remove sha1.js and pbkdf2.js, part of #51
This commit is contained in:
parent
16663d44f8
commit
e1b4ddb123
@ -1,8 +1,6 @@
|
||||
define(function (require) {
|
||||
return {
|
||||
editorify: require("app/lib/editor"),
|
||||
identicons: require("app/lib/identicons"),
|
||||
pbkdf2: require("app/lib/pbkdf2"),
|
||||
sha1: require("app/lib/sha1")
|
||||
identicons: require("app/lib/identicons")
|
||||
};
|
||||
});
|
||||
|
@ -1,201 +0,0 @@
|
||||
define(["app/lib/promise", "app/lib/sha1"], function(Q, sha1) {
|
||||
/*
|
||||
* JavaScript implementation of Password-Based Key Derivation Function 2
|
||||
* (PBKDF2) as defined in RFC 2898.
|
||||
* Version 1.5
|
||||
* Copyright (c) 2007, 2008, 2009, 2010, 2011, 2012, 2013 Parvez Anandam
|
||||
* parvez@anandam.com
|
||||
* http://anandam.com/pbkdf2
|
||||
*
|
||||
* Distributed under the BSD license
|
||||
*
|
||||
* Uses Paul Johnston's excellent SHA-1 JavaScript library sha1.js:
|
||||
* http://pajhome.org.uk/crypt/md5/sha1.html
|
||||
* (uses the binb_sha1(), rstr2binb(), binb2str(), rstr2hex() functions from that libary)
|
||||
*
|
||||
* Thanks to Felix Gartsman for pointing out a bug in version 1.0
|
||||
* Thanks to Thijs Van der Schaeghe for pointing out a bug in version 1.1
|
||||
* Thanks to Richard Gautier for asking to clarify dependencies in version 1.2
|
||||
* Updated contact information from version 1.3
|
||||
* Thanks to Stuart Heinrich for pointing out updates to PAJ's SHA-1 library in version 1.4
|
||||
*/
|
||||
|
||||
|
||||
/*
|
||||
* The four arguments to the constructor of the PBKDF2 object are
|
||||
* the password, salt, number of iterations and number of bytes in
|
||||
* generated key. This follows the RFC 2898 definition: PBKDF2 (P, S, c, dkLen)
|
||||
*
|
||||
* The method deriveKey takes two parameters, both callback functions:
|
||||
* the first is used to provide status on the computation, the second
|
||||
* is called with the result of the computation (the generated key in hex).
|
||||
*
|
||||
* Example of use:
|
||||
*
|
||||
* <script src="sha1.js"></script>
|
||||
* <script src="pbkdf2.js"></script>
|
||||
* <script>
|
||||
* var mypbkdf2 = new PBKDF2("mypassword", "saltines", 1000, 16);
|
||||
* var status_callback = function(percent_done) {
|
||||
* document.getElementById("status").innerHTML = "Computed " + percent_done + "%"};
|
||||
* var result_callback = function(key) {
|
||||
* document.getElementById("status").innerHTML = "The derived key is: " + key};
|
||||
* mypbkdf2.deriveKey(status_callback, result_callback);
|
||||
* </script>
|
||||
* <div id="status"></div>
|
||||
*
|
||||
*/
|
||||
|
||||
var PBKDF2 = function(password, salt, num_iterations, num_bytes)
|
||||
{
|
||||
// Remember the password and salt
|
||||
var m_bpassword = sha1.rstr2binb(password);
|
||||
var m_salt = salt;
|
||||
|
||||
// Total number of iterations
|
||||
var m_total_iterations = num_iterations;
|
||||
|
||||
// Run iterations in chunks instead of all at once, so as to not block.
|
||||
// Define size of chunk here; adjust for slower or faster machines if necessary.
|
||||
var m_iterations_in_chunk = 10;
|
||||
|
||||
// Iteration counter
|
||||
var m_iterations_done = 0;
|
||||
|
||||
// Key length, as number of bytes
|
||||
var m_key_length = num_bytes;
|
||||
|
||||
// The hash cache
|
||||
var m_hash = null;
|
||||
|
||||
// The length (number of bytes) of the output of the pseudo-random function.
|
||||
// Since HMAC-SHA1 is the standard, and what is used here, it's 20 bytes.
|
||||
var m_hash_length = 20;
|
||||
|
||||
// Number of hash-sized blocks in the derived key (called 'l' in RFC2898)
|
||||
var m_total_blocks = Math.ceil(m_key_length/m_hash_length);
|
||||
|
||||
// Start computation with the first block
|
||||
var m_current_block = 1;
|
||||
|
||||
// Used in the HMAC-SHA1 computations
|
||||
var m_ipad = new Array(16);
|
||||
var m_opad = new Array(16);
|
||||
|
||||
// This is where the result of the iterations gets sotred
|
||||
var m_buffer = new Array(0x0,0x0,0x0,0x0,0x0);
|
||||
|
||||
// The result
|
||||
var m_key = "";
|
||||
|
||||
// This object
|
||||
var m_this_object = this;
|
||||
|
||||
// The function to call with the result
|
||||
var m_result_func;
|
||||
|
||||
// The function to call with status after computing every chunk
|
||||
var m_status_func;
|
||||
|
||||
// Set up the HMAC-SHA1 computations
|
||||
if (m_bpassword.length > 16) m_bpassword = sha1.binb_sha1(m_bpassword, password.length * chrsz);
|
||||
for(var i = 0; i < 16; ++i)
|
||||
{
|
||||
m_ipad[i] = m_bpassword[i] ^ 0x36363636;
|
||||
m_opad[i] = m_bpassword[i] ^ 0x5C5C5C5C;
|
||||
}
|
||||
|
||||
|
||||
// Starts the computation
|
||||
this.deriveKey = function(status_callback, result_callback)
|
||||
{
|
||||
m_status_func = status_callback;
|
||||
m_result_func = result_callback;
|
||||
setTimeout(function() { m_this_object.do_PBKDF2_iterations() }, 0);
|
||||
}
|
||||
|
||||
|
||||
// The workhorse
|
||||
this.do_PBKDF2_iterations = function()
|
||||
{
|
||||
var iterations = m_iterations_in_chunk;
|
||||
if (m_total_iterations - m_iterations_done < m_iterations_in_chunk)
|
||||
iterations = m_total_iterations - m_iterations_done;
|
||||
|
||||
for(var i=0; i<iterations; ++i)
|
||||
{
|
||||
// compute HMAC-SHA1
|
||||
if (m_iterations_done == 0)
|
||||
{
|
||||
var salt_block = m_salt +
|
||||
String.fromCharCode(m_current_block >> 24 & 0xF) +
|
||||
String.fromCharCode(m_current_block >> 16 & 0xF) +
|
||||
String.fromCharCode(m_current_block >> 8 & 0xF) +
|
||||
String.fromCharCode(m_current_block & 0xF);
|
||||
|
||||
m_hash = sha1.binb_sha1(m_ipad.concat(sha1.rstr2binb(salt_block)),
|
||||
512 + salt_block.length * 8);
|
||||
m_hash = sha1.binb_sha1(m_opad.concat(m_hash), 512 + 160);
|
||||
}
|
||||
else
|
||||
{
|
||||
m_hash = sha1.binb_sha1(m_ipad.concat(m_hash),
|
||||
512 + m_hash.length * 32);
|
||||
m_hash = sha1.binb_sha1(m_opad.concat(m_hash), 512 + 160);
|
||||
}
|
||||
|
||||
for(var j=0; j<m_hash.length; ++j)
|
||||
m_buffer[j] ^= m_hash[j];
|
||||
|
||||
m_iterations_done++;
|
||||
}
|
||||
|
||||
// Call the status callback function
|
||||
m_status_func( (m_current_block - 1 + m_iterations_done/m_total_iterations) / m_total_blocks * 100);
|
||||
|
||||
if (m_iterations_done < m_total_iterations)
|
||||
{
|
||||
setTimeout(function() { m_this_object.do_PBKDF2_iterations() }, 0);
|
||||
}
|
||||
else
|
||||
{
|
||||
if (m_current_block < m_total_blocks)
|
||||
{
|
||||
// Compute the next block (T_i in RFC 2898)
|
||||
|
||||
m_key += sha1.rstr2hex(sha1.binb2rstr(m_buffer));
|
||||
|
||||
m_current_block++;
|
||||
m_buffer = new Array(0x0,0x0,0x0,0x0,0x0);
|
||||
m_iterations_done = 0;
|
||||
|
||||
setTimeout(function() { m_this_object.do_PBKDF2_iterations() }, 0);
|
||||
}
|
||||
else
|
||||
{
|
||||
// We've computed the final block T_l; we're done.
|
||||
|
||||
var tmp = sha1.rstr2hex(sha1.binb2rstr(m_buffer));
|
||||
m_key += tmp.substr(0, (m_key_length - (m_total_blocks - 1) * m_hash_length) * 2 );
|
||||
|
||||
// Call the result callback function
|
||||
m_result_func(m_key);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return function(text, salt, iterations, size) {
|
||||
|
||||
var deferred = Q.defer();
|
||||
|
||||
Q.when(text, function(text) {
|
||||
var pbkdf2 = new PBKDF2(text, salt, iterations, size);
|
||||
pbkdf2.deriveKey(function() {}, function(rv) {
|
||||
deferred.resolve(rv);
|
||||
});
|
||||
});
|
||||
|
||||
return deferred.promise;
|
||||
}
|
||||
})
|
@ -1,337 +0,0 @@
|
||||
/*
|
||||
* A JavaScript implementation of the Secure Hash Algorithm, SHA-1, as defined
|
||||
* in FIPS 180-1
|
||||
* Version 2.2 Copyright Paul Johnston 2000 - 2009.
|
||||
* Other contributors: Greg Holt, Andrew Kepert, Ydnar, Lostinet
|
||||
* Distributed under the BSD License
|
||||
* See http://pajhome.org.uk/crypt/md5 for details.
|
||||
*/
|
||||
|
||||
define(function() {
|
||||
/*
|
||||
* Configurable variables. You may need to tweak these to be compatible with
|
||||
* the server-side, but the defaults work in most cases.
|
||||
*/
|
||||
var hexcase = 0; /* hex output format. 0 - lowercase; 1 - uppercase */
|
||||
var b64pad = ""; /* base-64 pad character. "=" for strict RFC compliance */
|
||||
|
||||
/*
|
||||
* These are the functions you'll usually want to call
|
||||
* They take string arguments and return either hex or base-64 encoded strings
|
||||
*/
|
||||
function hex_sha1(s) { return rstr2hex(rstr_sha1(str2rstr_utf8(s))); }
|
||||
function b64_sha1(s) { return rstr2b64(rstr_sha1(str2rstr_utf8(s))); }
|
||||
function any_sha1(s, e) { return rstr2any(rstr_sha1(str2rstr_utf8(s)), e); }
|
||||
function hex_hmac_sha1(k, d)
|
||||
{ return rstr2hex(rstr_hmac_sha1(str2rstr_utf8(k), str2rstr_utf8(d))); }
|
||||
function b64_hmac_sha1(k, d)
|
||||
{ return rstr2b64(rstr_hmac_sha1(str2rstr_utf8(k), str2rstr_utf8(d))); }
|
||||
function any_hmac_sha1(k, d, e)
|
||||
{ return rstr2any(rstr_hmac_sha1(str2rstr_utf8(k), str2rstr_utf8(d)), e); }
|
||||
|
||||
/*
|
||||
* Perform a simple self-test to see if the VM is working
|
||||
*/
|
||||
function sha1_vm_test()
|
||||
{
|
||||
return hex_sha1("abc").toLowerCase() == "a9993e364706816aba3e25717850c26c9cd0d89d";
|
||||
}
|
||||
|
||||
/*
|
||||
* Calculate the SHA1 of a raw string
|
||||
*/
|
||||
function rstr_sha1(s)
|
||||
{
|
||||
return binb2rstr(binb_sha1(rstr2binb(s), s.length * 8));
|
||||
}
|
||||
|
||||
/*
|
||||
* Calculate the HMAC-SHA1 of a key and some data (raw strings)
|
||||
*/
|
||||
function rstr_hmac_sha1(key, data)
|
||||
{
|
||||
var bkey = rstr2binb(key);
|
||||
if(bkey.length > 16) bkey = binb_sha1(bkey, key.length * 8);
|
||||
|
||||
var ipad = Array(16), opad = Array(16);
|
||||
for(var i = 0; i < 16; i++)
|
||||
{
|
||||
ipad[i] = bkey[i] ^ 0x36363636;
|
||||
opad[i] = bkey[i] ^ 0x5C5C5C5C;
|
||||
}
|
||||
|
||||
var hash = binb_sha1(ipad.concat(rstr2binb(data)), 512 + data.length * 8);
|
||||
return binb2rstr(binb_sha1(opad.concat(hash), 512 + 160));
|
||||
}
|
||||
|
||||
/*
|
||||
* Convert a raw string to a hex string
|
||||
*/
|
||||
function rstr2hex(input)
|
||||
{
|
||||
try { hexcase } catch(e) { hexcase=0; }
|
||||
var hex_tab = hexcase ? "0123456789ABCDEF" : "0123456789abcdef";
|
||||
var output = "";
|
||||
var x;
|
||||
for(var i = 0; i < input.length; i++)
|
||||
{
|
||||
x = input.charCodeAt(i);
|
||||
output += hex_tab.charAt((x >>> 4) & 0x0F)
|
||||
+ hex_tab.charAt( x & 0x0F);
|
||||
}
|
||||
return output;
|
||||
}
|
||||
|
||||
/*
|
||||
* Convert a raw string to a base-64 string
|
||||
*/
|
||||
function rstr2b64(input)
|
||||
{
|
||||
try { b64pad } catch(e) { b64pad=''; }
|
||||
var tab = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/";
|
||||
var output = "";
|
||||
var len = input.length;
|
||||
for(var i = 0; i < len; i += 3)
|
||||
{
|
||||
var triplet = (input.charCodeAt(i) << 16)
|
||||
| (i + 1 < len ? input.charCodeAt(i+1) << 8 : 0)
|
||||
| (i + 2 < len ? input.charCodeAt(i+2) : 0);
|
||||
for(var j = 0; j < 4; j++)
|
||||
{
|
||||
if(i * 8 + j * 6 > input.length * 8) output += b64pad;
|
||||
else output += tab.charAt((triplet >>> 6*(3-j)) & 0x3F);
|
||||
}
|
||||
}
|
||||
return output;
|
||||
}
|
||||
|
||||
/*
|
||||
* Convert a raw string to an arbitrary string encoding
|
||||
*/
|
||||
function rstr2any(input, encoding)
|
||||
{
|
||||
var divisor = encoding.length;
|
||||
var remainders = Array();
|
||||
var i, q, x, quotient;
|
||||
|
||||
/* Convert to an array of 16-bit big-endian values, forming the dividend */
|
||||
var dividend = Array(Math.ceil(input.length / 2));
|
||||
for(i = 0; i < dividend.length; i++)
|
||||
{
|
||||
dividend[i] = (input.charCodeAt(i * 2) << 8) | input.charCodeAt(i * 2 + 1);
|
||||
}
|
||||
|
||||
/*
|
||||
* Repeatedly perform a long division. The binary array forms the dividend,
|
||||
* the length of the encoding is the divisor. Once computed, the quotient
|
||||
* forms the dividend for the next step. We stop when the dividend is zero.
|
||||
* All remainders are stored for later use.
|
||||
*/
|
||||
while(dividend.length > 0)
|
||||
{
|
||||
quotient = Array();
|
||||
x = 0;
|
||||
for(i = 0; i < dividend.length; i++)
|
||||
{
|
||||
x = (x << 16) + dividend[i];
|
||||
q = Math.floor(x / divisor);
|
||||
x -= q * divisor;
|
||||
if(quotient.length > 0 || q > 0)
|
||||
quotient[quotient.length] = q;
|
||||
}
|
||||
remainders[remainders.length] = x;
|
||||
dividend = quotient;
|
||||
}
|
||||
|
||||
/* Convert the remainders to the output string */
|
||||
var output = "";
|
||||
for(i = remainders.length - 1; i >= 0; i--)
|
||||
output += encoding.charAt(remainders[i]);
|
||||
|
||||
/* Append leading zero equivalents */
|
||||
var full_length = Math.ceil(input.length * 8 /
|
||||
(Math.log(encoding.length) / Math.log(2)))
|
||||
for(i = output.length; i < full_length; i++)
|
||||
output = encoding[0] + output;
|
||||
|
||||
return output;
|
||||
}
|
||||
|
||||
/*
|
||||
* Encode a string as utf-8.
|
||||
* For efficiency, this assumes the input is valid utf-16.
|
||||
*/
|
||||
function str2rstr_utf8(input)
|
||||
{
|
||||
var output = "";
|
||||
var i = -1;
|
||||
var x, y;
|
||||
|
||||
while(++i < input.length)
|
||||
{
|
||||
/* Decode utf-16 surrogate pairs */
|
||||
x = input.charCodeAt(i);
|
||||
y = i + 1 < input.length ? input.charCodeAt(i + 1) : 0;
|
||||
if(0xD800 <= x && x <= 0xDBFF && 0xDC00 <= y && y <= 0xDFFF)
|
||||
{
|
||||
x = 0x10000 + ((x & 0x03FF) << 10) + (y & 0x03FF);
|
||||
i++;
|
||||
}
|
||||
|
||||
/* Encode output as utf-8 */
|
||||
if(x <= 0x7F)
|
||||
output += String.fromCharCode(x);
|
||||
else if(x <= 0x7FF)
|
||||
output += String.fromCharCode(0xC0 | ((x >>> 6 ) & 0x1F),
|
||||
0x80 | ( x & 0x3F));
|
||||
else if(x <= 0xFFFF)
|
||||
output += String.fromCharCode(0xE0 | ((x >>> 12) & 0x0F),
|
||||
0x80 | ((x >>> 6 ) & 0x3F),
|
||||
0x80 | ( x & 0x3F));
|
||||
else if(x <= 0x1FFFFF)
|
||||
output += String.fromCharCode(0xF0 | ((x >>> 18) & 0x07),
|
||||
0x80 | ((x >>> 12) & 0x3F),
|
||||
0x80 | ((x >>> 6 ) & 0x3F),
|
||||
0x80 | ( x & 0x3F));
|
||||
}
|
||||
return output;
|
||||
}
|
||||
|
||||
/*
|
||||
* Encode a string as utf-16
|
||||
*/
|
||||
function str2rstr_utf16le(input)
|
||||
{
|
||||
var output = "";
|
||||
for(var i = 0; i < input.length; i++)
|
||||
output += String.fromCharCode( input.charCodeAt(i) & 0xFF,
|
||||
(input.charCodeAt(i) >>> 8) & 0xFF);
|
||||
return output;
|
||||
}
|
||||
|
||||
function str2rstr_utf16be(input)
|
||||
{
|
||||
var output = "";
|
||||
for(var i = 0; i < input.length; i++)
|
||||
output += String.fromCharCode((input.charCodeAt(i) >>> 8) & 0xFF,
|
||||
input.charCodeAt(i) & 0xFF);
|
||||
return output;
|
||||
}
|
||||
|
||||
/*
|
||||
* Convert a raw string to an array of big-endian words
|
||||
* Characters >255 have their high-byte silently ignored.
|
||||
*/
|
||||
function rstr2binb(input)
|
||||
{
|
||||
var output = Array(input.length >> 2);
|
||||
for(var i = 0; i < output.length; i++)
|
||||
output[i] = 0;
|
||||
for(var i = 0; i < input.length * 8; i += 8)
|
||||
output[i>>5] |= (input.charCodeAt(i / 8) & 0xFF) << (24 - i % 32);
|
||||
return output;
|
||||
}
|
||||
|
||||
/*
|
||||
* Convert an array of big-endian words to a string
|
||||
*/
|
||||
function binb2rstr(input)
|
||||
{
|
||||
var output = "";
|
||||
for(var i = 0; i < input.length * 32; i += 8)
|
||||
output += String.fromCharCode((input[i>>5] >>> (24 - i % 32)) & 0xFF);
|
||||
return output;
|
||||
}
|
||||
|
||||
/*
|
||||
* Calculate the SHA-1 of an array of big-endian words, and a bit length
|
||||
*/
|
||||
function binb_sha1(x, len)
|
||||
{
|
||||
/* append padding */
|
||||
x[len >> 5] |= 0x80 << (24 - len % 32);
|
||||
x[((len + 64 >> 9) << 4) + 15] = len;
|
||||
|
||||
var w = Array(80);
|
||||
var a = 1732584193;
|
||||
var b = -271733879;
|
||||
var c = -1732584194;
|
||||
var d = 271733878;
|
||||
var e = -1009589776;
|
||||
|
||||
for(var i = 0; i < x.length; i += 16)
|
||||
{
|
||||
var olda = a;
|
||||
var oldb = b;
|
||||
var oldc = c;
|
||||
var oldd = d;
|
||||
var olde = e;
|
||||
|
||||
for(var j = 0; j < 80; j++)
|
||||
{
|
||||
if(j < 16) w[j] = x[i + j];
|
||||
else w[j] = bit_rol(w[j-3] ^ w[j-8] ^ w[j-14] ^ w[j-16], 1);
|
||||
var t = safe_add(safe_add(bit_rol(a, 5), sha1_ft(j, b, c, d)),
|
||||
safe_add(safe_add(e, w[j]), sha1_kt(j)));
|
||||
e = d;
|
||||
d = c;
|
||||
c = bit_rol(b, 30);
|
||||
b = a;
|
||||
a = t;
|
||||
}
|
||||
|
||||
a = safe_add(a, olda);
|
||||
b = safe_add(b, oldb);
|
||||
c = safe_add(c, oldc);
|
||||
d = safe_add(d, oldd);
|
||||
e = safe_add(e, olde);
|
||||
}
|
||||
return Array(a, b, c, d, e);
|
||||
|
||||
}
|
||||
|
||||
/*
|
||||
* Perform the appropriate triplet combination function for the current
|
||||
* iteration
|
||||
*/
|
||||
function sha1_ft(t, b, c, d)
|
||||
{
|
||||
if(t < 20) return (b & c) | ((~b) & d);
|
||||
if(t < 40) return b ^ c ^ d;
|
||||
if(t < 60) return (b & c) | (b & d) | (c & d);
|
||||
return b ^ c ^ d;
|
||||
}
|
||||
|
||||
/*
|
||||
* Determine the appropriate additive constant for the current iteration
|
||||
*/
|
||||
function sha1_kt(t)
|
||||
{
|
||||
return (t < 20) ? 1518500249 : (t < 40) ? 1859775393 :
|
||||
(t < 60) ? -1894007588 : -899497514;
|
||||
}
|
||||
|
||||
/*
|
||||
* Add integers, wrapping at 2^32. This uses 16-bit operations internally
|
||||
* to work around bugs in some JS interpreters.
|
||||
*/
|
||||
function safe_add(x, y)
|
||||
{
|
||||
var lsw = (x & 0xFFFF) + (y & 0xFFFF);
|
||||
var msw = (x >> 16) + (y >> 16) + (lsw >> 16);
|
||||
return (msw << 16) | (lsw & 0xFFFF);
|
||||
}
|
||||
|
||||
/*
|
||||
* Bitwise rotate a 32-bit number to the left.
|
||||
*/
|
||||
function bit_rol(num, cnt)
|
||||
{
|
||||
return (num << cnt) | (num >>> (32 - cnt));
|
||||
}
|
||||
|
||||
return {
|
||||
rstr2hex: rstr2hex, binb2rstr: binb2rstr,
|
||||
binb_sha1: binb_sha1, rstr2binb: rstr2binb
|
||||
}
|
||||
})
|
Loading…
Reference in New Issue
Block a user