1
0
mirror of https://github.com/0xAX/linux-insides.git synced 2025-01-05 13:21:00 +00:00
linux-insides/Concepts/per-cpu.md
2015-04-19 22:15:28 +03:00

6.0 KiB

Per-CPU variables

In Progress

Per-CPU variables are one of kernel features. You can understand what this feature mean by it's name. We can create variable and each processor core will have own copy of this variable. We take a closer look on this feature and try to understand how it implemented and how it work in this part.

Kernel provides API for creating per-cpu variables - DEFINE_PER_CPU macro:

#define DEFINE_PER_CPU(type, name) \
        DEFINE_PER_CPU_SECTION(type, name, "")

This macro defined in the include/linux/percpu-defs.h as many other macros for work with per-cpu variables. Now we will see how this feature implemented.

Take a look on DECLARE_PER_CPU definition. We see that it takes 2 parameters: type and name. So we can use it for creation per-cpu variable, for example like this:

DEFINE_PER_CPU(int, per_cpu_n)

We pass type of our variable and name. DEFI_PER_CPU calls DEFINE_PER_CPU_SECTION macro and passes the same two paramaters and empty string to it. Let's look on the definition of the DEFINE_PER_CPU_SECTION:

#define DEFINE_PER_CPU_SECTION(type, name, sec)    \
         __PCPU_ATTRS(sec) PER_CPU_DEF_ATTRIBUTES  \
         __typeof__(type) name
#define __PCPU_ATTRS(sec)                                                \
         __percpu __attribute__((section(PER_CPU_BASE_SECTION sec)))     \
         PER_CPU_ATTRIBUTES

where section is:

#define PER_CPU_BASE_SECTION ".data..percpu"

After all macros will be exapanded we will get global per-cpu variable:

__attribute__((section(".data..percpu"))) int per_cpu_n

It means that we will have per_cpu_n variable in the .data..percpu section. We can find this section in the vmlinux:

.data..percpu 00013a58  0000000000000000  0000000001a5c000  00e00000  2**12
              CONTENTS, ALLOC, LOAD, DATA

Ok, now we know that when we use DEFINE_PER_CPU macro, per-cpu variable in the .data..percpu section will be created. When kernel initilizes it calls setup_per_cpu_areas function which loads .data..percpu section multiply times, one section per CPU. After kernel finished initialization process we have loaded N .data..percpu sections, where N is a number of CPU, and section used by bootstrap processor will contain uninitializaed variable created with DEFINE_PER_CPU macro.

Kernel provides API for per-cpu variables manipulating:

  • get_cpu_var(var)
  • put_cpu_var(var)

Let's look on get_cpu_var implementation:

#define get_cpu_var(var)     \
(*({                         \
         preempt_disable();  \
         this_cpu_ptr(&var); \
}))

Linux kernel is preemptible and accessing a per-cpu variable requires to know which processor kernel running on. So, current code must not be preempted and moved to the another CPU while accessing a per-cpu variable. That's why first of all we can see call of the preempt_disable function. After this we can see call of the this_cpu_ptr macro, which looks as:

#define this_cpu_ptr(ptr) raw_cpu_ptr(ptr)

and

#define raw_cpu_ptr(ptr)        per_cpu_ptr(ptr, 0)

where per_cpu_ptr returns a pointer to the per-cpu variable for the given cpu (second parameter). After that we got per-cpu variables and made any manipulations on it, we must call put_cpu_var macro which enables preemption with call of preempt_enable function. So the typical usage of a per-cpu variable is following:

get_cpu_var(var);
...
//Do something with the 'var'
...
put_cpu_var(var);

Let's look on per_cpu_ptr macro:

#define per_cpu_ptr(ptr, cpu)                             \
({                                                        \
        __verify_pcpu_ptr(ptr);                           \
         SHIFT_PERCPU_PTR((ptr), per_cpu_offset((cpu)));  \
})

As i wrote above, this macro returns per-cpu variable for the given cpu. First of all it calls __verify_pcpu_ptr:

#define __verify_pcpu_ptr(ptr)
do {
	const void __percpu *__vpp_verify = (typeof((ptr) + 0))NULL;
	(void)__vpp_verify; 
} while (0)

which makes given ptr type of const void __percpu *,

After this we can see the call of the SHIFT_PERCPU_PTR macro with two parameters. At first parameter we pass our ptr and sencond we pass cpu number to the per_cpu_offset macro which:

#define per_cpu_offset(x) (__per_cpu_offset[x])

expands to getting x element from the __per_cpu_offset array:

extern unsigned long __per_cpu_offset[NR_CPUS];

where NR_CPUS is the number of CPUs. __per_cpu_offset array filled with the distances between cpu-variables copies. For example all per-cpu data is X bytes size, so if we access __per_cpu_offset[Y], so X*Y will be accessed. Let's look on the SHIFT_PERCPU_PTR implementation:

#define SHIFT_PERCPU_PTR(__p, __offset)                                 \
         RELOC_HIDE((typeof(*(__p)) __kernel __force *)(__p), (__offset))

RELOC_HIDE just returns offset (typeof(ptr)) (__ptr + (off)) and it will be pointer of the variable.

That's all! Of course it is not full API, but the general part. It can be hard for the start, but to understand per-cpu variables feature need to understand mainly include/linux/percpu-defs.h magic.

Let's again look on the algorithm of getting pointer on per-cpu variable:

  • Kernel creates multiply .data..percpu sections (ones perc-pu) during initialization process;
  • All variables created with the DEFINE_PER_CPU macro will be reloacated to the first section or for CPU0;
  • __per_cpu_offset array filled with the distance (BOOT_PERCPU_OFFSET) between .data..percpu sections;
  • When per_cpu_ptr called for example for getting pointer on the certain per-cpu variable for the third CPU, __per_cpu_offset array will be accessed, where every index points to the certain CPU.

That's all.