_key + 1, &(pub->x));
bn_read_be(pub_key + 33, &(pub->y));
2014-07-07 12:38:14 +00:00
return ecdsa_validate_pubkey(pub);
2014-01-14 13:35:13 +00:00
}
if (pub_key[0] == 0x02 || pub_key[0] == 0x03) { // compute missing y coords
bn_read_be(pub_key + 1, &(pub->x));
2014-02-04 17:55:17 +00:00
uncompress_coords(pub_key[0], &(pub->x), &(pub->y));
2014-07-07 12:38:14 +00:00
return ecdsa_validate_pubkey(pub);
2014-01-14 13:35:13 +00:00
}
// error
return 0;
}
2014-07-07 12:38:14 +00:00
// Verifies that:
// - pub is not the point at infinity.
// - pub->x and pub->y are in range [0,p-1].
// - pub is on the curve.
int ecdsa_validate_pubkey(const curve_point *pub)
{
bignum256 y_2, x_3_b;
if (point_is_infinity(pub)) {
return 0;
}
if (!bn_is_less(&(pub->x), &prime256k1) || !bn_is_less(&(pub->y), &prime256k1)) {
return 0;
}
memcpy(&y_2, &(pub->y), sizeof(bignum256));
memcpy(&x_3_b, &(pub->x), sizeof(bignum256));
// y^2
bn_multiply(&(pub->y), &y_2, &prime256k1);
bn_mod(&y_2, &prime256k1);
2014-07-07 12:38:14 +00:00
// x^3 + b
bn_multiply(&(pub->x), &x_3_b, &prime256k1);
bn_multiply(&(pub->x), &x_3_b, &prime256k1);
bn_addmodi(&x_3_b, 7, &prime256k1);
if (!bn_is_equal(&x_3_b, &y_2)) {
return 0;
}
return 1;
}
// uses secp256k1 curve
// pub_key - 65 bytes uncompressed key
// signature - 64 bytes signature
// msg is a data that was signed
// msg_len is the message length
2014-02-04 18:12:43 +00:00
int ecdsa_verify(const uint8_t *pub_key, const uint8_t *sig, const uint8_t *msg, uint32_t msg_len)
{
uint8_t hash[32];
sha256_Raw(msg, msg_len, hash);
2014-02-04 18:12:43 +00:00
return ecdsa_verify_digest(pub_key, sig, hash);
}
int ecdsa_verify_double(const uint8_t *pub_key, const uint8_t *sig, const uint8_t *msg, uint32_t msg_len)
{
uint8_t hash[32];
sha256_Raw(msg, msg_len, hash);
sha256_Raw(hash, 32, hash);
2014-02-04 18:12:43 +00:00
return ecdsa_verify_digest(pub_key, sig, hash);
}
// returns 0 if verification succeeded
2014-02-04 18:12:43 +00:00
int ecdsa_verify_digest(const uint8_t *pub_key, const uint8_t *sig, const uint8_t *digest)
{
int i, j;
2013-09-09 23:41:10 +00:00
curve_point pub, res;
bignum256 r, s, z;
2014-01-14 13:35:13 +00:00
if (!ecdsa_read_pubkey(pub_key, &pub)) {
return 1;
}
bn_read_be(sig, &r);
bn_read_be(sig + 32, &s);
2014-02-04 18:12:43 +00:00
bn_read_be(digest, &z);
2013-09-12 01:15:22 +00:00
2013-10-24 17:44:54 +00:00
if (bn_is_zero(&r) || bn_is_zero(&s) ||
2013-09-12 01:15:22 +00:00
(!bn_is_less(&r, &order256k1)) ||
(!bn_is_less(&s, &order256k1))) return 2;
2013-09-12 01:15:22 +00:00
bn_inverse(&s, &order256k1); // s^-1
bn_multiply(&s, &z, &order256k1); // z*s^-1
bn_mod(&z, &order256k1);
bn_multiply(&r, &s, &order256k1); // r*s^-1
bn_mod(&s, &order256k1);
if (bn_is_zero(&z)) {
// our message hashes to zero
// I don't expect this to happen any time soon
2013-10-01 16:08:33 +00:00
return 3;
} else {
scalar_multiply(&z, &res);
}
2014-01-04 16:39:37 +00:00
// both pub and res can be infinity, can have y = 0 OR can be equal -> false negative
for (i = 0; i < 9; i++) {
for (j = 0; j < 30; j++) {
if (i == 8 && (s.val[i] >> j) == 0) break;
if (s.val[i] & (1u << j)) {
point_add(&pub, &res);
}
point_double(&pub);
}
}
2013-09-12 01:15:22 +00:00
bn_mod(&(res.x), &order256k1);
2013-10-24 17:44:54 +00:00
// signature does not match
if (!bn_is_equal(&res.x, &r)) return 5;
2013-10-24 17:44:54 +00:00
// all OK
return 0;
}
2014-02-02 21:01:43 +00:00
int ecdsa_sig_to_der(const uint8_t *sig, uint8_t *der)
{
2014-02-08 14:55:03 +00:00
int i;
uint8_t *p = der, *len, *len1, *len2;
*p = 0x30; p++; // sequence
*p = 0x00; len = p; p++; // len(sequence)
*p = 0x02; p++; // integer
*p = 0x00; len1 = p; p++; // len(integer)
// process R
i = 0;
while (sig[i] == 0 && i < 32) { i++; } // skip leading zeroes
if (sig[i] >= 0x80) { // put zero in output if MSB set
*p = 0x00; p++; *len1 = *len1 + 1;
2014-02-02 21:01:43 +00:00
}
2014-02-08 14:55:03 +00:00
while (i < 32) { // copy bytes to output
*p = sig[i]; p++; *len1 = *len1 + 1; i++;
}
*p = 0x02; p++; // integer
*p = 0x00; len2 = p; p++; // len(integer)
// process S
i = 32;
while (sig[i] == 0 && i < 64) { i++; } // skip leading zeroes
if (sig[i] >= 0x80) { // put zero in output if MSB set
*p = 0x00; p++; *len2 = *len2 + 1;
2014-02-02 21:01:43 +00:00
}
2014-02-08 14:55:03 +00:00
while (i < 64) { // copy bytes to output
*p = sig[i]; p++; *len2 = *len2 + 1; i++;
}
*len = *len1 + *len2 + 4;
return *len + 2;
2014-02-02 21:01:43 +00:00
}