Closes #480
32 KiB
Kernel booting process. Part 2.
First steps in the kernel setup
We started to dive into linux kernel insides in the previous part and saw the initial part of the kernel setup code. We stopped at the first call to the main
function (which is the first function written in C) from arch/x86/boot/main.c.
In this part, we will continue to research the kernel setup code and
- see what
protected mode
is, - some preparation for the transition into it,
- the heap and console initialization,
- memory detection, CPU validation, keyboard initialization
- and much much more.
So, Let's go ahead.
Protected mode
Before we can move to the native Intel64 Long Mode, the kernel must switch the CPU into protected mode.
What is protected mode? Protected mode was first added to the x86 architecture in 1982 and was the main mode of Intel processors from the 80286 processor until Intel 64 and long mode came.
The main reason to move away from Real mode is that there is very limited access to the RAM. As you may remember from the previous part, there is only 220 bytes or 1 Megabyte, sometimes even only 640 Kilobytes of RAM available in the Real mode.
Protected mode brought many changes, but the main one is the difference in memory management. The 20-bit address bus was replaced with a 32-bit address bus. It allowed access to 4 Gigabytes of memory vs 1 Megabyte of real mode. Also, paging support was added, which you can read about in the next sections.
Memory management in Protected mode is divided into two, almost independent parts:
- Segmentation
- Paging
Here we will only see segmentation. Paging will be discussed in the next sections.
As you can read in the previous part, addresses consist of two parts in real mode:
- Base address of the segment
- Offset from the segment base
And we can get the physical address if we know these two parts by:
PhysicalAddress = Segment Selector * 16 + Offset
Memory segmentation was completely redone in protected mode. There are no 64 Kilobyte fixed-size segments. Instead, the size and location of each segment is described by an associated data structure called Segment Descriptor. The segment descriptors are stored in a data structure called Global Descriptor Table
(GDT).
The GDT is a structure which resides in memory. It has no fixed place in the memory so, its address is stored in the special GDTR
register. Later we will see the GDT loading in the Linux kernel code. There will be an operation for loading it into memory, something like:
lgdt gdt
where the lgdt
instruction loads the base address and limit(size) of global descriptor table to the GDTR
register. GDTR
is a 48-bit register and consists of two parts:
- size(16-bit) of global descriptor table;
- address(32-bit) of the global descriptor table.
As mentioned above the GDT contains segment descriptors
which describe memory segments. Each descriptor is 64-bits in size. The general scheme of a descriptor is:
31 24 19 16 7 0
------------------------------------------------------------
| | |B| |A| | | | |0|E|W|A| |
| BASE 31:24 |G|/|L|V| LIMIT |P|DPL|S| TYPE | BASE 23:16 | 4
| | |D| |L| 19:16 | | | |1|C|R|A| |
------------------------------------------------------------
| | |
| BASE 15:0 | LIMIT 15:0 | 0
| | |
------------------------------------------------------------
Don't worry, I know it looks a little scary after real mode, but it's easy. For example LIMIT 15:0 means that bit 0-15 of the Descriptor contain the value for the limit. The rest of it is in LIMIT 19:16. So, the size of Limit is 0-19 i.e 20-bits. Let's take a closer look at it:
- Limit[20-bits] is at 0-15,16-19 bits. It defines
length_of_segment - 1
. It depends onG
(Granularity) bit.
- if
G
(bit 55) is 0 and segment limit is 0, the size of the segment is 1 Byte - if
G
is 1 and segment limit is 0, the size of the segment is 4096 Bytes - if
G
is 0 and segment limit is 0xfffff, the size of the segment is 1 Megabyte - if
G
is 1 and segment limit is 0xfffff, the size of the segment is 4 Gigabytes
So, it means that if
- if G is 0, Limit is interpreted in terms of 1 Byte and the maximum size of the segment can be 1 Megabyte.
- if G is 1, Limit is interpreted in terms of 4096 Bytes = 4 KBytes = 1 Page and the maximum size of the segment can be 4 Gigabytes. Actually, when G is 1, the value of Limit is shifted to the left by 12 bits. So, 20 bits + 12 bits = 32 bits and 232 = 4 Gigabytes.
-
Base[32-bits] is at (0-15, 32-39 and 56-63 bits). It defines the physical address of the segment's starting location.
-
Type/Attribute (40-47 bits) defines the type of segment and kinds of access to it.
S
flag at bit 44 specifies descriptor type. IfS
is 0 then this segment is a system segment, whereas ifS
is 1 then this is a code or data segment (Stack segments are data segments which must be read/write segments).
To determine if the segment is a code or data segment we can check its Ex(bit 43) Attribute marked as 0 in the above diagram. If it is 0, then the segment is a Data segment otherwise it is a code segment.
A segment can be of one of the following types:
| Type Field | Descriptor Type | Description
|-----------------------------|-----------------|------------------
| Decimal | |
| 0 E W A | |
| 0 0 0 0 0 | Data | Read-Only
| 1 0 0 0 1 | Data | Read-Only, accessed
| 2 0 0 1 0 | Data | Read/Write
| 3 0 0 1 1 | Data | Read/Write, accessed
| 4 0 1 0 0 | Data | Read-Only, expand-down
| 5 0 1 0 1 | Data | Read-Only, expand-down, accessed
| 6 0 1 1 0 | Data | Read/Write, expand-down
| 7 0 1 1 1 | Data | Read/Write, expand-down, accessed
| C R A | |
| 8 1 0 0 0 | Code | Execute-Only
| 9 1 0 0 1 | Code | Execute-Only, accessed
| 10 1 0 1 0 | Code | Execute/Read
| 11 1 0 1 1 | Code | Execute/Read, accessed
| 12 1 1 0 0 | Code | Execute-Only, conforming
| 14 1 1 0 1 | Code | Execute-Only, conforming, accessed
| 13 1 1 1 0 | Code | Execute/Read, conforming
| 15 1 1 1 1 | Code | Execute/Read, conforming, accessed
As we can see the first bit(bit 43) is 0
for a data segment and 1
for a code segment. The next three bits (40, 41, 42) are either EWA
(Expansion Writable Accessible) or CRA(Conforming Readable Accessible).
- if E(bit 42) is 0, expand up otherwise expand down. Read more here.
- if W(bit 41)(for Data Segments) is 1, write access is allowed otherwise not. Note that read access is always allowed on data segments.
- A(bit 40) - Whether the segment is accessed by processor or not.
- C(bit 43) is conforming bit(for code selectors). If C is 1, the segment code can be executed from a lower level privilege e.g. user level. If C is 0, it can only be executed from the same privilege level.
- R(bit 41)(for code segments). If 1 read access to segment is allowed otherwise not. Write access is never allowed to code segments.
-
DPL[2-bits] (Descriptor Privilege Level) is at bits 45-46. It defines the privilege level of the segment. It can be 0-3 where 0 is the most privileged.
-
P flag(bit 47) - indicates if the segment is present in memory or not. If P is 0, the segment will be presented as invalid and the processor will refuse to read this segment.
-
AVL flag(bit 52) - Available and reserved bits. It is ignored in Linux.
-
L flag(bit 53) - indicates whether a code segment contains native 64-bit code. If 1 then the code segment executes in 64-bit mode.
-
D/B flag(bit 54) - Default/Big flag represents the operand size i.e 16/32 bits. If it is set then 32 bit otherwise 16.
Segment registers contain segment selectors as in real mode. However, in protected mode, a segment selector is handled differently. Each Segment Descriptor has an associated Segment Selector which is a 16-bit structure:
15 3 2 1 0
-----------------------------
| Index | TI | RPL |
-----------------------------
Where,
- Index shows the index number of the descriptor in the GDT.
- TI(Table Indicator) shows where to search for the descriptor. If it is 0 then search in the Global Descriptor Table(GDT) otherwise it will look in Local Descriptor Table(LDT).
- And RPL is Requester's Privilege Level.
Every segment register has a visible and hidden part.
- Visible - Segment Selector is stored here
- Hidden - Segment Descriptor(base, limit, attributes, flags)
The following steps are needed to get the physical address in the protected mode:
- The segment selector must be loaded in one of the segment registers
- The CPU tries to find a segment descriptor by GDT address + Index from selector and load the descriptor into the hidden part of the segment register
- Base address (from segment descriptor) + offset will be the linear address of the segment which is the physical address (if paging is disabled).
Schematically it will look like this:
The algorithm for the transition from real mode into protected mode is:
- Disable interrupts
- Describe and load GDT with
lgdt
instruction - Set PE (Protection Enable) bit in CR0 (Control Register 0)
- Jump to protected mode code
We will see the complete transition to protected mode in the linux kernel in the next part, but before we can move to protected mode, we need to do some more preparations.
Let's look at arch/x86/boot/main.c. We can see some routines there which perform keyboard initialization, heap initialization, etc... Let's take a look.
Copying boot parameters into the "zeropage"
We will start from the main
routine in "main.c". First function which is called in main
is copy_boot_params(void)
. It copies the kernel setup header into the field of the boot_params
structure which is defined in the arch/x86/include/uapi/asm/bootparam.h.
The boot_params
structure contains the struct setup_header hdr
field. This structure contains the same fields as defined in linux boot protocol and is filled by the boot loader and also at kernel compile/build time. copy_boot_params
does two things:
-
Copies
hdr
from header.S to theboot_params
structure insetup_header
field -
Updates pointer to the kernel command line if the kernel was loaded with the old command line protocol.
Note that it copies hdr
with memcpy
function which is defined in the copy.S source file. Let's have a look inside:
GLOBAL(memcpy)
pushw %si
pushw %di
movw %ax, %di
movw %dx, %si
pushw %cx
shrw $2, %cx
rep; movsl
popw %cx
andw $3, %cx
rep; movsb
popw %di
popw %si
retl
ENDPROC(memcpy)
Yeah, we just moved to C code and now assembly again :) First of all, we can see that memcpy
and other routines which are defined here, start and end with the two macros: GLOBAL
and ENDPROC
. GLOBAL
is described in arch/x86/include/asm/linkage.h which defines globl
directive and the label for it. ENDPROC
is described in include/linux/linkage.h which marks the name
symbol as a function name and ends with the size of the name
symbol.
Implementation of memcpy
is easy. At first, it pushes values from the si
and di
registers to the stack to preserve their values because they will change during the memcpy
. memcpy
(and other functions in copy.S) use fastcall
calling conventions. So it gets its incoming parameters from the ax
, dx
and cx
registers. Calling memcpy
looks like this:
memcpy(&boot_params.hdr, &hdr, sizeof hdr);
So,
ax
will contain the address of theboot_params.hdr
dx
will contain the address ofhdr
cx
will contain the size ofhdr
in bytes.
memcpy
puts the address of boot_params.hdr
into di
and saves the size on the stack. After this it shifts to the right on 2 size (or divide on 4) and copies from si
to di
by 4 bytes. After this, we restore the size of hdr
again, align it by 4 bytes and copy the rest of the bytes from si
to di
byte by byte (if there is more). Restore si
and di
values from the stack in the end and after this copying is finished.
Console initialization
After hdr
is copied into boot_params.hdr
, the next step is console initialization by calling the console_init
function which is defined in arch/x86/boot/early_serial_console.c.
It tries to find the earlyprintk
option in the command line and if the search was successful, it parses the port address and baud rate of the serial port and initializes the serial port. The value of earlyprintk
command line option can be one of these:
- serial,0x3f8,115200
- serial,ttyS0,115200
- ttyS0,115200
After serial port initialization we can see the first output:
if (cmdline_find_option_bool("debug"))
puts("early console in setup code\n");
The definition of puts
is in tty.c. As we can see it prints character by character in a loop by calling the putchar
function. Let's look into the putchar
implementation:
void __attribute__((section(".inittext"))) putchar(int ch)
{
if (ch == '\n')
putchar('\r');
bios_putchar(ch);
if (early_serial_base != 0)
serial_putchar(ch);
}
__attribute__((section(".inittext")))
means that this code will be in the .inittext
section. We can find it in the linker file setup.ld.
First of all, putchar
checks for the \n
symbol and if it is found, prints \r
before. After that it outputs the character on the VGA screen by calling the BIOS with the 0x10
interrupt call:
static void __attribute__((section(".inittext"))) bios_putchar(int ch)
{
struct biosregs ireg;
initregs(&ireg);
ireg.bx = 0x0007;
ireg.cx = 0x0001;
ireg.ah = 0x0e;
ireg.al = ch;
intcall(0x10, &ireg, NULL);
}
Here initregs
takes the biosregs
structure and first fills biosregs
with zeros using the memset
function and then fills it with register values.
memset(reg, 0, sizeof *reg);
reg->eflags |= X86_EFLAGS_CF;
reg->ds = ds();
reg->es = ds();
reg->fs = fs();
reg->gs = gs();
Let's look at the memset implementation:
GLOBAL(memset)
pushw %di
movw %ax, %di
movzbl %dl, %eax
imull $0x01010101,%eax
pushw %cx
shrw $2, %cx
rep; stosl
popw %cx
andw $3, %cx
rep; stosb
popw %di
retl
ENDPROC(memset)
As you can read above, it uses the fastcall
calling conventions like the memcpy
function, which means that the function gets parameters from ax
, dx
and cx
registers.
Generally memset
is like a memcpy implementation. It saves the value of the di
register on the stack and puts the ax
value into di
which is the address of the biosregs
structure. Next is the movzbl
instruction, which copies the dl
value to the low 2 bytes of the eax
register. The remaining 2 high bytes of eax
will be filled with zeros.
The next instruction multiplies eax
with 0x01010101
. It needs to because memset
will copy 4 bytes at the same time. For example, we need to fill a structure with 0x7
with memset. eax
will contain 0x00000007
value in this case. So if we multiply eax
with 0x01010101
, we will get 0x07070707
and now we can copy these 4 bytes into the structure. memset
uses rep; stosl
instructions for copying eax
into es:di
.
The rest of the memset
function does almost the same as memcpy
.
After the biosregs
structure is filled with memset
, bios_putchar
calls the 0x10 interrupt which prints a character. Afterwards it checks if the serial port was initialized or not and writes a character there with serial_putchar and inb/outb
instructions if it was set.
Heap initialization
After the stack and bss section were prepared in header.S (see previous part), the kernel needs to initialize the heap with the init_heap
function.
First of all init_heap
checks the CAN_USE_HEAP
flag from the loadflags
in the kernel setup header and calculates the end of the stack if this flag was set:
char *stack_end;
if (boot_params.hdr.loadflags & CAN_USE_HEAP) {
asm("leal %P1(%%esp),%0"
: "=r" (stack_end) : "i" (-STACK_SIZE));
or in other words stack_end = esp - STACK_SIZE
.
Then there is the heap_end
calculation:
heap_end = (char *)((size_t)boot_params.hdr.heap_end_ptr + 0x200);
which means heap_end_ptr
or _end
+ 512
(0x200h
). The last check is whether heap_end
is greater than stack_end
. If it is then stack_end
is assigned to heap_end
to make them equal.
Now the heap is initialized and we can use it using the GET_HEAP
method. We will see how it is used, how to use it and how it is implemented in the next posts.
CPU validation
The next step as we can see is cpu validation by validate_cpu
from arch/x86/boot/cpu.c.
It calls the check_cpu
function and passes cpu level and required cpu level to it and checks that the kernel launches on the right cpu level.
check_cpu(&cpu_level, &req_level, &err_flags);
if (cpu_level < req_level) {
...
return -1;
}
check_cpu
checks the CPU's flags, the presence of long mode in the case of x86_64(64-bit) CPU, checks the processor's vendor and makes preparation for certain vendors like turning off SSE+SSE2 for AMD if they are missing, etc.
Memory detection
The next step is memory detection by the detect_memory
function. detect_memory
basically provides a map of available RAM to the CPU. It uses different programming interfaces for memory detection like 0xe820
, 0xe801
and 0x88
. We will see only the implementation of 0xE820 here.
Let's look into the detect_memory_e820
implementation from the arch/x86/boot/memory.c source file. First of all, the detect_memory_e820
function initializes the biosregs
structure as we saw above and fills registers with special values for the 0xe820
call:
initregs(&ireg);
ireg.ax = 0xe820;
ireg.cx = sizeof buf;
ireg.edx = SMAP;
ireg.di = (size_t)&buf;
ax
contains the number of the function (0xe820 in our case)cx
register contains size of the buffer which will contain data about memoryedx
must contain theSMAP
magic numberes:di
must contain the address of the buffer which will contain memory dataebx
has to be zero.
Next is a loop where data about the memory will be collected. It starts from the call of the 0x15
BIOS interrupt, which writes one line from the address allocation table. For getting the next line we need to call this interrupt again (which we do in the loop). Before the next call ebx
must contain the value returned previously:
intcall(0x15, &ireg, &oreg);
ireg.ebx = oreg.ebx;
Ultimately, it does iterations in the loop to collect data from the address allocation table and writes this data into the e820entry
array:
- start of memory segment
- size of memory segment
- type of memory segment (which can be reserved, usable and etc...).
You can see the result of this in the dmesg
output, something like:
[ 0.000000] e820: BIOS-provided physical RAM map:
[ 0.000000] BIOS-e820: [mem 0x0000000000000000-0x000000000009fbff] usable
[ 0.000000] BIOS-e820: [mem 0x000000000009fc00-0x000000000009ffff] reserved
[ 0.000000] BIOS-e820: [mem 0x00000000000f0000-0x00000000000fffff] reserved
[ 0.000000] BIOS-e820: [mem 0x0000000000100000-0x000000003ffdffff] usable
[ 0.000000] BIOS-e820: [mem 0x000000003ffe0000-0x000000003fffffff] reserved
[ 0.000000] BIOS-e820: [mem 0x00000000fffc0000-0x00000000ffffffff] reserved
Keyboard initialization
The next step is the initialization of the keyboard with the call of the keyboard_init()
function. At first keyboard_init
initializes registers using the initregs
function and calling the 0x16 interrupt for getting the keyboard status.
initregs(&ireg);
ireg.ah = 0x02; /* Get keyboard status */
intcall(0x16, &ireg, &oreg);
boot_params.kbd_status = oreg.al;
After this it calls 0x16 again to set repeat rate and delay.
ireg.ax = 0x0305; /* Set keyboard repeat rate */
intcall(0x16, &ireg, NULL);
Querying
The next couple of steps are queries for different parameters. We will not dive into details about these queries but will get back to it in later parts. Let's take a short look at these functions:
The query_mca routine calls the 0x15 BIOS interrupt to get the machine model number, sub-model number, BIOS revision level, and other hardware-specific attributes:
int query_mca(void)
{
struct biosregs ireg, oreg;
u16 len;
initregs(&ireg);
ireg.ah = 0xc0;
intcall(0x15, &ireg, &oreg);
if (oreg.eflags & X86_EFLAGS_CF)
return -1; /* No MCA present */
set_fs(oreg.es);
len = rdfs16(oreg.bx);
if (len > sizeof(boot_params.sys_desc_table))
len = sizeof(boot_params.sys_desc_table);
copy_from_fs(&boot_params.sys_desc_table, oreg.bx, len);
return 0;
}
It fills the ah
register with 0xc0
and calls the 0x15
BIOS interruption. After the interrupt execution it checks the carry flag and if it is set to 1, the BIOS doesn't support MCA. If carry flag is set to 0, ES:BX
will contain a pointer to the system information table, which looks like this:
Offset Size Description
00h WORD number of bytes following
02h BYTE model (see #00515)
03h BYTE submodel (see #00515)
04h BYTE BIOS revision: 0 for first release, 1 for 2nd, etc.
05h BYTE feature byte 1 (see #00510)
06h BYTE feature byte 2 (see #00511)
07h BYTE feature byte 3 (see #00512)
08h BYTE feature byte 4 (see #00513)
09h BYTE feature byte 5 (see #00514)
---AWARD BIOS---
0Ah N BYTEs AWARD copyright notice
---Phoenix BIOS---
0Ah BYTE ??? (00h)
0Bh BYTE major version
0Ch BYTE minor version (BCD)
0Dh 4 BYTEs ASCIZ string "PTL" (Phoenix Technologies Ltd)
---Quadram Quad386---
0Ah 17 BYTEs ASCII signature string "Quadram Quad386XT"
---Toshiba (Satellite Pro 435CDS at least)---
0Ah 7 BYTEs signature "TOSHIBA"
11h BYTE ??? (8h)
12h BYTE ??? (E7h) product ID??? (guess)
13h 3 BYTEs "JPN"
Next, we call the set_fs
routine and pass the value of the es
register to it. The implementation of set_fs
is pretty simple:
static inline void set_fs(u16 seg)
{
asm volatile("movw %0,%%fs" : : "rm" (seg));
}
This function contains inline assembly which gets the value of the seg
parameter and puts it into the fs
register. There are many functions in boot.h like set_fs
, for example set_gs
, fs
, gs
for reading a value in it etc...
At the end of query_mca
it just copies the table pointed to by es:bx
to the boot_params.sys_desc_table
.
The next step is getting Intel SpeedStep information by calling the query_ist
function. First of all, it checks the CPU level and if it is correct, calls 0x15
for getting info and saves the result to boot_params
.
The following query_apm_bios function gets Advanced Power Management information from the BIOS. query_apm_bios
calls the 0x15
BIOS interruption too, but with ah
= 0x53
to check APM
installation. After the 0x15
execution, query_apm_bios
functions check the PM
signature (it must be 0x504d
), carry flag (it must be 0 if APM
supported) and value of the cx
register (if it's 0x02, protected mode interface is supported).
Next, it calls 0x15
again, but with ax = 0x5304
for disconnecting the APM
interface and connecting the 32-bit protected mode interface. In the end, it fills boot_params.apm_bios_info
with values obtained from the BIOS.
Note that query_apm_bios
will be executed only if CONFIG_APM
or CONFIG_APM_MODULE
was set in the configuration file:
#if defined(CONFIG_APM) || defined(CONFIG_APM_MODULE)
query_apm_bios();
#endif
The last is the query_edd
function, which queries Enhanced Disk Drive
information from the BIOS. Let's look into the query_edd
implementation.
First of all, it reads the edd option from the kernel's command line and if it was set to off
then query_edd
just returns.
If EDD is enabled, query_edd
goes over BIOS-supported hard disks and queries EDD information in the following loop:
for (devno = 0x80; devno < 0x80+EDD_MBR_SIG_MAX; devno++) {
if (!get_edd_info(devno, &ei) && boot_params.eddbuf_entries < EDDMAXNR) {
memcpy(edp, &ei, sizeof ei);
edp++;
boot_params.eddbuf_entries++;
}
...
...
...
}
where 0x80
is the first hard drive and the value of EDD_MBR_SIG_MAX
macro is 16. It collects data into the array of edd_info structures. get_edd_info
checks that EDD is present by invoking the 0x13
interrupt with ah
as 0x41
and if EDD is present, get_edd_info
again calls the 0x13
interrupt, but with ah
as 0x48
and si
containing the address of the buffer where EDD information will be stored.
Conclusion
This is the end of the second part about Linux kernel insides. In the next part, we will see video mode setting and the rest of preparations before the transition to protected mode and directly transitioning into it.
If you have any questions or suggestions write me a comment or ping me at twitter.
Please note that English is not my first language, And I am really sorry for any inconvenience. If you find any mistakes please send me a PR to linux-insides.