diff --git a/isso/js/app/lib.js b/isso/js/app/lib.js
index 4214131..98eaa0a 100644
--- a/isso/js/app/lib.js
+++ b/isso/js/app/lib.js
@@ -1,8 +1,6 @@
define(function (require) {
return {
editorify: require("app/lib/editor"),
- identicons: require("app/lib/identicons"),
- pbkdf2: require("app/lib/pbkdf2"),
- sha1: require("app/lib/sha1")
+ identicons: require("app/lib/identicons")
};
});
diff --git a/isso/js/app/lib/pbkdf2.js b/isso/js/app/lib/pbkdf2.js
deleted file mode 100644
index db15c1f..0000000
--- a/isso/js/app/lib/pbkdf2.js
+++ /dev/null
@@ -1,201 +0,0 @@
-define(["app/lib/promise", "app/lib/sha1"], function(Q, sha1) {
- /*
- * JavaScript implementation of Password-Based Key Derivation Function 2
- * (PBKDF2) as defined in RFC 2898.
- * Version 1.5
- * Copyright (c) 2007, 2008, 2009, 2010, 2011, 2012, 2013 Parvez Anandam
- * parvez@anandam.com
- * http://anandam.com/pbkdf2
- *
- * Distributed under the BSD license
- *
- * Uses Paul Johnston's excellent SHA-1 JavaScript library sha1.js:
- * http://pajhome.org.uk/crypt/md5/sha1.html
- * (uses the binb_sha1(), rstr2binb(), binb2str(), rstr2hex() functions from that libary)
- *
- * Thanks to Felix Gartsman for pointing out a bug in version 1.0
- * Thanks to Thijs Van der Schaeghe for pointing out a bug in version 1.1
- * Thanks to Richard Gautier for asking to clarify dependencies in version 1.2
- * Updated contact information from version 1.3
- * Thanks to Stuart Heinrich for pointing out updates to PAJ's SHA-1 library in version 1.4
- */
-
-
- /*
- * The four arguments to the constructor of the PBKDF2 object are
- * the password, salt, number of iterations and number of bytes in
- * generated key. This follows the RFC 2898 definition: PBKDF2 (P, S, c, dkLen)
- *
- * The method deriveKey takes two parameters, both callback functions:
- * the first is used to provide status on the computation, the second
- * is called with the result of the computation (the generated key in hex).
- *
- * Example of use:
- *
- *
- *
- *
- *
- *
- */
-
- var PBKDF2 = function(password, salt, num_iterations, num_bytes)
- {
- // Remember the password and salt
- var m_bpassword = sha1.rstr2binb(password);
- var m_salt = salt;
-
- // Total number of iterations
- var m_total_iterations = num_iterations;
-
- // Run iterations in chunks instead of all at once, so as to not block.
- // Define size of chunk here; adjust for slower or faster machines if necessary.
- var m_iterations_in_chunk = 10;
-
- // Iteration counter
- var m_iterations_done = 0;
-
- // Key length, as number of bytes
- var m_key_length = num_bytes;
-
- // The hash cache
- var m_hash = null;
-
- // The length (number of bytes) of the output of the pseudo-random function.
- // Since HMAC-SHA1 is the standard, and what is used here, it's 20 bytes.
- var m_hash_length = 20;
-
- // Number of hash-sized blocks in the derived key (called 'l' in RFC2898)
- var m_total_blocks = Math.ceil(m_key_length/m_hash_length);
-
- // Start computation with the first block
- var m_current_block = 1;
-
- // Used in the HMAC-SHA1 computations
- var m_ipad = new Array(16);
- var m_opad = new Array(16);
-
- // This is where the result of the iterations gets sotred
- var m_buffer = new Array(0x0,0x0,0x0,0x0,0x0);
-
- // The result
- var m_key = "";
-
- // This object
- var m_this_object = this;
-
- // The function to call with the result
- var m_result_func;
-
- // The function to call with status after computing every chunk
- var m_status_func;
-
- // Set up the HMAC-SHA1 computations
- if (m_bpassword.length > 16) m_bpassword = sha1.binb_sha1(m_bpassword, password.length * chrsz);
- for(var i = 0; i < 16; ++i)
- {
- m_ipad[i] = m_bpassword[i] ^ 0x36363636;
- m_opad[i] = m_bpassword[i] ^ 0x5C5C5C5C;
- }
-
-
- // Starts the computation
- this.deriveKey = function(status_callback, result_callback)
- {
- m_status_func = status_callback;
- m_result_func = result_callback;
- setTimeout(function() { m_this_object.do_PBKDF2_iterations() }, 0);
- }
-
-
- // The workhorse
- this.do_PBKDF2_iterations = function()
- {
- var iterations = m_iterations_in_chunk;
- if (m_total_iterations - m_iterations_done < m_iterations_in_chunk)
- iterations = m_total_iterations - m_iterations_done;
-
- for(var i=0; i> 24 & 0xF) +
- String.fromCharCode(m_current_block >> 16 & 0xF) +
- String.fromCharCode(m_current_block >> 8 & 0xF) +
- String.fromCharCode(m_current_block & 0xF);
-
- m_hash = sha1.binb_sha1(m_ipad.concat(sha1.rstr2binb(salt_block)),
- 512 + salt_block.length * 8);
- m_hash = sha1.binb_sha1(m_opad.concat(m_hash), 512 + 160);
- }
- else
- {
- m_hash = sha1.binb_sha1(m_ipad.concat(m_hash),
- 512 + m_hash.length * 32);
- m_hash = sha1.binb_sha1(m_opad.concat(m_hash), 512 + 160);
- }
-
- for(var j=0; j 16) bkey = binb_sha1(bkey, key.length * 8);
-
- var ipad = Array(16), opad = Array(16);
- for(var i = 0; i < 16; i++)
- {
- ipad[i] = bkey[i] ^ 0x36363636;
- opad[i] = bkey[i] ^ 0x5C5C5C5C;
- }
-
- var hash = binb_sha1(ipad.concat(rstr2binb(data)), 512 + data.length * 8);
- return binb2rstr(binb_sha1(opad.concat(hash), 512 + 160));
- }
-
- /*
- * Convert a raw string to a hex string
- */
- function rstr2hex(input)
- {
- try { hexcase } catch(e) { hexcase=0; }
- var hex_tab = hexcase ? "0123456789ABCDEF" : "0123456789abcdef";
- var output = "";
- var x;
- for(var i = 0; i < input.length; i++)
- {
- x = input.charCodeAt(i);
- output += hex_tab.charAt((x >>> 4) & 0x0F)
- + hex_tab.charAt( x & 0x0F);
- }
- return output;
- }
-
- /*
- * Convert a raw string to a base-64 string
- */
- function rstr2b64(input)
- {
- try { b64pad } catch(e) { b64pad=''; }
- var tab = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/";
- var output = "";
- var len = input.length;
- for(var i = 0; i < len; i += 3)
- {
- var triplet = (input.charCodeAt(i) << 16)
- | (i + 1 < len ? input.charCodeAt(i+1) << 8 : 0)
- | (i + 2 < len ? input.charCodeAt(i+2) : 0);
- for(var j = 0; j < 4; j++)
- {
- if(i * 8 + j * 6 > input.length * 8) output += b64pad;
- else output += tab.charAt((triplet >>> 6*(3-j)) & 0x3F);
- }
- }
- return output;
- }
-
- /*
- * Convert a raw string to an arbitrary string encoding
- */
- function rstr2any(input, encoding)
- {
- var divisor = encoding.length;
- var remainders = Array();
- var i, q, x, quotient;
-
- /* Convert to an array of 16-bit big-endian values, forming the dividend */
- var dividend = Array(Math.ceil(input.length / 2));
- for(i = 0; i < dividend.length; i++)
- {
- dividend[i] = (input.charCodeAt(i * 2) << 8) | input.charCodeAt(i * 2 + 1);
- }
-
- /*
- * Repeatedly perform a long division. The binary array forms the dividend,
- * the length of the encoding is the divisor. Once computed, the quotient
- * forms the dividend for the next step. We stop when the dividend is zero.
- * All remainders are stored for later use.
- */
- while(dividend.length > 0)
- {
- quotient = Array();
- x = 0;
- for(i = 0; i < dividend.length; i++)
- {
- x = (x << 16) + dividend[i];
- q = Math.floor(x / divisor);
- x -= q * divisor;
- if(quotient.length > 0 || q > 0)
- quotient[quotient.length] = q;
- }
- remainders[remainders.length] = x;
- dividend = quotient;
- }
-
- /* Convert the remainders to the output string */
- var output = "";
- for(i = remainders.length - 1; i >= 0; i--)
- output += encoding.charAt(remainders[i]);
-
- /* Append leading zero equivalents */
- var full_length = Math.ceil(input.length * 8 /
- (Math.log(encoding.length) / Math.log(2)))
- for(i = output.length; i < full_length; i++)
- output = encoding[0] + output;
-
- return output;
- }
-
- /*
- * Encode a string as utf-8.
- * For efficiency, this assumes the input is valid utf-16.
- */
- function str2rstr_utf8(input)
- {
- var output = "";
- var i = -1;
- var x, y;
-
- while(++i < input.length)
- {
- /* Decode utf-16 surrogate pairs */
- x = input.charCodeAt(i);
- y = i + 1 < input.length ? input.charCodeAt(i + 1) : 0;
- if(0xD800 <= x && x <= 0xDBFF && 0xDC00 <= y && y <= 0xDFFF)
- {
- x = 0x10000 + ((x & 0x03FF) << 10) + (y & 0x03FF);
- i++;
- }
-
- /* Encode output as utf-8 */
- if(x <= 0x7F)
- output += String.fromCharCode(x);
- else if(x <= 0x7FF)
- output += String.fromCharCode(0xC0 | ((x >>> 6 ) & 0x1F),
- 0x80 | ( x & 0x3F));
- else if(x <= 0xFFFF)
- output += String.fromCharCode(0xE0 | ((x >>> 12) & 0x0F),
- 0x80 | ((x >>> 6 ) & 0x3F),
- 0x80 | ( x & 0x3F));
- else if(x <= 0x1FFFFF)
- output += String.fromCharCode(0xF0 | ((x >>> 18) & 0x07),
- 0x80 | ((x >>> 12) & 0x3F),
- 0x80 | ((x >>> 6 ) & 0x3F),
- 0x80 | ( x & 0x3F));
- }
- return output;
- }
-
- /*
- * Encode a string as utf-16
- */
- function str2rstr_utf16le(input)
- {
- var output = "";
- for(var i = 0; i < input.length; i++)
- output += String.fromCharCode( input.charCodeAt(i) & 0xFF,
- (input.charCodeAt(i) >>> 8) & 0xFF);
- return output;
- }
-
- function str2rstr_utf16be(input)
- {
- var output = "";
- for(var i = 0; i < input.length; i++)
- output += String.fromCharCode((input.charCodeAt(i) >>> 8) & 0xFF,
- input.charCodeAt(i) & 0xFF);
- return output;
- }
-
- /*
- * Convert a raw string to an array of big-endian words
- * Characters >255 have their high-byte silently ignored.
- */
- function rstr2binb(input)
- {
- var output = Array(input.length >> 2);
- for(var i = 0; i < output.length; i++)
- output[i] = 0;
- for(var i = 0; i < input.length * 8; i += 8)
- output[i>>5] |= (input.charCodeAt(i / 8) & 0xFF) << (24 - i % 32);
- return output;
- }
-
- /*
- * Convert an array of big-endian words to a string
- */
- function binb2rstr(input)
- {
- var output = "";
- for(var i = 0; i < input.length * 32; i += 8)
- output += String.fromCharCode((input[i>>5] >>> (24 - i % 32)) & 0xFF);
- return output;
- }
-
- /*
- * Calculate the SHA-1 of an array of big-endian words, and a bit length
- */
- function binb_sha1(x, len)
- {
- /* append padding */
- x[len >> 5] |= 0x80 << (24 - len % 32);
- x[((len + 64 >> 9) << 4) + 15] = len;
-
- var w = Array(80);
- var a = 1732584193;
- var b = -271733879;
- var c = -1732584194;
- var d = 271733878;
- var e = -1009589776;
-
- for(var i = 0; i < x.length; i += 16)
- {
- var olda = a;
- var oldb = b;
- var oldc = c;
- var oldd = d;
- var olde = e;
-
- for(var j = 0; j < 80; j++)
- {
- if(j < 16) w[j] = x[i + j];
- else w[j] = bit_rol(w[j-3] ^ w[j-8] ^ w[j-14] ^ w[j-16], 1);
- var t = safe_add(safe_add(bit_rol(a, 5), sha1_ft(j, b, c, d)),
- safe_add(safe_add(e, w[j]), sha1_kt(j)));
- e = d;
- d = c;
- c = bit_rol(b, 30);
- b = a;
- a = t;
- }
-
- a = safe_add(a, olda);
- b = safe_add(b, oldb);
- c = safe_add(c, oldc);
- d = safe_add(d, oldd);
- e = safe_add(e, olde);
- }
- return Array(a, b, c, d, e);
-
- }
-
- /*
- * Perform the appropriate triplet combination function for the current
- * iteration
- */
- function sha1_ft(t, b, c, d)
- {
- if(t < 20) return (b & c) | ((~b) & d);
- if(t < 40) return b ^ c ^ d;
- if(t < 60) return (b & c) | (b & d) | (c & d);
- return b ^ c ^ d;
- }
-
- /*
- * Determine the appropriate additive constant for the current iteration
- */
- function sha1_kt(t)
- {
- return (t < 20) ? 1518500249 : (t < 40) ? 1859775393 :
- (t < 60) ? -1894007588 : -899497514;
- }
-
- /*
- * Add integers, wrapping at 2^32. This uses 16-bit operations internally
- * to work around bugs in some JS interpreters.
- */
- function safe_add(x, y)
- {
- var lsw = (x & 0xFFFF) + (y & 0xFFFF);
- var msw = (x >> 16) + (y >> 16) + (lsw >> 16);
- return (msw << 16) | (lsw & 0xFFFF);
- }
-
- /*
- * Bitwise rotate a 32-bit number to the left.
- */
- function bit_rol(num, cnt)
- {
- return (num << cnt) | (num >>> (32 - cnt));
- }
-
- return {
- rstr2hex: rstr2hex, binb2rstr: binb2rstr,
- binb_sha1: binb_sha1, rstr2binb: rstr2binb
- }
-})