You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
simplesshd/dropbear/libtomcrypt/src/ciphers/twofish/twofish.c

713 lines
20 KiB

#define LTC_SOURCE
/* LibTomCrypt, modular cryptographic library -- Tom St Denis
*
* LibTomCrypt is a library that provides various cryptographic
* algorithms in a highly modular and flexible manner.
*
* The library is free for all purposes without any express
* guarantee it works.
*/
/**
@file twofish.c
Implementation of Twofish by Tom St Denis
*/
#include "tomcrypt.h"
#ifdef LTC_TWOFISH
/* first LTC_TWOFISH_ALL_TABLES must ensure LTC_TWOFISH_TABLES is defined */
#ifdef LTC_TWOFISH_ALL_TABLES
#ifndef LTC_TWOFISH_TABLES
#define LTC_TWOFISH_TABLES
#endif
#endif
const struct ltc_cipher_descriptor twofish_desc =
{
"twofish",
7,
16, 32, 16, 16,
&twofish_setup,
&twofish_ecb_encrypt,
&twofish_ecb_decrypt,
&twofish_test,
&twofish_done,
&twofish_keysize,
NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL
};
/* the two polynomials */
#define MDS_POLY 0x169
#define RS_POLY 0x14D
/* The 4x8 RS Linear Transform */
static const unsigned char RS[4][8] = {
{ 0x01, 0xA4, 0x55, 0x87, 0x5A, 0x58, 0xDB, 0x9E },
{ 0xA4, 0x56, 0x82, 0xF3, 0X1E, 0XC6, 0X68, 0XE5 },
{ 0X02, 0XA1, 0XFC, 0XC1, 0X47, 0XAE, 0X3D, 0X19 },
{ 0XA4, 0X55, 0X87, 0X5A, 0X58, 0XDB, 0X9E, 0X03 }
};
#ifdef LTC_TWOFISH_SMALL
/* sbox usage orderings */
static const unsigned char qord[4][5] = {
{ 1, 1, 0, 0, 1 },
{ 0, 1, 1, 0, 0 },
{ 0, 0, 0, 1, 1 },
{ 1, 0, 1, 1, 0 }
};
#endif /* LTC_TWOFISH_SMALL */
#ifdef LTC_TWOFISH_TABLES
#define __LTC_TWOFISH_TAB_C__
#include "twofish_tab.c"
#define sbox(i, x) ((ulong32)SBOX[i][(x)&255])
#else
/* The Q-box tables */
static const unsigned char qbox[2][4][16] = {
{
{ 0x8, 0x1, 0x7, 0xD, 0x6, 0xF, 0x3, 0x2, 0x0, 0xB, 0x5, 0x9, 0xE, 0xC, 0xA, 0x4 },
{ 0xE, 0XC, 0XB, 0X8, 0X1, 0X2, 0X3, 0X5, 0XF, 0X4, 0XA, 0X6, 0X7, 0X0, 0X9, 0XD },
{ 0XB, 0XA, 0X5, 0XE, 0X6, 0XD, 0X9, 0X0, 0XC, 0X8, 0XF, 0X3, 0X2, 0X4, 0X7, 0X1 },
{ 0XD, 0X7, 0XF, 0X4, 0X1, 0X2, 0X6, 0XE, 0X9, 0XB, 0X3, 0X0, 0X8, 0X5, 0XC, 0XA }
},
{
{ 0X2, 0X8, 0XB, 0XD, 0XF, 0X7, 0X6, 0XE, 0X3, 0X1, 0X9, 0X4, 0X0, 0XA, 0XC, 0X5 },
{ 0X1, 0XE, 0X2, 0XB, 0X4, 0XC, 0X3, 0X7, 0X6, 0XD, 0XA, 0X5, 0XF, 0X9, 0X0, 0X8 },
{ 0X4, 0XC, 0X7, 0X5, 0X1, 0X6, 0X9, 0XA, 0X0, 0XE, 0XD, 0X8, 0X2, 0XB, 0X3, 0XF },
{ 0xB, 0X9, 0X5, 0X1, 0XC, 0X3, 0XD, 0XE, 0X6, 0X4, 0X7, 0XF, 0X2, 0X0, 0X8, 0XA }
}
};
/* computes S_i[x] */
#ifdef LTC_CLEAN_STACK
static ulong32 _sbox(int i, ulong32 x)
#else
static ulong32 sbox(int i, ulong32 x)
#endif
{
unsigned char a0,b0,a1,b1,a2,b2,a3,b3,a4,b4,y;
/* a0,b0 = [x/16], x mod 16 */
a0 = (unsigned char)((x>>4)&15);
b0 = (unsigned char)((x)&15);
/* a1 = a0 ^ b0 */
a1 = a0 ^ b0;
/* b1 = a0 ^ ROR(b0, 1) ^ 8a0 */
b1 = (a0 ^ ((b0<<3)|(b0>>1)) ^ (a0<<3)) & 15;
/* a2,b2 = t0[a1], t1[b1] */
a2 = qbox[i][0][(int)a1];
b2 = qbox[i][1][(int)b1];
/* a3 = a2 ^ b2 */
a3 = a2 ^ b2;
/* b3 = a2 ^ ROR(b2, 1) ^ 8a2 */
b3 = (a2 ^ ((b2<<3)|(b2>>1)) ^ (a2<<3)) & 15;
/* a4,b4 = t2[a3], t3[b3] */
a4 = qbox[i][2][(int)a3];
b4 = qbox[i][3][(int)b3];
/* y = 16b4 + a4 */
y = (b4 << 4) + a4;
/* return result */
return (ulong32)y;
}
#ifdef LTC_CLEAN_STACK
static ulong32 sbox(int i, ulong32 x)
{
ulong32 y;
y = _sbox(i, x);
burn_stack(sizeof(unsigned char) * 11);
return y;
}
#endif /* LTC_CLEAN_STACK */
#endif /* LTC_TWOFISH_TABLES */
/* computes ab mod p */
static ulong32 gf_mult(ulong32 a, ulong32 b, ulong32 p)
{
ulong32 result, B[2], P[2];
P[1] = p;
B[1] = b;
result = P[0] = B[0] = 0;
/* unrolled branchless GF multiplier */
result ^= B[a&1]; a >>= 1; B[1] = P[B[1]>>7] ^ (B[1] << 1);
result ^= B[a&1]; a >>= 1; B[1] = P[B[1]>>7] ^ (B[1] << 1);
result ^= B[a&1]; a >>= 1; B[1] = P[B[1]>>7] ^ (B[1] << 1);
result ^= B[a&1]; a >>= 1; B[1] = P[B[1]>>7] ^ (B[1] << 1);
result ^= B[a&1]; a >>= 1; B[1] = P[B[1]>>7] ^ (B[1] << 1);
result ^= B[a&1]; a >>= 1; B[1] = P[B[1]>>7] ^ (B[1] << 1);
result ^= B[a&1]; a >>= 1; B[1] = P[B[1]>>7] ^ (B[1] << 1);
result ^= B[a&1];
return result;
}
/* computes [y0 y1 y2 y3] = MDS . [x0] */
#ifndef LTC_TWOFISH_TABLES
static ulong32 mds_column_mult(unsigned char in, int col)
{
ulong32 x01, x5B, xEF;
x01 = in;
x5B = gf_mult(in, 0x5B, MDS_POLY);
xEF = gf_mult(in, 0xEF, MDS_POLY);
switch (col) {
case 0:
return (x01 << 0 ) |
(x5B << 8 ) |
(xEF << 16) |
(xEF << 24);
case 1:
return (xEF << 0 ) |
(xEF << 8 ) |
(x5B << 16) |
(x01 << 24);
case 2:
return (x5B << 0 ) |
(xEF << 8 ) |
(x01 << 16) |
(xEF << 24);
case 3:
return (x5B << 0 ) |
(x01 << 8 ) |
(xEF << 16) |
(x5B << 24);
}
/* avoid warnings, we'd never get here normally but just to calm compiler warnings... */
return 0;
}
#else /* !LTC_TWOFISH_TABLES */
#define mds_column_mult(x, i) mds_tab[i][x]
#endif /* LTC_TWOFISH_TABLES */
/* Computes [y0 y1 y2 y3] = MDS . [x0 x1 x2 x3] */
static void mds_mult(const unsigned char *in, unsigned char *out)
{
int x;
ulong32 tmp;
for (tmp = x = 0; x < 4; x++) {
tmp ^= mds_column_mult(in[x], x);
}
STORE32L(tmp, out);
}
#ifdef LTC_TWOFISH_ALL_TABLES
/* computes [y0 y1 y2 y3] = RS . [x0 x1 x2 x3 x4 x5 x6 x7] */
static void rs_mult(const unsigned char *in, unsigned char *out)
{
ulong32 tmp;
tmp = rs_tab0[in[0]] ^ rs_tab1[in[1]] ^ rs_tab2[in[2]] ^ rs_tab3[in[3]] ^
rs_tab4[in[4]] ^ rs_tab5[in[5]] ^ rs_tab6[in[6]] ^ rs_tab7[in[7]];
STORE32L(tmp, out);
}
#else /* !LTC_TWOFISH_ALL_TABLES */
/* computes [y0 y1 y2 y3] = RS . [x0 x1 x2 x3 x4 x5 x6 x7] */
static void rs_mult(const unsigned char *in, unsigned char *out)
{
int x, y;
for (x = 0; x < 4; x++) {
out[x] = 0;
for (y = 0; y < 8; y++) {
out[x] ^= gf_mult(in[y], RS[x][y], RS_POLY);
}
}
}
#endif
/* computes h(x) */
static void h_func(const unsigned char *in, unsigned char *out, unsigned char *M, int k, int offset)
{
int x;
unsigned char y[4];
for (x = 0; x < 4; x++) {
y[x] = in[x];
}
switch (k) {
case 4:
y[0] = (unsigned char)(sbox(1, (ulong32)y[0]) ^ M[4 * (6 + offset) + 0]);
y[1] = (unsigned char)(sbox(0, (ulong32)y[1]) ^ M[4 * (6 + offset) + 1]);
y[2] = (unsigned char)(sbox(0, (ulong32)y[2]) ^ M[4 * (6 + offset) + 2]);
y[3] = (unsigned char)(sbox(1, (ulong32)y[3]) ^ M[4 * (6 + offset) + 3]);
/* FALLTHROUGH */
case 3:
y[0] = (unsigned char)(sbox(1, (ulong32)y[0]) ^ M[4 * (4 + offset) + 0]);
y[1] = (unsigned char)(sbox(1, (ulong32)y[1]) ^ M[4 * (4 + offset) + 1]);
y[2] = (unsigned char)(sbox(0, (ulong32)y[2]) ^ M[4 * (4 + offset) + 2]);
y[3] = (unsigned char)(sbox(0, (ulong32)y[3]) ^ M[4 * (4 + offset) + 3]);
/* FALLTHROUGH */
case 2:
y[0] = (unsigned char)(sbox(1, sbox(0, sbox(0, (ulong32)y[0]) ^ M[4 * (2 + offset) + 0]) ^ M[4 * (0 + offset) + 0]));
y[1] = (unsigned char)(sbox(0, sbox(0, sbox(1, (ulong32)y[1]) ^ M[4 * (2 + offset) + 1]) ^ M[4 * (0 + offset) + 1]));
y[2] = (unsigned char)(sbox(1, sbox(1, sbox(0, (ulong32)y[2]) ^ M[4 * (2 + offset) + 2]) ^ M[4 * (0 + offset) + 2]));
y[3] = (unsigned char)(sbox(0, sbox(1, sbox(1, (ulong32)y[3]) ^ M[4 * (2 + offset) + 3]) ^ M[4 * (0 + offset) + 3]));
/* FALLTHROUGH */
}
mds_mult(y, out);
}
#ifndef LTC_TWOFISH_SMALL
/* for GCC we don't use pointer aliases */
#if defined(__GNUC__)
#define S1 skey->twofish.S[0]
#define S2 skey->twofish.S[1]
#define S3 skey->twofish.S[2]
#define S4 skey->twofish.S[3]
#endif
/* the G function */
#define g_func(x, dum) (S1[byte(x,0)] ^ S2[byte(x,1)] ^ S3[byte(x,2)] ^ S4[byte(x,3)])
#define g1_func(x, dum) (S2[byte(x,0)] ^ S3[byte(x,1)] ^ S4[byte(x,2)] ^ S1[byte(x,3)])
#else
#ifdef LTC_CLEAN_STACK
static ulong32 _g_func(ulong32 x, symmetric_key *key)
#else
static ulong32 g_func(ulong32 x, symmetric_key *key)
#endif
{
unsigned char g, i, y, z;
ulong32 res;
res = 0;
for (y = 0; y < 4; y++) {
z = key->twofish.start;
/* do unkeyed substitution */
g = sbox(qord[y][z++], (x >> (8*y)) & 255);
/* first subkey */
i = 0;
/* do key mixing+sbox until z==5 */
while (z != 5) {
g = g ^ key->twofish.S[4*i++ + y];
g = sbox(qord[y][z++], g);
}
/* multiply g by a column of the MDS */
res ^= mds_column_mult(g, y);
}
return res;
}
#define g1_func(x, key) g_func(ROLc(x, 8), key)
#ifdef LTC_CLEAN_STACK
static ulong32 g_func(ulong32 x, symmetric_key *key)
{
ulong32 y;
y = _g_func(x, key);
burn_stack(sizeof(unsigned char) * 4 + sizeof(ulong32));
return y;
}
#endif /* LTC_CLEAN_STACK */
#endif /* LTC_TWOFISH_SMALL */
/**
Initialize the Twofish block cipher
@param key The symmetric key you wish to pass
@param keylen The key length in bytes
@param num_rounds The number of rounds desired (0 for default)
@param skey The key in as scheduled by this function.
@return CRYPT_OK if successful
*/
#ifdef LTC_CLEAN_STACK
static int _twofish_setup(const unsigned char *key, int keylen, int num_rounds, symmetric_key *skey)
#else
int twofish_setup(const unsigned char *key, int keylen, int num_rounds, symmetric_key *skey)
#endif
{
#ifndef LTC_TWOFISH_SMALL
unsigned char S[4*4], tmpx0, tmpx1;
#endif
int k, x, y;
unsigned char tmp[4], tmp2[4], M[8*4];
ulong32 A, B;
LTC_ARGCHK(key != NULL);
LTC_ARGCHK(skey != NULL);
/* invalid arguments? */
if (num_rounds != 16 && num_rounds != 0) {
return CRYPT_INVALID_ROUNDS;
}
if (keylen != 16 && keylen != 24 && keylen != 32) {
return CRYPT_INVALID_KEYSIZE;
}
/* k = keysize/64 [but since our keysize is in bytes...] */
k = keylen / 8;
/* copy the key into M */
for (x = 0; x < keylen; x++) {
M[x] = key[x] & 255;
}
/* create the S[..] words */
#ifndef LTC_TWOFISH_SMALL
for (x = 0; x < k; x++) {
rs_mult(M+(x*8), S+(x*4));
}
#else
for (x = 0; x < k; x++) {
rs_mult(M+(x*8), skey->twofish.S+(x*4));
}
#endif
/* make subkeys */
for (x = 0; x < 20; x++) {
/* A = h(p * 2x, Me) */
for (y = 0; y < 4; y++) {
tmp[y] = x+x;
}
h_func(tmp, tmp2, M, k, 0);
LOAD32L(A, tmp2);
/* B = ROL(h(p * (2x + 1), Mo), 8) */
for (y = 0; y < 4; y++) {
tmp[y] = (unsigned char)(x+x+1);
}
h_func(tmp, tmp2, M, k, 1);
LOAD32L(B, tmp2);
B = ROLc(B, 8);
/* K[2i] = A + B */
skey->twofish.K[x+x] = (A + B) & 0xFFFFFFFFUL;
/* K[2i+1] = (A + 2B) <<< 9 */
skey->twofish.K[x+x+1] = ROLc(B + B + A, 9);
}
#ifndef LTC_TWOFISH_SMALL
/* make the sboxes (large ram variant) */
if (k == 2) {
for (x = 0; x < 256; x++) {
tmpx0 = (unsigned char)sbox(0, x);
tmpx1 = (unsigned char)sbox(1, x);
skey->twofish.S[0][x] = mds_column_mult(sbox(1, (sbox(0, tmpx0 ^ S[0]) ^ S[4])),0);
skey->twofish.S[1][x] = mds_column_mult(sbox(0, (sbox(0, tmpx1 ^ S[1]) ^ S[5])),1);
skey->twofish.S[2][x] = mds_column_mult(sbox(1, (sbox(1, tmpx0 ^ S[2]) ^ S[6])),2);
skey->twofish.S[3][x] = mds_column_mult(sbox(0, (sbox(1, tmpx1 ^ S[3]) ^ S[7])),3);
}
} else if (k == 3) {
for (x = 0; x < 256; x++) {
tmpx0 = (unsigned char)sbox(0, x);
tmpx1 = (unsigned char)sbox(1, x);
skey->twofish.S[0][x] = mds_column_mult(sbox(1, (sbox(0, sbox(0, tmpx1 ^ S[0]) ^ S[4]) ^ S[8])),0);
skey->twofish.S[1][x] = mds_column_mult(sbox(0, (sbox(0, sbox(1, tmpx1 ^ S[1]) ^ S[5]) ^ S[9])),1);
skey->twofish.S[2][x] = mds_column_mult(sbox(1, (sbox(1, sbox(0, tmpx0 ^ S[2]) ^ S[6]) ^ S[10])),2);
skey->twofish.S[3][x] = mds_column_mult(sbox(0, (sbox(1, sbox(1, tmpx0 ^ S[3]) ^ S[7]) ^ S[11])),3);
}
} else {
for (x = 0; x < 256; x++) {
tmpx0 = (unsigned char)sbox(0, x);
tmpx1 = (unsigned char)sbox(1, x);
skey->twofish.S[0][x] = mds_column_mult(sbox(1, (sbox(0, sbox(0, sbox(1, tmpx1 ^ S[0]) ^ S[4]) ^ S[8]) ^ S[12])),0);
skey->twofish.S[1][x] = mds_column_mult(sbox(0, (sbox(0, sbox(1, sbox(1, tmpx0 ^ S[1]) ^ S[5]) ^ S[9]) ^ S[13])),1);
skey->twofish.S[2][x] = mds_column_mult(sbox(1, (sbox(1, sbox(0, sbox(0, tmpx0 ^ S[2]) ^ S[6]) ^ S[10]) ^ S[14])),2);
skey->twofish.S[3][x] = mds_column_mult(sbox(0, (sbox(1, sbox(1, sbox(0, tmpx1 ^ S[3]) ^ S[7]) ^ S[11]) ^ S[15])),3);
}
}
#else
/* where to start in the sbox layers */
/* small ram variant */
switch (k) {
case 4 : skey->twofish.start = 0; break;
case 3 : skey->twofish.start = 1; break;
default: skey->twofish.start = 2; break;
}
#endif
return CRYPT_OK;
}
#ifdef LTC_CLEAN_STACK
int twofish_setup(const unsigned char *key, int keylen, int num_rounds, symmetric_key *skey)
{
int x;
x = _twofish_setup(key, keylen, num_rounds, skey);
burn_stack(sizeof(int) * 7 + sizeof(unsigned char) * 56 + sizeof(ulong32) * 2);
return x;
}
#endif
/**
Encrypts a block of text with Twofish
@param pt The input plaintext (16 bytes)
@param ct The output ciphertext (16 bytes)
@param skey The key as scheduled
@return CRYPT_OK if successful
*/
#ifdef LTC_CLEAN_STACK
static int _twofish_ecb_encrypt(const unsigned char *pt, unsigned char *ct, symmetric_key *skey)
#else
int twofish_ecb_encrypt(const unsigned char *pt, unsigned char *ct, symmetric_key *skey)
#endif
{
ulong32 a,b,c,d,ta,tb,tc,td,t1,t2, *k;
int r;
#if !defined(LTC_TWOFISH_SMALL) && !defined(__GNUC__)
ulong32 *S1, *S2, *S3, *S4;
#endif
LTC_ARGCHK(pt != NULL);
LTC_ARGCHK(ct != NULL);
LTC_ARGCHK(skey != NULL);
#if !defined(LTC_TWOFISH_SMALL) && !defined(__GNUC__)
S1 = skey->twofish.S[0];
S2 = skey->twofish.S[1];
S3 = skey->twofish.S[2];
S4 = skey->twofish.S[3];
#endif
LOAD32L(a,&pt[0]); LOAD32L(b,&pt[4]);
LOAD32L(c,&pt[8]); LOAD32L(d,&pt[12]);
a ^= skey->twofish.K[0];
b ^= skey->twofish.K[1];
c ^= skey->twofish.K[2];
d ^= skey->twofish.K[3];
k = skey->twofish.K + 8;
for (r = 8; r != 0; --r) {
t2 = g1_func(b, skey);
t1 = g_func(a, skey) + t2;
c = RORc(c ^ (t1 + k[0]), 1);
d = ROLc(d, 1) ^ (t2 + t1 + k[1]);
t2 = g1_func(d, skey);
t1 = g_func(c, skey) + t2;
a = RORc(a ^ (t1 + k[2]), 1);
b = ROLc(b, 1) ^ (t2 + t1 + k[3]);
k += 4;
}
/* output with "undo last swap" */
ta = c ^ skey->twofish.K[4];
tb = d ^ skey->twofish.K[5];
tc = a ^ skey->twofish.K[6];
td = b ^ skey->twofish.K[7];
/* store output */
STORE32L(ta,&ct[0]); STORE32L(tb,&ct[4]);
STORE32L(tc,&ct[8]); STORE32L(td,&ct[12]);
return CRYPT_OK;
}
#ifdef LTC_CLEAN_STACK
int twofish_ecb_encrypt(const unsigned char *pt, unsigned char *ct, symmetric_key *skey)
{
int err = _twofish_ecb_encrypt(pt, ct, skey);
burn_stack(sizeof(ulong32) * 10 + sizeof(int));
return err;
}
#endif
/**
Decrypts a block of text with Twofish
@param ct The input ciphertext (16 bytes)
@param pt The output plaintext (16 bytes)
@param skey The key as scheduled
@return CRYPT_OK if successful
*/
#ifdef LTC_CLEAN_STACK
static int _twofish_ecb_decrypt(const unsigned char *ct, unsigned char *pt, symmetric_key *skey)
#else
int twofish_ecb_decrypt(const unsigned char *ct, unsigned char *pt, symmetric_key *skey)
#endif
{
ulong32 a,b,c,d,ta,tb,tc,td,t1,t2, *k;
int r;
#if !defined(LTC_TWOFISH_SMALL) && !defined(__GNUC__)
ulong32 *S1, *S2, *S3, *S4;
#endif
LTC_ARGCHK(pt != NULL);
LTC_ARGCHK(ct != NULL);
LTC_ARGCHK(skey != NULL);
#if !defined(LTC_TWOFISH_SMALL) && !defined(__GNUC__)
S1 = skey->twofish.S[0];
S2 = skey->twofish.S[1];
S3 = skey->twofish.S[2];
S4 = skey->twofish.S[3];
#endif
/* load input */
LOAD32L(ta,&ct[0]); LOAD32L(tb,&ct[4]);
LOAD32L(tc,&ct[8]); LOAD32L(td,&ct[12]);
/* undo undo final swap */
a = tc ^ skey->twofish.K[6];
b = td ^ skey->twofish.K[7];
c = ta ^ skey->twofish.K[4];
d = tb ^ skey->twofish.K[5];
k = skey->twofish.K + 36;
for (r = 8; r != 0; --r) {
t2 = g1_func(d, skey);
t1 = g_func(c, skey) + t2;
a = ROLc(a, 1) ^ (t1 + k[2]);
b = RORc(b ^ (t2 + t1 + k[3]), 1);
t2 = g1_func(b, skey);
t1 = g_func(a, skey) + t2;
c = ROLc(c, 1) ^ (t1 + k[0]);
d = RORc(d ^ (t2 + t1 + k[1]), 1);
k -= 4;
}
/* pre-white */
a ^= skey->twofish.K[0];
b ^= skey->twofish.K[1];
c ^= skey->twofish.K[2];
d ^= skey->twofish.K[3];
/* store */
STORE32L(a, &pt[0]); STORE32L(b, &pt[4]);
STORE32L(c, &pt[8]); STORE32L(d, &pt[12]);
return CRYPT_OK;
}
#ifdef LTC_CLEAN_STACK
int twofish_ecb_decrypt(const unsigned char *ct, unsigned char *pt, symmetric_key *skey)
{
int err =_twofish_ecb_decrypt(ct, pt, skey);
burn_stack(sizeof(ulong32) * 10 + sizeof(int));
return err;
}
#endif
/**
Performs a self-test of the Twofish block cipher
@return CRYPT_OK if functional, CRYPT_NOP if self-test has been disabled
*/
int twofish_test(void)
{
#ifndef LTC_TEST
return CRYPT_NOP;
#else
static const struct {
int keylen;
unsigned char key[32], pt[16], ct[16];
} tests[] = {
{ 16,
{ 0x9F, 0x58, 0x9F, 0x5C, 0xF6, 0x12, 0x2C, 0x32,
0xB6, 0xBF, 0xEC, 0x2F, 0x2A, 0xE8, 0xC3, 0x5A },
{ 0xD4, 0x91, 0xDB, 0x16, 0xE7, 0xB1, 0xC3, 0x9E,
0x86, 0xCB, 0x08, 0x6B, 0x78, 0x9F, 0x54, 0x19 },
{ 0x01, 0x9F, 0x98, 0x09, 0xDE, 0x17, 0x11, 0x85,
0x8F, 0xAA, 0xC3, 0xA3, 0xBA, 0x20, 0xFB, 0xC3 }
}, {
24,
{ 0x88, 0xB2, 0xB2, 0x70, 0x6B, 0x10, 0x5E, 0x36,
0xB4, 0x46, 0xBB, 0x6D, 0x73, 0x1A, 0x1E, 0x88,
0xEF, 0xA7, 0x1F, 0x78, 0x89, 0x65, 0xBD, 0x44 },
{ 0x39, 0xDA, 0x69, 0xD6, 0xBA, 0x49, 0x97, 0xD5,
0x85, 0xB6, 0xDC, 0x07, 0x3C, 0xA3, 0x41, 0xB2 },
{ 0x18, 0x2B, 0x02, 0xD8, 0x14, 0x97, 0xEA, 0x45,
0xF9, 0xDA, 0xAC, 0xDC, 0x29, 0x19, 0x3A, 0x65 }
}, {
32,
{ 0xD4, 0x3B, 0xB7, 0x55, 0x6E, 0xA3, 0x2E, 0x46,
0xF2, 0xA2, 0x82, 0xB7, 0xD4, 0x5B, 0x4E, 0x0D,
0x57, 0xFF, 0x73, 0x9D, 0x4D, 0xC9, 0x2C, 0x1B,
0xD7, 0xFC, 0x01, 0x70, 0x0C, 0xC8, 0x21, 0x6F },
{ 0x90, 0xAF, 0xE9, 0x1B, 0xB2, 0x88, 0x54, 0x4F,
0x2C, 0x32, 0xDC, 0x23, 0x9B, 0x26, 0x35, 0xE6 },
{ 0x6C, 0xB4, 0x56, 0x1C, 0x40, 0xBF, 0x0A, 0x97,
0x05, 0x93, 0x1C, 0xB6, 0xD4, 0x08, 0xE7, 0xFA }
}
};
symmetric_key key;
unsigned char tmp[2][16];
int err, i, y;
for (i = 0; i < (int)(sizeof(tests)/sizeof(tests[0])); i++) {
if ((err = twofish_setup(tests[i].key, tests[i].keylen, 0, &key)) != CRYPT_OK) {
return err;
}
twofish_ecb_encrypt(tests[i].pt, tmp[0], &key);
twofish_ecb_decrypt(tmp[0], tmp[1], &key);
if (compare_testvector(tmp[0], 16, tests[i].ct, 16, "Twofish Encrypt", i) != 0 ||
compare_testvector(tmp[1], 16, tests[i].pt, 16, "Twofish Decrypt", i) != 0) {
return CRYPT_FAIL_TESTVECTOR;
}
/* now see if we can encrypt all zero bytes 1000 times, decrypt and come back where we started */
for (y = 0; y < 16; y++) tmp[0][y] = 0;
for (y = 0; y < 1000; y++) twofish_ecb_encrypt(tmp[0], tmp[0], &key);
for (y = 0; y < 1000; y++) twofish_ecb_decrypt(tmp[0], tmp[0], &key);
for (y = 0; y < 16; y++) if (tmp[0][y] != 0) return CRYPT_FAIL_TESTVECTOR;
}
return CRYPT_OK;
#endif
}
/** Terminate the context
@param skey The scheduled key
*/
void twofish_done(symmetric_key *skey)
{
LTC_UNUSED_PARAM(skey);
}
/**
Gets suitable key size
@param keysize [in/out] The length of the recommended key (in bytes). This function will store the suitable size back in this variable.
@return CRYPT_OK if the input key size is acceptable.
*/
int twofish_keysize(int *keysize)
{
LTC_ARGCHK(keysize);
if (*keysize < 16)
return CRYPT_INVALID_KEYSIZE;
if (*keysize < 24) {
*keysize = 16;
return CRYPT_OK;
} else if (*keysize < 32) {
*keysize = 24;
return CRYPT_OK;
} else {
*keysize = 32;
return CRYPT_OK;
}
}
#endif
/* ref: $Format:%D$ */
/* git commit: $Format:%H$ */
/* commit time: $Format:%ai$ */