25 KiB
Kernel booting process. Part 1.
From the bootloader to kernel
If you have read my previous blog posts, you can see that sometime ago I started to get involved with low-level programming. I wrote some posts about x86_64 assembly programming for Linux. At the same time, I started to dive into the Linux source code. I have a great interest in understanding how low-level things work, how programs run on my computer, how they are located in memory, how the kernel manages processes and memory, how the network stack works on low-level and many many other things. So, I decided to write yet another series of posts about the Linux kernel for x86_64.
Note that I'm not a professional kernel hacker and I don't write code for the kernel at work. It's just a hobby. I just like low-level stuff, and it is interesting for me to see how these things work. So if you notice anything confusing, or if you have any questions/remarks, ping me on twitter 0xAX, drop me an email or just create an issue. I appreciate it. All posts will also be accessible at linux-insides and if you find something wrong with my English or the post content, feel free to send a pull request.
Note that this isn't the official documentation, just learning and sharing knowledge.
Required knowledge
- Understanding C code
- Understanding assembly code (AT&T syntax)
Anyway, if you just started to learn some tools, I will try to explain some parts during this and the following posts. Ok, little introduction finished and now we can start to dive into the kernel and low-level stuff.
All code is actually for kernel - 3.18. If there are changes, I will update the posts accordingly.
The Magic Power Button, What happens next?
Despite that this is a series of posts about Linux kernel, we will not start from kernel code (at least in this paragraph). Ok, you pressed the magic power button on your laptop or desktop computer and it started to work. After the motherboard sends a signal to the power supply, the power supply provides the computer with the proper amount of electricity. Once motherboard receives the power good signal, it tries to run the CPU. The CPU resets all leftover data in its registers and sets up predefined values for every register.
80386 and later CPUs define the following predefined data in CPU registers after the computer resets:
IP 0xfff0
CS selector 0xf000
CS base 0xffff0000
The processor starts working in real mode and we need to back up a little to understand memory segmentation in this mode. Real mode is supported in all x86-compatible processors, from 8086 to modern Intel 64-bit CPUs. The 8086 processor had a 20-bit address bus, which means that it could work with 0-2^20 bytes address space (1 megabyte). But it only has 16-bit registers, and with 16-bit registers the maximum address is 2^16 or 0xffff (64 kilobytes). Memory segmentation is used to make use of all of the address space available. All memory is divided into small, fixed-size segments of 65535 bytes, or 64 KB. Since we cannot address memory below 64 KB with 16 bit registers, an alternate method to do it was devised. An address consists of two parts: the beginning address of the segment and the offset from the beginning of this segment. To get a physical address in memory, we need to multiply the segment part by 16 and add the offset part:
PhysicalAddress = Segment * 16 + Offset
For example if CS:IP
is 0x2000:0x0010
, the corresponding physical address will be:
>>> hex((0x2000 << 4) + 0x0010)
'0x20010'
But if we take the biggest segment part and offset: 0xffff:0xffff
, it will be:
>>> hex((0xffff << 4) + 0xffff)
'0x10ffef'
which is 65519 bytes over first megabyte. Since only one megabyte is accessible in real mode, 0x10ffef
becomes 0x00ffef
with disabled A20.
Ok, now we know about real mode and memory addressing. Let's get back to register values after reset.
CS
register consists of two parts: the visible segment selector and hidden base address. We know predefined CS
base and IP
value, logical address will be:
0xffff0000:0xfff0
In this way starting address formed by adding the base address to the value in the EIP register:
>>> 0xffff0000 + 0xfff0
'0xfffffff0'
We get 0xfffffff0
which is 4GB - 16 bytes. This point is the Reset vector. This is the memory location at which CPU expects to find the first instruction to execute after reset. It contains a jump instruction which usually points to the BIOS entry point. For example, if we look in coreboot source code, we will see it:
.section ".reset"
.code16
.globl reset_vector
reset_vector:
.byte 0xe9
.int _start - ( . + 2 )
...
We can see here the jump instruction opcode - 0xe9 to the address _start - ( . + 2)
. And we can see that reset
section is 16 bytes and starts at 0xfffffff0
:
SECTIONS {
_ROMTOP = 0xfffffff0;
. = _ROMTOP;
.reset . : {
*(.reset)
. = 15 ;
BYTE(0x00);
}
}
Now the BIOS has started to work. After initializing and checking the hardware, it needs to find a bootable device. A boot order is stored in the BIOS configuration. The function of boot order is to control which devices the kernel attempts to boot. In the case of attempting to boot a hard drive, the BIOS tries to find a boot sector. On hard drives partitioned with an MBR partition layout, the boot sector is stored in the first 446 bytes of the first sector (512 bytes). The final two bytes of the first sector are 0x55
and 0xaa
which signals the BIOS that the device is bootable. For example:
;
; Note: this example is written in Intel Assembly syntax
;
[BITS 16]
[ORG 0x7c00]
boot:
mov al, '!'
mov ah, 0x0e
mov bh, 0x00
mov bl, 0x07
int 0x10
jmp $
times 510-($-$$) db 0
db 0x55
db 0xaa
Build and run it with:
nasm -f bin boot.nasm && qemu-system-x86_64 boot
This will instruct QEMU to use the boot
binary we just built as a disk image. Since the binary generated by the assembly code above fulfills the requirements of the boot sector (the origin is set to 0x7c00
, and we end with the magic sequence). QEMU will treat the binary as the master boot record(MBR) of a disk image.
We will see:
In this example we can see that this code will be executed in 16 bit real mode and will start at 0x7c00 in memory. After the start it calls the 0x10 interrupt which just prints !
symbol. It fills rest of 510 bytes with zeros and finish with two magic bytes 0xaa
and 0x55
.
You can see binary dump of it with objdump
util:
nasm -f bin boot.nasm
objdump -D -b binary -mi386 -Maddr16,data16,intel boot
A real-world boot sector has code for continuing the boot process and the partition table instead of a bunch of 0's and an exclamation point :) Ok so, from this point onwards BIOS hands over the control to the bootloader and we can go ahead.
NOTE: As you can read above the CPU is in real mode. In real mode, calculating the physical address in memory is done as following:
PhysicalAddress = Segment * 16 + Offset
Same as I mentioned before. But we have only 16 bit general purpose registers. The maximum value of 16 bit register is: 0xffff
; So if we take the biggest values the result will be:
>>> hex((0xffff * 16) + 0xffff)
'0x10ffef'
Where 0x10ffef
is equal to 1MB + 64KB - 16b
. But a 8086 processor, which was the first processor with real mode. It had 20 bit address line and 2^20 = 1048576.0
is 1MB. So, it means that the actual memory available is 1MB.
General real mode's memory map is:
0x00000000 - 0x000003FF - Real Mode Interrupt Vector Table
0x00000400 - 0x000004FF - BIOS Data Area
0x00000500 - 0x00007BFF - Unused
0x00007C00 - 0x00007DFF - Our Bootloader
0x00007E00 - 0x0009FFFF - Unused
0x000A0000 - 0x000BFFFF - Video RAM (VRAM) Memory
0x000B0000 - 0x000B7777 - Monochrome Video Memory
0x000B8000 - 0x000BFFFF - Color Video Memory
0x000C0000 - 0x000C7FFF - Video ROM BIOS
0x000C8000 - 0x000EFFFF - BIOS Shadow Area
0x000F0000 - 0x000FFFFF - System BIOS
But stop, at the beginning of post I wrote that first instruction executed by the CPU is located at the address 0xFFFFFFF0
, which is much bigger than 0xFFFFF
(1MB). How can CPU access it in real mode? As I write about it and you can read in coreboot documentation:
0xFFFE_0000 - 0xFFFF_FFFF: 128 kilobyte ROM mapped into address space
At the start of execution BIOS is not in RAM, it is located in the ROM.
Bootloader
There are a number of bootloaders which can boot Linux, such as GRUB 2 and syslinux. The Linux kernel has a Boot protocol which specifies the requirements for bootloaders to implement Linux support. This example will describe GRUB 2.
Now that the BIOS has chosen a boot device and transferred control to the boot sector code, execution starts from boot.img. This code is very simple due to the limited amount of space available, and contains a pointer that it uses to jump to the location of GRUB 2's core image. The core image begins with diskboot.img, which is usually stored immediately after the first sector in the unused space before the first partition. The above code loads the rest of the core image into memory, which contains GRUB 2's kernel and drivers for handling filesystems. After loading the rest of the core image, it executes grub_main.
grub_main
initializes console, gets base address for modules, sets root device, loads/parses grub configuration file, loads modules etc. At the end of execution, grub_main
moves grub to normal mode. grub_normal_execute
(from grub-core/normal/main.c
) completes last preparation and shows a menu for selecting an operating system. When we select one of grub menu entries, grub_menu_execute_entry
begins to be executed, which executes grub boot
command. It starts to boot the selected operating system.
As we can read in the kernel boot protocol, the bootloader must read and fill some fields of kernel setup header which starts at 0x01f1
offset from the kernel setup code. Kernel header arch/x86/boot/header.S starts from:
.globl hdr
hdr:
setup_sects: .byte 0
root_flags: .word ROOT_RDONLY
syssize: .long 0
ram_size: .word 0
vid_mode: .word SVGA_MODE
root_dev: .word 0
boot_flag: .word 0xAA55
The bootloader must fill this and the rest of the headers (only marked as write
in the Linux boot protocol, for example this) with values which it either got from command line or calculated. We will not see description and explanation of all fields of kernel setup header, we will get back to it when kernel uses it. Anyway, you can find description of any field in the boot protocol.
As we can see in kernel boot protocol, the memory map will be the following after kernel loading:
| Protected-mode kernel |
100000 +------------------------+
| I/O memory hole |
0A0000 +------------------------+
| Reserved for BIOS | Leave as much as possible unused
~ ~
| Command line | (Can also be below the X+10000 mark)
X+10000 +------------------------+
| Stack/heap | For use by the kernel real-mode code.
X+08000 +------------------------+
| Kernel setup | The kernel real-mode code.
| Kernel boot sector | The kernel legacy boot sector.
X +------------------------+
| Boot loader | <- Boot sector entry point 0x7C00
001000 +------------------------+
| Reserved for MBR/BIOS |
000800 +------------------------+
| Typically used by MBR |
000600 +------------------------+
| BIOS use only |
000000 +------------------------+
So after the bootloader transferred control to the kernel, it starts somewhere at:
0x1000 + X + sizeof(KernelBootSector) + 1
where X
is the address of kernel bootsector loaded. In my case X
is 0x10000
, we can see it in memory dump:
Ok, now the bootloader has loaded Linux kernel into the memory, filled header fields and jumped to it. Now we can move directly to the kernel setup code.
Start of Kernel Setup
Finally we are in the kernel. Technically kernel didn't run yet, first of all we need to setup kernel, memory manager, process manager etc. Kernel setup execution starts from arch/x86/boot/header.S at the _start. It is a little strange at the first look, there are many instructions before it.
=======
Finally we are in the kernel. Technically kernel didn't run yet, first of all we need to setup kernel, memory manager, process manager, etc. Kernel setup execution starts from arch/x86/boot/header.S at the _start. It is little strange at the first look, there are many instructions before it. Actually....
Actually Long time ago Linux kernel had its own bootloader, but now if you run for example:
qemu-system-x86_64 vmlinuz-3.18-generic
You will see:
Actually header.S
starts from MZ (see image above), error message printing and following PE header:
#ifdef CONFIG_EFI_STUB
# "MZ", MS-DOS header
.byte 0x4d
.byte 0x5a
#endif
...
...
...
pe_header:
.ascii "PE"
.word 0
It needs this for loading the operating system with UEFI. Here we will not see how it works (we will these later in the next parts).
So the actual kernel setup entry point is:
// header.S line 292
.globl _start
_start:
Bootloader (grub2 and others) knows about this point (0x200
offset from MZ
) and makes a jump directly to this point, despite the fact that header.S
starts from .bstext
section which prints error message:
//
// arch/x86/boot/setup.ld
//
. = 0; // current position
.bstext : { *(.bstext) } // put .bstext section to position 0
.bsdata : { *(.bsdata) }
So kernel setup entry point is:
.globl _start
_start:
.byte 0xeb
.byte start_of_setup-1f
1:
//
// rest of the header
//
Here we can see jmp
instruction opcode - 0xeb
to the start_of_setup-1f
point. Nf
notation means following: 2f
refers to the next local 2:
label. In our case it is label 1
which goes right after jump. It contains rest of setup header and right after setup header we can see .entrytext
section which starts at start_of_setup
label.
Actually it's the first code which starts to execute besides previous jump instruction. After kernel setup got the control from bootloader, first jmp
instruction is located at 0x200
(first 512 bytes) offset from the start of kernel real mode. This we can read in Linux kernel boot protocol and also see in grub2 source code:
state.gs = state.fs = state.es = state.ds = state.ss = segment;
state.cs = segment + 0x20;
It means that segment registers will have following values after kernel setup starts to work:
fs = es = ds = ss = 0x1000
cs = 0x1020
for my case when kernel loaded at 0x10000
.
After jump to start_of_setup
, it needs to do the following things:
- Be sure that all values of all segment registers are equal
- Setup correct stack if needed
- Setup bss
- Jump to C code at main.c
Let's look at implementation.
Segment registers align
First of all it ensures that ds
and es
segment registers point to the same address and enables interrupts with sti
instruction:
movw %ds, %ax
movw %ax, %es
sti
As I wrote above, grub2 loads kernel setup code at 0x10000
address and cs
at 0x1020
because execution doesn't start from the start of file, but from:
_start:
.byte 0xeb
.byte start_of_setup-1f
jump
, which is 512 bytes offset from the 4d 5a. Also need to align cs
from 0x10200
to 0x10000
as all other segment registers. After that we setup the stack:
pushw %ds
pushw $6f
lretw
push ds
value to stack, and address of 6 label and execute lretw
instruction. When we call lretw
, it loads address of label 6
to instruction pointer register and cs
with value of ds
. After it we will have ds
and cs
with the same values.
Stack Setup
Actually, almost all of the setup code is preparation for C language environment in the real mode. The next step is checking of ss
register value and making of correct stack if ss
is wrong:
movw %ss, %dx
cmpw %ax, %dx
movw %sp, %dx
je 2f
Generally, it can be 3 different cases:
ss
has valid value 0x10000 (as all other segment registers besidecs
)ss
is invalid andCAN_USE_HEAP
flag is set (see below)ss
is invalid andCAN_USE_HEAP
flag is not set (see below)
Let's look at all of these cases:
ss
has a correct address (0x10000). In this case we go to label 2:
2: andw $~3, %dx
jnz 3f
movw $0xfffc, %dx
3: movw %ax, %ss
movzwl %dx, %esp
sti
Here we can see aligning of dx
(contains sp
given by bootloader) to 4 bytes and checking that it is not zero. If it is zero we put 0xfffc
(4 byte aligned address before maximum segment size - 64 KB) to dx
. If it is not zero we continue to use sp
given by bootloader (0xf7f4 in my case). After this we put ax
value to ss
which stores correct segment address 0x10000
and set up correct sp
. After it we have correct stack:
- In the second case (
ss
!=ds
), first of all put _end (address of end of setup code) value indx
. And checkloadflags
header field withtestb
instruction too see if we can use heap or not. loadflags is a bitmask header which is defined as:
#define LOADED_HIGH (1<<0)
#define QUIET_FLAG (1<<5)
#define KEEP_SEGMENTS (1<<6)
#define CAN_USE_HEAP (1<<7)
And as we can read in the boot protocol:
Field name: loadflags
This field is a bitmask.
Bit 7 (write): CAN_USE_HEAP
Set this bit to 1 to indicate that the value entered in the
heap_end_ptr is valid. If this field is clear, some setup code
functionality will be disabled.
If CAN_USE_HEAP
bit is set, put heap_end_ptr
to dx
which points to _end
and add STACK_SIZE
(minimal stack size - 512 bytes) to it. After this if dx
is not carry, jump to 2
(it will not be carry, dx = _end + 512) label as in previous case and make correct stack.
- The last case when
CAN_USE_HEAP
is not set, we just use minimal stack from_end
to_end + STACK_SIZE
:
BSS Setup
The last two steps that need to happen before we can jump to the main C code, are that we need to set up the BSS area, and check the "magic" signature. Firstly, signature checking:
cmpl $0x5a5aaa55, setup_sig
jne setup_bad
This simply consists of comparing the setup_sig against the magic number 0x5a5aaa55
. If they are not equal, a fatal error is reported.
But if the magic number matches, knowing we have a set of correct segment registers, and a stack, we need only setup the BSS section before jumping into the C code.
The BSS section is used for storing statically allocated, uninitialized, data. Linux carefully ensures this area of memory is first blanked, using the following code:
movw $__bss_start, %di
movw $_end+3, %cx
xorl %eax, %eax
subw %di, %cx
shrw $2, %cx
rep; stosl
First of all the __bss_start address is moved into di
, and the _end + 3
address (+3 - aligns to 4 bytes) is moved into cx
. The eax
register is cleared (using an xor
instruction), and the bss section size (cx
-di
) is calculated and put into cx
. Then, cx
is divided by four (the size of a 'word'), and the stosl
instruction is repeatedly used, storing the value of eax
(zero) into the address pointed to by di
, and automatically increasing di
by four (this occurs until cx
reaches zero). The net effect of this code, is that zeros are written through all words in memory from __bss_start
to _end
:
Jump to main
That's all, we have the stack, BSS and now we can jump to the main()
C function:
calll main
The main()
function is located in arch/x86/boot/main.c. What will be there? We will see it in the next part.
Conclusion
This is the end of the first part about Linux kernel internals. If you have questions or suggestions, ping me in twitter 0xAX, drop me email or just create issue. In the next part we will see first C code which executes in Linux kernel setup, implementation of memory routines as memset
, memcpy
, earlyprintk
implementation and early console initialization and many more.
Please note that English is not my first language and I am really sorry for any inconvenience. If you found any mistakes please send me PR to linux-internals.