#define LTC_SOURCE /* LibTomCrypt, modular cryptographic library -- Tom St Denis * * LibTomCrypt is a library that provides various cryptographic * algorithms in a highly modular and flexible manner. * * The library is free for all purposes without any express * guarantee it works. */ /** @file twofish.c Implementation of Twofish by Tom St Denis */ #include "tomcrypt.h" #ifdef LTC_TWOFISH /* first LTC_TWOFISH_ALL_TABLES must ensure LTC_TWOFISH_TABLES is defined */ #ifdef LTC_TWOFISH_ALL_TABLES #ifndef LTC_TWOFISH_TABLES #define LTC_TWOFISH_TABLES #endif #endif const struct ltc_cipher_descriptor twofish_desc = { "twofish", 7, 16, 32, 16, 16, &twofish_setup, &twofish_ecb_encrypt, &twofish_ecb_decrypt, &twofish_test, &twofish_done, &twofish_keysize, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL }; /* the two polynomials */ #define MDS_POLY 0x169 #define RS_POLY 0x14D /* The 4x8 RS Linear Transform */ static const unsigned char RS[4][8] = { { 0x01, 0xA4, 0x55, 0x87, 0x5A, 0x58, 0xDB, 0x9E }, { 0xA4, 0x56, 0x82, 0xF3, 0X1E, 0XC6, 0X68, 0XE5 }, { 0X02, 0XA1, 0XFC, 0XC1, 0X47, 0XAE, 0X3D, 0X19 }, { 0XA4, 0X55, 0X87, 0X5A, 0X58, 0XDB, 0X9E, 0X03 } }; #ifdef LTC_TWOFISH_SMALL /* sbox usage orderings */ static const unsigned char qord[4][5] = { { 1, 1, 0, 0, 1 }, { 0, 1, 1, 0, 0 }, { 0, 0, 0, 1, 1 }, { 1, 0, 1, 1, 0 } }; #endif /* LTC_TWOFISH_SMALL */ #ifdef LTC_TWOFISH_TABLES #define __LTC_TWOFISH_TAB_C__ #include "twofish_tab.c" #define sbox(i, x) ((ulong32)SBOX[i][(x)&255]) #else /* The Q-box tables */ static const unsigned char qbox[2][4][16] = { { { 0x8, 0x1, 0x7, 0xD, 0x6, 0xF, 0x3, 0x2, 0x0, 0xB, 0x5, 0x9, 0xE, 0xC, 0xA, 0x4 }, { 0xE, 0XC, 0XB, 0X8, 0X1, 0X2, 0X3, 0X5, 0XF, 0X4, 0XA, 0X6, 0X7, 0X0, 0X9, 0XD }, { 0XB, 0XA, 0X5, 0XE, 0X6, 0XD, 0X9, 0X0, 0XC, 0X8, 0XF, 0X3, 0X2, 0X4, 0X7, 0X1 }, { 0XD, 0X7, 0XF, 0X4, 0X1, 0X2, 0X6, 0XE, 0X9, 0XB, 0X3, 0X0, 0X8, 0X5, 0XC, 0XA } }, { { 0X2, 0X8, 0XB, 0XD, 0XF, 0X7, 0X6, 0XE, 0X3, 0X1, 0X9, 0X4, 0X0, 0XA, 0XC, 0X5 }, { 0X1, 0XE, 0X2, 0XB, 0X4, 0XC, 0X3, 0X7, 0X6, 0XD, 0XA, 0X5, 0XF, 0X9, 0X0, 0X8 }, { 0X4, 0XC, 0X7, 0X5, 0X1, 0X6, 0X9, 0XA, 0X0, 0XE, 0XD, 0X8, 0X2, 0XB, 0X3, 0XF }, { 0xB, 0X9, 0X5, 0X1, 0XC, 0X3, 0XD, 0XE, 0X6, 0X4, 0X7, 0XF, 0X2, 0X0, 0X8, 0XA } } }; /* computes S_i[x] */ #ifdef LTC_CLEAN_STACK static ulong32 _sbox(int i, ulong32 x) #else static ulong32 sbox(int i, ulong32 x) #endif { unsigned char a0,b0,a1,b1,a2,b2,a3,b3,a4,b4,y; /* a0,b0 = [x/16], x mod 16 */ a0 = (unsigned char)((x>>4)&15); b0 = (unsigned char)((x)&15); /* a1 = a0 ^ b0 */ a1 = a0 ^ b0; /* b1 = a0 ^ ROR(b0, 1) ^ 8a0 */ b1 = (a0 ^ ((b0<<3)|(b0>>1)) ^ (a0<<3)) & 15; /* a2,b2 = t0[a1], t1[b1] */ a2 = qbox[i][0][(int)a1]; b2 = qbox[i][1][(int)b1]; /* a3 = a2 ^ b2 */ a3 = a2 ^ b2; /* b3 = a2 ^ ROR(b2, 1) ^ 8a2 */ b3 = (a2 ^ ((b2<<3)|(b2>>1)) ^ (a2<<3)) & 15; /* a4,b4 = t2[a3], t3[b3] */ a4 = qbox[i][2][(int)a3]; b4 = qbox[i][3][(int)b3]; /* y = 16b4 + a4 */ y = (b4 << 4) + a4; /* return result */ return (ulong32)y; } #ifdef LTC_CLEAN_STACK static ulong32 sbox(int i, ulong32 x) { ulong32 y; y = _sbox(i, x); burn_stack(sizeof(unsigned char) * 11); return y; } #endif /* LTC_CLEAN_STACK */ #endif /* LTC_TWOFISH_TABLES */ /* computes ab mod p */ static ulong32 gf_mult(ulong32 a, ulong32 b, ulong32 p) { ulong32 result, B[2], P[2]; P[1] = p; B[1] = b; result = P[0] = B[0] = 0; /* unrolled branchless GF multiplier */ result ^= B[a&1]; a >>= 1; B[1] = P[B[1]>>7] ^ (B[1] << 1); result ^= B[a&1]; a >>= 1; B[1] = P[B[1]>>7] ^ (B[1] << 1); result ^= B[a&1]; a >>= 1; B[1] = P[B[1]>>7] ^ (B[1] << 1); result ^= B[a&1]; a >>= 1; B[1] = P[B[1]>>7] ^ (B[1] << 1); result ^= B[a&1]; a >>= 1; B[1] = P[B[1]>>7] ^ (B[1] << 1); result ^= B[a&1]; a >>= 1; B[1] = P[B[1]>>7] ^ (B[1] << 1); result ^= B[a&1]; a >>= 1; B[1] = P[B[1]>>7] ^ (B[1] << 1); result ^= B[a&1]; return result; } /* computes [y0 y1 y2 y3] = MDS . [x0] */ #ifndef LTC_TWOFISH_TABLES static ulong32 mds_column_mult(unsigned char in, int col) { ulong32 x01, x5B, xEF; x01 = in; x5B = gf_mult(in, 0x5B, MDS_POLY); xEF = gf_mult(in, 0xEF, MDS_POLY); switch (col) { case 0: return (x01 << 0 ) | (x5B << 8 ) | (xEF << 16) | (xEF << 24); case 1: return (xEF << 0 ) | (xEF << 8 ) | (x5B << 16) | (x01 << 24); case 2: return (x5B << 0 ) | (xEF << 8 ) | (x01 << 16) | (xEF << 24); case 3: return (x5B << 0 ) | (x01 << 8 ) | (xEF << 16) | (x5B << 24); } /* avoid warnings, we'd never get here normally but just to calm compiler warnings... */ return 0; } #else /* !LTC_TWOFISH_TABLES */ #define mds_column_mult(x, i) mds_tab[i][x] #endif /* LTC_TWOFISH_TABLES */ /* Computes [y0 y1 y2 y3] = MDS . [x0 x1 x2 x3] */ static void mds_mult(const unsigned char *in, unsigned char *out) { int x; ulong32 tmp; for (tmp = x = 0; x < 4; x++) { tmp ^= mds_column_mult(in[x], x); } STORE32L(tmp, out); } #ifdef LTC_TWOFISH_ALL_TABLES /* computes [y0 y1 y2 y3] = RS . [x0 x1 x2 x3 x4 x5 x6 x7] */ static void rs_mult(const unsigned char *in, unsigned char *out) { ulong32 tmp; tmp = rs_tab0[in[0]] ^ rs_tab1[in[1]] ^ rs_tab2[in[2]] ^ rs_tab3[in[3]] ^ rs_tab4[in[4]] ^ rs_tab5[in[5]] ^ rs_tab6[in[6]] ^ rs_tab7[in[7]]; STORE32L(tmp, out); } #else /* !LTC_TWOFISH_ALL_TABLES */ /* computes [y0 y1 y2 y3] = RS . [x0 x1 x2 x3 x4 x5 x6 x7] */ static void rs_mult(const unsigned char *in, unsigned char *out) { int x, y; for (x = 0; x < 4; x++) { out[x] = 0; for (y = 0; y < 8; y++) { out[x] ^= gf_mult(in[y], RS[x][y], RS_POLY); } } } #endif /* computes h(x) */ static void h_func(const unsigned char *in, unsigned char *out, unsigned char *M, int k, int offset) { int x; unsigned char y[4]; for (x = 0; x < 4; x++) { y[x] = in[x]; } switch (k) { case 4: y[0] = (unsigned char)(sbox(1, (ulong32)y[0]) ^ M[4 * (6 + offset) + 0]); y[1] = (unsigned char)(sbox(0, (ulong32)y[1]) ^ M[4 * (6 + offset) + 1]); y[2] = (unsigned char)(sbox(0, (ulong32)y[2]) ^ M[4 * (6 + offset) + 2]); y[3] = (unsigned char)(sbox(1, (ulong32)y[3]) ^ M[4 * (6 + offset) + 3]); /* FALLTHROUGH */ case 3: y[0] = (unsigned char)(sbox(1, (ulong32)y[0]) ^ M[4 * (4 + offset) + 0]); y[1] = (unsigned char)(sbox(1, (ulong32)y[1]) ^ M[4 * (4 + offset) + 1]); y[2] = (unsigned char)(sbox(0, (ulong32)y[2]) ^ M[4 * (4 + offset) + 2]); y[3] = (unsigned char)(sbox(0, (ulong32)y[3]) ^ M[4 * (4 + offset) + 3]); /* FALLTHROUGH */ case 2: y[0] = (unsigned char)(sbox(1, sbox(0, sbox(0, (ulong32)y[0]) ^ M[4 * (2 + offset) + 0]) ^ M[4 * (0 + offset) + 0])); y[1] = (unsigned char)(sbox(0, sbox(0, sbox(1, (ulong32)y[1]) ^ M[4 * (2 + offset) + 1]) ^ M[4 * (0 + offset) + 1])); y[2] = (unsigned char)(sbox(1, sbox(1, sbox(0, (ulong32)y[2]) ^ M[4 * (2 + offset) + 2]) ^ M[4 * (0 + offset) + 2])); y[3] = (unsigned char)(sbox(0, sbox(1, sbox(1, (ulong32)y[3]) ^ M[4 * (2 + offset) + 3]) ^ M[4 * (0 + offset) + 3])); /* FALLTHROUGH */ } mds_mult(y, out); } #ifndef LTC_TWOFISH_SMALL /* for GCC we don't use pointer aliases */ #if defined(__GNUC__) #define S1 skey->twofish.S[0] #define S2 skey->twofish.S[1] #define S3 skey->twofish.S[2] #define S4 skey->twofish.S[3] #endif /* the G function */ #define g_func(x, dum) (S1[byte(x,0)] ^ S2[byte(x,1)] ^ S3[byte(x,2)] ^ S4[byte(x,3)]) #define g1_func(x, dum) (S2[byte(x,0)] ^ S3[byte(x,1)] ^ S4[byte(x,2)] ^ S1[byte(x,3)]) #else #ifdef LTC_CLEAN_STACK static ulong32 _g_func(ulong32 x, symmetric_key *key) #else static ulong32 g_func(ulong32 x, symmetric_key *key) #endif { unsigned char g, i, y, z; ulong32 res; res = 0; for (y = 0; y < 4; y++) { z = key->twofish.start; /* do unkeyed substitution */ g = sbox(qord[y][z++], (x >> (8*y)) & 255); /* first subkey */ i = 0; /* do key mixing+sbox until z==5 */ while (z != 5) { g = g ^ key->twofish.S[4*i++ + y]; g = sbox(qord[y][z++], g); } /* multiply g by a column of the MDS */ res ^= mds_column_mult(g, y); } return res; } #define g1_func(x, key) g_func(ROLc(x, 8), key) #ifdef LTC_CLEAN_STACK static ulong32 g_func(ulong32 x, symmetric_key *key) { ulong32 y; y = _g_func(x, key); burn_stack(sizeof(unsigned char) * 4 + sizeof(ulong32)); return y; } #endif /* LTC_CLEAN_STACK */ #endif /* LTC_TWOFISH_SMALL */ /** Initialize the Twofish block cipher @param key The symmetric key you wish to pass @param keylen The key length in bytes @param num_rounds The number of rounds desired (0 for default) @param skey The key in as scheduled by this function. @return CRYPT_OK if successful */ #ifdef LTC_CLEAN_STACK static int _twofish_setup(const unsigned char *key, int keylen, int num_rounds, symmetric_key *skey) #else int twofish_setup(const unsigned char *key, int keylen, int num_rounds, symmetric_key *skey) #endif { #ifndef LTC_TWOFISH_SMALL unsigned char S[4*4], tmpx0, tmpx1; #endif int k, x, y; unsigned char tmp[4], tmp2[4], M[8*4]; ulong32 A, B; LTC_ARGCHK(key != NULL); LTC_ARGCHK(skey != NULL); /* invalid arguments? */ if (num_rounds != 16 && num_rounds != 0) { return CRYPT_INVALID_ROUNDS; } if (keylen != 16 && keylen != 24 && keylen != 32) { return CRYPT_INVALID_KEYSIZE; } /* k = keysize/64 [but since our keysize is in bytes...] */ k = keylen / 8; /* copy the key into M */ for (x = 0; x < keylen; x++) { M[x] = key[x] & 255; } /* create the S[..] words */ #ifndef LTC_TWOFISH_SMALL for (x = 0; x < k; x++) { rs_mult(M+(x*8), S+(x*4)); } #else for (x = 0; x < k; x++) { rs_mult(M+(x*8), skey->twofish.S+(x*4)); } #endif /* make subkeys */ for (x = 0; x < 20; x++) { /* A = h(p * 2x, Me) */ for (y = 0; y < 4; y++) { tmp[y] = x+x; } h_func(tmp, tmp2, M, k, 0); LOAD32L(A, tmp2); /* B = ROL(h(p * (2x + 1), Mo), 8) */ for (y = 0; y < 4; y++) { tmp[y] = (unsigned char)(x+x+1); } h_func(tmp, tmp2, M, k, 1); LOAD32L(B, tmp2); B = ROLc(B, 8); /* K[2i] = A + B */ skey->twofish.K[x+x] = (A + B) & 0xFFFFFFFFUL; /* K[2i+1] = (A + 2B) <<< 9 */ skey->twofish.K[x+x+1] = ROLc(B + B + A, 9); } #ifndef LTC_TWOFISH_SMALL /* make the sboxes (large ram variant) */ if (k == 2) { for (x = 0; x < 256; x++) { tmpx0 = (unsigned char)sbox(0, x); tmpx1 = (unsigned char)sbox(1, x); skey->twofish.S[0][x] = mds_column_mult(sbox(1, (sbox(0, tmpx0 ^ S[0]) ^ S[4])),0); skey->twofish.S[1][x] = mds_column_mult(sbox(0, (sbox(0, tmpx1 ^ S[1]) ^ S[5])),1); skey->twofish.S[2][x] = mds_column_mult(sbox(1, (sbox(1, tmpx0 ^ S[2]) ^ S[6])),2); skey->twofish.S[3][x] = mds_column_mult(sbox(0, (sbox(1, tmpx1 ^ S[3]) ^ S[7])),3); } } else if (k == 3) { for (x = 0; x < 256; x++) { tmpx0 = (unsigned char)sbox(0, x); tmpx1 = (unsigned char)sbox(1, x); skey->twofish.S[0][x] = mds_column_mult(sbox(1, (sbox(0, sbox(0, tmpx1 ^ S[0]) ^ S[4]) ^ S[8])),0); skey->twofish.S[1][x] = mds_column_mult(sbox(0, (sbox(0, sbox(1, tmpx1 ^ S[1]) ^ S[5]) ^ S[9])),1); skey->twofish.S[2][x] = mds_column_mult(sbox(1, (sbox(1, sbox(0, tmpx0 ^ S[2]) ^ S[6]) ^ S[10])),2); skey->twofish.S[3][x] = mds_column_mult(sbox(0, (sbox(1, sbox(1, tmpx0 ^ S[3]) ^ S[7]) ^ S[11])),3); } } else { for (x = 0; x < 256; x++) { tmpx0 = (unsigned char)sbox(0, x); tmpx1 = (unsigned char)sbox(1, x); skey->twofish.S[0][x] = mds_column_mult(sbox(1, (sbox(0, sbox(0, sbox(1, tmpx1 ^ S[0]) ^ S[4]) ^ S[8]) ^ S[12])),0); skey->twofish.S[1][x] = mds_column_mult(sbox(0, (sbox(0, sbox(1, sbox(1, tmpx0 ^ S[1]) ^ S[5]) ^ S[9]) ^ S[13])),1); skey->twofish.S[2][x] = mds_column_mult(sbox(1, (sbox(1, sbox(0, sbox(0, tmpx0 ^ S[2]) ^ S[6]) ^ S[10]) ^ S[14])),2); skey->twofish.S[3][x] = mds_column_mult(sbox(0, (sbox(1, sbox(1, sbox(0, tmpx1 ^ S[3]) ^ S[7]) ^ S[11]) ^ S[15])),3); } } #else /* where to start in the sbox layers */ /* small ram variant */ switch (k) { case 4 : skey->twofish.start = 0; break; case 3 : skey->twofish.start = 1; break; default: skey->twofish.start = 2; break; } #endif return CRYPT_OK; } #ifdef LTC_CLEAN_STACK int twofish_setup(const unsigned char *key, int keylen, int num_rounds, symmetric_key *skey) { int x; x = _twofish_setup(key, keylen, num_rounds, skey); burn_stack(sizeof(int) * 7 + sizeof(unsigned char) * 56 + sizeof(ulong32) * 2); return x; } #endif /** Encrypts a block of text with Twofish @param pt The input plaintext (16 bytes) @param ct The output ciphertext (16 bytes) @param skey The key as scheduled @return CRYPT_OK if successful */ #ifdef LTC_CLEAN_STACK static int _twofish_ecb_encrypt(const unsigned char *pt, unsigned char *ct, symmetric_key *skey) #else int twofish_ecb_encrypt(const unsigned char *pt, unsigned char *ct, symmetric_key *skey) #endif { ulong32 a,b,c,d,ta,tb,tc,td,t1,t2, *k; int r; #if !defined(LTC_TWOFISH_SMALL) && !defined(__GNUC__) ulong32 *S1, *S2, *S3, *S4; #endif LTC_ARGCHK(pt != NULL); LTC_ARGCHK(ct != NULL); LTC_ARGCHK(skey != NULL); #if !defined(LTC_TWOFISH_SMALL) && !defined(__GNUC__) S1 = skey->twofish.S[0]; S2 = skey->twofish.S[1]; S3 = skey->twofish.S[2]; S4 = skey->twofish.S[3]; #endif LOAD32L(a,&pt[0]); LOAD32L(b,&pt[4]); LOAD32L(c,&pt[8]); LOAD32L(d,&pt[12]); a ^= skey->twofish.K[0]; b ^= skey->twofish.K[1]; c ^= skey->twofish.K[2]; d ^= skey->twofish.K[3]; k = skey->twofish.K + 8; for (r = 8; r != 0; --r) { t2 = g1_func(b, skey); t1 = g_func(a, skey) + t2; c = RORc(c ^ (t1 + k[0]), 1); d = ROLc(d, 1) ^ (t2 + t1 + k[1]); t2 = g1_func(d, skey); t1 = g_func(c, skey) + t2; a = RORc(a ^ (t1 + k[2]), 1); b = ROLc(b, 1) ^ (t2 + t1 + k[3]); k += 4; } /* output with "undo last swap" */ ta = c ^ skey->twofish.K[4]; tb = d ^ skey->twofish.K[5]; tc = a ^ skey->twofish.K[6]; td = b ^ skey->twofish.K[7]; /* store output */ STORE32L(ta,&ct[0]); STORE32L(tb,&ct[4]); STORE32L(tc,&ct[8]); STORE32L(td,&ct[12]); return CRYPT_OK; } #ifdef LTC_CLEAN_STACK int twofish_ecb_encrypt(const unsigned char *pt, unsigned char *ct, symmetric_key *skey) { int err = _twofish_ecb_encrypt(pt, ct, skey); burn_stack(sizeof(ulong32) * 10 + sizeof(int)); return err; } #endif /** Decrypts a block of text with Twofish @param ct The input ciphertext (16 bytes) @param pt The output plaintext (16 bytes) @param skey The key as scheduled @return CRYPT_OK if successful */ #ifdef LTC_CLEAN_STACK static int _twofish_ecb_decrypt(const unsigned char *ct, unsigned char *pt, symmetric_key *skey) #else int twofish_ecb_decrypt(const unsigned char *ct, unsigned char *pt, symmetric_key *skey) #endif { ulong32 a,b,c,d,ta,tb,tc,td,t1,t2, *k; int r; #if !defined(LTC_TWOFISH_SMALL) && !defined(__GNUC__) ulong32 *S1, *S2, *S3, *S4; #endif LTC_ARGCHK(pt != NULL); LTC_ARGCHK(ct != NULL); LTC_ARGCHK(skey != NULL); #if !defined(LTC_TWOFISH_SMALL) && !defined(__GNUC__) S1 = skey->twofish.S[0]; S2 = skey->twofish.S[1]; S3 = skey->twofish.S[2]; S4 = skey->twofish.S[3]; #endif /* load input */ LOAD32L(ta,&ct[0]); LOAD32L(tb,&ct[4]); LOAD32L(tc,&ct[8]); LOAD32L(td,&ct[12]); /* undo undo final swap */ a = tc ^ skey->twofish.K[6]; b = td ^ skey->twofish.K[7]; c = ta ^ skey->twofish.K[4]; d = tb ^ skey->twofish.K[5]; k = skey->twofish.K + 36; for (r = 8; r != 0; --r) { t2 = g1_func(d, skey); t1 = g_func(c, skey) + t2; a = ROLc(a, 1) ^ (t1 + k[2]); b = RORc(b ^ (t2 + t1 + k[3]), 1); t2 = g1_func(b, skey); t1 = g_func(a, skey) + t2; c = ROLc(c, 1) ^ (t1 + k[0]); d = RORc(d ^ (t2 + t1 + k[1]), 1); k -= 4; } /* pre-white */ a ^= skey->twofish.K[0]; b ^= skey->twofish.K[1]; c ^= skey->twofish.K[2]; d ^= skey->twofish.K[3]; /* store */ STORE32L(a, &pt[0]); STORE32L(b, &pt[4]); STORE32L(c, &pt[8]); STORE32L(d, &pt[12]); return CRYPT_OK; } #ifdef LTC_CLEAN_STACK int twofish_ecb_decrypt(const unsigned char *ct, unsigned char *pt, symmetric_key *skey) { int err =_twofish_ecb_decrypt(ct, pt, skey); burn_stack(sizeof(ulong32) * 10 + sizeof(int)); return err; } #endif /** Performs a self-test of the Twofish block cipher @return CRYPT_OK if functional, CRYPT_NOP if self-test has been disabled */ int twofish_test(void) { #ifndef LTC_TEST return CRYPT_NOP; #else static const struct { int keylen; unsigned char key[32], pt[16], ct[16]; } tests[] = { { 16, { 0x9F, 0x58, 0x9F, 0x5C, 0xF6, 0x12, 0x2C, 0x32, 0xB6, 0xBF, 0xEC, 0x2F, 0x2A, 0xE8, 0xC3, 0x5A }, { 0xD4, 0x91, 0xDB, 0x16, 0xE7, 0xB1, 0xC3, 0x9E, 0x86, 0xCB, 0x08, 0x6B, 0x78, 0x9F, 0x54, 0x19 }, { 0x01, 0x9F, 0x98, 0x09, 0xDE, 0x17, 0x11, 0x85, 0x8F, 0xAA, 0xC3, 0xA3, 0xBA, 0x20, 0xFB, 0xC3 } }, { 24, { 0x88, 0xB2, 0xB2, 0x70, 0x6B, 0x10, 0x5E, 0x36, 0xB4, 0x46, 0xBB, 0x6D, 0x73, 0x1A, 0x1E, 0x88, 0xEF, 0xA7, 0x1F, 0x78, 0x89, 0x65, 0xBD, 0x44 }, { 0x39, 0xDA, 0x69, 0xD6, 0xBA, 0x49, 0x97, 0xD5, 0x85, 0xB6, 0xDC, 0x07, 0x3C, 0xA3, 0x41, 0xB2 }, { 0x18, 0x2B, 0x02, 0xD8, 0x14, 0x97, 0xEA, 0x45, 0xF9, 0xDA, 0xAC, 0xDC, 0x29, 0x19, 0x3A, 0x65 } }, { 32, { 0xD4, 0x3B, 0xB7, 0x55, 0x6E, 0xA3, 0x2E, 0x46, 0xF2, 0xA2, 0x82, 0xB7, 0xD4, 0x5B, 0x4E, 0x0D, 0x57, 0xFF, 0x73, 0x9D, 0x4D, 0xC9, 0x2C, 0x1B, 0xD7, 0xFC, 0x01, 0x70, 0x0C, 0xC8, 0x21, 0x6F }, { 0x90, 0xAF, 0xE9, 0x1B, 0xB2, 0x88, 0x54, 0x4F, 0x2C, 0x32, 0xDC, 0x23, 0x9B, 0x26, 0x35, 0xE6 }, { 0x6C, 0xB4, 0x56, 0x1C, 0x40, 0xBF, 0x0A, 0x97, 0x05, 0x93, 0x1C, 0xB6, 0xD4, 0x08, 0xE7, 0xFA } } }; symmetric_key key; unsigned char tmp[2][16]; int err, i, y; for (i = 0; i < (int)(sizeof(tests)/sizeof(tests[0])); i++) { if ((err = twofish_setup(tests[i].key, tests[i].keylen, 0, &key)) != CRYPT_OK) { return err; } twofish_ecb_encrypt(tests[i].pt, tmp[0], &key); twofish_ecb_decrypt(tmp[0], tmp[1], &key); if (compare_testvector(tmp[0], 16, tests[i].ct, 16, "Twofish Encrypt", i) != 0 || compare_testvector(tmp[1], 16, tests[i].pt, 16, "Twofish Decrypt", i) != 0) { return CRYPT_FAIL_TESTVECTOR; } /* now see if we can encrypt all zero bytes 1000 times, decrypt and come back where we started */ for (y = 0; y < 16; y++) tmp[0][y] = 0; for (y = 0; y < 1000; y++) twofish_ecb_encrypt(tmp[0], tmp[0], &key); for (y = 0; y < 1000; y++) twofish_ecb_decrypt(tmp[0], tmp[0], &key); for (y = 0; y < 16; y++) if (tmp[0][y] != 0) return CRYPT_FAIL_TESTVECTOR; } return CRYPT_OK; #endif } /** Terminate the context @param skey The scheduled key */ void twofish_done(symmetric_key *skey) { LTC_UNUSED_PARAM(skey); } /** Gets suitable key size @param keysize [in/out] The length of the recommended key (in bytes). This function will store the suitable size back in this variable. @return CRYPT_OK if the input key size is acceptable. */ int twofish_keysize(int *keysize) { LTC_ARGCHK(keysize); if (*keysize < 16) return CRYPT_INVALID_KEYSIZE; if (*keysize < 24) { *keysize = 16; return CRYPT_OK; } else if (*keysize < 32) { *keysize = 24; return CRYPT_OK; } else { *keysize = 32; return CRYPT_OK; } } #endif /* ref: $Format:%D$ */ /* git commit: $Format:%H$ */ /* commit time: $Format:%ai$ */