mirror of
https://github.com/trezor/trezor-firmware.git
synced 2025-01-04 12:31:02 +00:00
134 lines
3.2 KiB
Rust
134 lines
3.2 KiB
Rust
|
use core::ops::{Add, Div, Mul};
|
||
|
|
||
|
use num_traits::{float::FloatCore, AsPrimitive, Zero};
|
||
|
|
||
|
use crate::{Anim, AnimWithDur, Fun};
|
||
|
|
||
|
impl<F> AnimWithDur<F>
|
||
|
where
|
||
|
F: Fun<T = usize>,
|
||
|
{
|
||
|
pub fn fold<B, G>(&self, init: B, mut f: G) -> B
|
||
|
where
|
||
|
G: FnMut(B, F::V) -> B,
|
||
|
{
|
||
|
let mut b = init;
|
||
|
|
||
|
for t in 0..self.1 {
|
||
|
b = f(b, self.0.eval(t))
|
||
|
}
|
||
|
|
||
|
b
|
||
|
}
|
||
|
}
|
||
|
|
||
|
impl<F> AnimWithDur<F>
|
||
|
where
|
||
|
F: Fun<T = usize>,
|
||
|
F::V: Add<Output = F::V> + Zero,
|
||
|
{
|
||
|
pub fn sum(&self) -> F::V {
|
||
|
self.fold(Zero::zero(), |a, b| a + b)
|
||
|
}
|
||
|
}
|
||
|
|
||
|
impl<F> AnimWithDur<F>
|
||
|
where
|
||
|
F: Fun<T = usize>,
|
||
|
F::T: Clone,
|
||
|
F::V: 'static + Add<Output = F::V> + Div<Output = F::V> + Zero + Copy,
|
||
|
usize: AsPrimitive<F::V>,
|
||
|
{
|
||
|
pub fn mean(&self) -> F::V {
|
||
|
let len = self.1.clone().as_();
|
||
|
self.sum() / len
|
||
|
}
|
||
|
}
|
||
|
|
||
|
#[derive(Debug, Clone)]
|
||
|
pub struct Line<V> {
|
||
|
pub y_intercept: V,
|
||
|
pub slope: V,
|
||
|
}
|
||
|
|
||
|
impl<V> Fun for Line<V>
|
||
|
where
|
||
|
V: Add<Output = V> + Mul<Output = V> + Clone,
|
||
|
{
|
||
|
type T = V;
|
||
|
type V = V;
|
||
|
|
||
|
fn eval(&self, t: V) -> V {
|
||
|
self.y_intercept.clone() + self.slope.clone() * t
|
||
|
}
|
||
|
}
|
||
|
|
||
|
pub fn simple_linear_regression_with_slope<V, F, A>(slope: V, values: A) -> Anim<Line<V>>
|
||
|
where
|
||
|
V: 'static + FloatCore + Copy,
|
||
|
F: Fun<T = usize, V = (V, V)>,
|
||
|
A: Into<AnimWithDur<F>>,
|
||
|
usize: AsPrimitive<V>,
|
||
|
{
|
||
|
// https://en.wikipedia.org/wiki/Simple_linear_regression#Fitting_the_regression_line
|
||
|
let values = values.into();
|
||
|
let (x, y) = values.unzip();
|
||
|
let x_mean = x.as_ref().mean();
|
||
|
let y_mean = y.as_ref().mean();
|
||
|
|
||
|
let y_intercept = y_mean - slope * x_mean;
|
||
|
|
||
|
Anim(Line { y_intercept, slope })
|
||
|
}
|
||
|
|
||
|
pub fn simple_linear_regression<V, F, A>(values: A) -> Anim<Line<V>>
|
||
|
where
|
||
|
V: 'static + FloatCore + Copy,
|
||
|
F: Fun<T = usize, V = (V, V)>,
|
||
|
A: Into<AnimWithDur<F>>,
|
||
|
usize: AsPrimitive<V>,
|
||
|
{
|
||
|
// https://en.wikipedia.org/wiki/Simple_linear_regression#Fitting_the_regression_line
|
||
|
let values = values.into();
|
||
|
let (x, y) = values.unzip();
|
||
|
let x_mean = x.as_ref().mean();
|
||
|
let y_mean = y.as_ref().mean();
|
||
|
let numerator = values
|
||
|
.as_ref()
|
||
|
.map(|(x, y)| (x - x_mean) * (y - y_mean))
|
||
|
.sum();
|
||
|
let denominator = x.as_ref().map(|x| (x - x_mean) * (x - x_mean)).sum();
|
||
|
let slope = numerator / denominator;
|
||
|
|
||
|
let y_intercept = y_mean - slope * x_mean;
|
||
|
|
||
|
Anim(Line { y_intercept, slope })
|
||
|
}
|
||
|
|
||
|
#[cfg(all(test, feature = "alloc"))]
|
||
|
mod tests {
|
||
|
use assert_approx_eq::assert_approx_eq;
|
||
|
extern crate alloc;
|
||
|
use alloc::vec;
|
||
|
|
||
|
use super::simple_linear_regression;
|
||
|
|
||
|
#[test]
|
||
|
fn test_perfect_regression() {
|
||
|
let straight_line = vec![(1.0, 1.0), (2.0, 2.0)];
|
||
|
let line = simple_linear_regression(straight_line.as_slice());
|
||
|
assert_approx_eq!(line.eval(1.0), 1.0f64);
|
||
|
assert_approx_eq!(line.eval(10.0), 10.0);
|
||
|
assert_approx_eq!(line.eval(-10.0), -10.0);
|
||
|
}
|
||
|
|
||
|
#[test]
|
||
|
fn test_negative_perfect_regression() {
|
||
|
let straight_line = vec![(1.0, -1.0), (2.0, -2.0)];
|
||
|
let line = simple_linear_regression(straight_line.as_slice());
|
||
|
assert_approx_eq!(line.eval(1.0), -1.0f64);
|
||
|
assert_approx_eq!(line.eval(10.0), -10.0);
|
||
|
assert_approx_eq!(line.eval(-10.0), 10.0);
|
||
|
}
|
||
|
}
|