1
0
mirror of https://github.com/trezor/trezor-firmware.git synced 2025-01-10 15:30:55 +00:00
trezor-firmware/tools/ed25519raw.py

138 lines
3.0 KiB
Python
Raw Normal View History

# orignal version downloaded from https://ed25519.cr.yp.to/python/ed25519.py
# modified for Python 3 by Jochen Hoenicke <hoenicke@gmail.com>
2017-04-02 15:27:36 +00:00
import hashlib
b = 256
q = 2**255 - 19
l = 2**252 + 27742317777372353535851937790883648493
2017-06-13 14:50:03 +00:00
2017-04-02 15:27:36 +00:00
def H(m):
2017-06-13 14:50:03 +00:00
return hashlib.sha512(m).digest()
def expmod(b, e, m):
if e < 0:
raise Exception("negative exponent")
if e == 0:
return 1
t = expmod(b, e >> 1, m)**2 % m
if e & 1:
t = (t * b) % m
return t
2017-04-02 15:27:36 +00:00
def inv(x):
2017-06-13 14:50:03 +00:00
return expmod(x, q - 2, q)
2017-04-02 15:27:36 +00:00
2017-09-05 21:15:47 +00:00
2017-04-02 15:27:36 +00:00
d = -121665 * inv(121666)
2017-06-13 14:50:03 +00:00
I = expmod(2, (q - 1) >> 2, q)
2017-04-02 15:27:36 +00:00
def xrecover(y):
2017-06-13 14:50:03 +00:00
xx = (y * y - 1) * inv(d * y * y + 1)
x = expmod(xx, (q + 3) >> 3, q)
if (x * x - xx) % q != 0:
x = (x * I) % q
if x % 2 != 0:
x = q - x
return x
2017-04-02 15:27:36 +00:00
2017-09-05 21:15:47 +00:00
2017-04-02 15:27:36 +00:00
By = 4 * inv(5)
Bx = xrecover(By)
2017-06-13 14:50:03 +00:00
B = [Bx % q, By % q]
def edwards(P, Q):
x1 = P[0]
y1 = P[1]
x2 = Q[0]
y2 = Q[1]
x3 = (x1 * y2 + x2 * y1) * inv(1 + d * x1 * x2 * y1 * y2)
y3 = (y1 * y2 + x1 * x2) * inv(1 - d * x1 * x2 * y1 * y2)
return [x3 % q, y3 % q]
def scalarmult(P, e):
if e == 0:
return [0, 1]
Q = scalarmult(P, e >> 1)
Q = edwards(Q, Q)
if e & 1:
Q = edwards(Q, P)
return Q
2017-04-02 15:27:36 +00:00
def encodeint(y):
2017-06-13 14:50:03 +00:00
bits = [(y >> i) & 1 for i in range(b)]
return bytes([sum([bits[i * 8 + j] << j for j in range(8)]) for i in range(b >> 3)])
2017-04-02 15:27:36 +00:00
def encodepoint(P):
2017-06-13 14:50:03 +00:00
x = P[0]
y = P[1]
bits = [(y >> i) & 1 for i in range(b - 1)] + [x & 1]
return bytes([sum([bits[i * 8 + j] << j for j in range(8)]) for i in range(b >> 3)])
def bit(h, i):
return (h[i >> 3] >> (i & 7)) & 1
2017-04-02 15:27:36 +00:00
def publickey(sk):
2017-06-13 14:50:03 +00:00
h = H(sk)
a = 2**(b - 2) + sum(2**i * bit(h, i) for i in range(3, b - 2))
A = scalarmult(B, a)
return encodepoint(A)
2017-04-02 15:27:36 +00:00
def Hint(m):
2017-06-13 14:50:03 +00:00
h = H(m)
return sum(2**i * bit(h, i) for i in range(2 * b))
def signature(m, sk, pk):
h = H(sk)
a = 2**(b - 2) + sum(2**i * bit(h, i) for i in range(3, b - 2))
r = Hint(bytes([h[i] for i in range(b >> 3, b >> 2)]) + m)
R = scalarmult(B, r)
S = (r + Hint(encodepoint(R) + pk + m) * a) % l
return encodepoint(R) + encodeint(S)
2017-04-02 15:27:36 +00:00
def isoncurve(P):
2017-06-13 14:50:03 +00:00
x = P[0]
y = P[1]
return (-x * x + y * y - 1 - d * x * x * y * y) % q == 0
2017-04-02 15:27:36 +00:00
def decodeint(s):
2017-06-13 14:50:03 +00:00
return sum(2**i * bit(s, i) for i in range(0, b))
2017-04-02 15:27:36 +00:00
def decodepoint(s):
2017-06-13 14:50:03 +00:00
y = sum(2**i * bit(s, i) for i in range(0, b - 1))
x = xrecover(y)
if x & 1 != bit(s, b - 1):
x = q - x
P = [x, y]
if not isoncurve(P):
raise Exception("decoding point that is not on curve")
return P
def checkvalid(s, m, pk):
if len(s) != b >> 2:
raise Exception("signature length is wrong")
if len(pk) != b >> 3:
raise Exception("public-key length is wrong")
R = decodepoint(s[0:b >> 3])
A = decodepoint(pk)
S = decodeint(s[b >> 3:b >> 2])
h = Hint(encodepoint(R) + pk + m)
if scalarmult(B, S) != edwards(R, scalarmult(A, h)):
raise Exception("signature does not pass verification")