1
0
mirror of https://github.com/hashcat/hashcat.git synced 2024-12-02 04:48:23 +00:00
hashcat/src/hashcat.c

4161 lines
119 KiB
C

/**
* Author......: See docs/credits.txt
* License.....: MIT
*/
#if defined (__APPLE__)
#include <stdio.h>
#endif // __APPLE__
#include "common.h"
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <unistd.h>
#include <search.h>
#include <inttypes.h>
#include <signal.h>
#if defined (_POSIX)
#include <pthread.h>
#include <pwd.h>
#endif // _POSIX
#include "types.h"
#include "interface.h"
#include "timer.h"
#include "bitops.h"
#include "memory.h"
#include "folder.h"
#include "convert.h"
#include "logging.h"
#include "logfile.h"
#include "ext_OpenCL.h"
#include "ext_ADL.h"
#include "ext_nvapi.h"
#include "ext_nvml.h"
#include "ext_xnvctrl.h"
#include "cpu_aes.h"
#include "cpu_crc32.h"
#include "cpu_des.h"
#include "cpu_md5.h"
#include "cpu_sha1.h"
#include "cpu_sha256.h"
#include "filehandling.h"
#include "tuningdb.h"
#include "thread.h"
#include "opencl.h"
#include "hwmon.h"
#include "restore.h"
#include "hash_management.h"
#include "locking.h"
#include "rp_cpu.h"
#include "rp_kernel_on_cpu.h"
#include "terminal.h"
#include "inc_hash_constants.h"
#include "shared.h"
#include "mpsp.h"
#include "outfile.h"
#include "potfile.h"
#include "debugfile.h"
#include "loopback.h"
#include "data.h"
#include "affinity.h"
#include "bitmap.h"
#include "usage.h"
#include "status.h"
#include "hlfmt.h"
#include "filenames.h"
#include "stdout.h"
#include "dictstat.h"
#include "wordlist.h"
#include "version.h"
#include "benchmark.h"
#include "outfile_check.h"
#include "weak_hash.h"
#include "remove.h"
#include "debugfile.h"
#include "runtime.h"
#include "attack_mode.h"
#include "powertune.h"
#include "autotune.h"
#include "induct.h"
#include "dispatch.h"
#include "monitor.h"
#include "session.h"
#include "user_options.h"
extern hc_global_data_t data;
extern int SUPPRESS_OUTPUT;
extern hc_thread_mutex_t mux_hwmon;
extern hc_thread_mutex_t mux_display;
extern const unsigned int full01;
extern const unsigned int full80;
extern const int DEFAULT_BENCHMARK_ALGORITHMS_BUF[];
const int comptime = COMPTIME;
static void setup_environment_variables ()
{
char *compute = getenv ("COMPUTE");
if (compute)
{
static char display[100];
snprintf (display, sizeof (display) - 1, "DISPLAY=%s", compute);
putenv (display);
}
else
{
if (getenv ("DISPLAY") == NULL)
putenv ((char *) "DISPLAY=:0");
}
if (getenv ("GPU_MAX_ALLOC_PERCENT") == NULL)
putenv ((char *) "GPU_MAX_ALLOC_PERCENT=100");
if (getenv ("CPU_MAX_ALLOC_PERCENT") == NULL)
putenv ((char *) "CPU_MAX_ALLOC_PERCENT=100");
if (getenv ("GPU_USE_SYNC_OBJECTS") == NULL)
putenv ((char *) "GPU_USE_SYNC_OBJECTS=1");
if (getenv ("CUDA_CACHE_DISABLE") == NULL)
putenv ((char *) "CUDA_CACHE_DISABLE=1");
if (getenv ("POCL_KERNEL_CACHE") == NULL)
putenv ((char *) "POCL_KERNEL_CACHE=0");
}
static void setup_umask ()
{
umask (077);
}
int main (int argc, char **argv)
{
#if defined (_WIN)
SetConsoleWindowSize (132);
#endif
/**
* To help users a bit
*/
setup_environment_variables ();
setup_umask ();
/**
* Real init
*/
memset (&data, 0, sizeof (hc_global_data_t));
time_t proc_start;
time (&proc_start);
data.proc_start = proc_start;
time_t prepare_start;
time (&prepare_start);
hc_thread_mutex_init (mux_display);
hc_thread_mutex_init (mux_hwmon);
/**
* folder
*/
folder_config_t *folder_config = (folder_config_t *) mymalloc (sizeof (folder_config_t));
char *install_folder = NULL;
char *shared_folder = NULL;
#if defined (INSTALL_FOLDER)
install_folder = INSTALL_FOLDER;
#endif
#if defined (SHARED_FOLDER)
shared_folder = SHARED_FOLDER;
#endif
folder_config_init (folder_config, install_folder, shared_folder);
/**
* commandline parameters
*/
user_options_t *user_options = (user_options_t *) mymalloc (sizeof (user_options_t));
data.user_options = user_options;
user_options_init (user_options, argc, argv);
const int rc_user_options_parse1 = user_options_parse (user_options, argc, argv);
if (rc_user_options_parse1 == -1) return -1;
/**
* session
*/
char *eff_restore_file = (char *) mymalloc (HCBUFSIZ_TINY);
char *new_restore_file = (char *) mymalloc (HCBUFSIZ_TINY);
snprintf (eff_restore_file, HCBUFSIZ_TINY - 1, "%s/%s.restore", folder_config->session_dir, user_options->session);
snprintf (new_restore_file, HCBUFSIZ_TINY - 1, "%s/%s.restore.new", folder_config->session_dir, user_options->session);
data.eff_restore_file = eff_restore_file;
data.new_restore_file = new_restore_file;
restore_data_t *rd = init_restore (argc, argv, user_options);
data.rd = rd;
/**
* restore file
*/
int myargc = argc;
char **myargv = argv;
if (user_options->restore == true)
{
read_restore (eff_restore_file, rd);
if (rd->version < RESTORE_VERSION_MIN)
{
log_error ("ERROR: Incompatible restore-file version");
return -1;
}
myargc = rd->argc;
myargv = rd->argv;
#if defined (_POSIX)
rd->pid = getpid ();
#elif defined (_WIN)
rd->pid = GetCurrentProcessId ();
#endif
}
const int rc_user_options_parse2 = user_options_parse (user_options, myargc, myargv);
if (rc_user_options_parse2 == -1) return -1;
user_options_extra_t *user_options_extra = (user_options_extra_t *) mymalloc (sizeof (user_options_extra_t));
data.user_options_extra = user_options_extra;
const int rc_user_options_extra_init = user_options_extra_init (user_options, myargc, myargv, user_options_extra);
if (rc_user_options_extra_init == -1) return -1;
const int rc_user_options_sanity = user_options_sanity (user_options, myargc, myargv, user_options_extra);
if (rc_user_options_sanity == -1) return -1;
// temporarily start
if (1)
{
data.attack_mode = user_options->attack_mode;
data.benchmark = user_options->benchmark;
data.force = user_options->force;
data.hex_charset = user_options->hex_charset;
data.hex_salt = user_options->hex_salt;
data.hex_wordlist = user_options->hex_wordlist;
data.logfile_disable = user_options->logfile_disable;
data.loopback = user_options->loopback;
data.machine_readable = user_options->machine_readable;
data.outfile_check_timer = user_options->outfile_check_timer;
data.powertune_enable = user_options->powertune_enable;
data.quiet = user_options->quiet;
data.runtime = user_options->runtime;
data.scrypt_tmto = user_options->scrypt_tmto;
data.segment_size = user_options->segment_size;
data.session = user_options->session;
data.status = user_options->status;
data.status_timer = user_options->status_timer;
data.truecrypt_keyfiles = user_options->truecrypt_keyfiles;
data.veracrypt_keyfiles = user_options->veracrypt_keyfiles;
data.veracrypt_pim = user_options->veracrypt_pim;
data.wordlist_mode = user_options_extra->wordlist_mode;
data.attack_kern = user_options_extra->attack_kern;
}
if (user_options->version)
{
log_info ("%s", VERSION_TAG);
return 0;
}
if (user_options->usage)
{
usage_big_print (PROGNAME);
return 0;
}
/**
* Inform user things getting started,
* - this is giving us a visual header before preparations start, so we do not need to clear them afterwards
* - we do not need to check algorithm_pos
*/
if (user_options->quiet == false)
{
if (user_options->benchmark == true)
{
if (user_options->machine_readable == false)
{
log_info ("%s (%s) starting in benchmark-mode...", PROGNAME, VERSION_TAG);
log_info ("");
}
else
{
log_info ("# %s (%s) %s", PROGNAME, VERSION_TAG, ctime (&proc_start));
}
}
else if (user_options->restore == true)
{
log_info ("%s (%s) starting in restore-mode...", PROGNAME, VERSION_TAG);
log_info ("");
}
else if (user_options->stdout_flag == true)
{
// do nothing
}
else if (user_options->keyspace == true)
{
// do nothing
}
else
{
if ((user_options->show == true) || (user_options->left == true))
{
// do nothing
}
else
{
log_info ("%s (%s) starting...", PROGNAME, VERSION_TAG);
log_info ("");
}
}
}
/**
* induction directory
*/
char *induction_directory = NULL;
if (user_options->attack_mode != ATTACK_MODE_BF)
{
if ((user_options->keyspace == false) && (user_options->benchmark == false) && (user_options->opencl_info == false))
{
if (user_options->induction_dir == NULL)
{
induction_directory = (char *) mymalloc (HCBUFSIZ_TINY);
snprintf (induction_directory, HCBUFSIZ_TINY - 1, "%s/%s.%s", folder_config->session_dir, user_options->session, INDUCT_DIR);
// create induction folder if it does not already exist
if (user_options->keyspace == false)
{
if (rmdir (induction_directory) == -1)
{
if (errno == ENOENT)
{
// good, we can ignore
}
else if (errno == ENOTEMPTY)
{
char *induction_directory_mv = (char *) mymalloc (HCBUFSIZ_TINY);
snprintf (induction_directory_mv, HCBUFSIZ_TINY - 1, "%s/%s.induct.%d", folder_config->session_dir, user_options->session, (int) proc_start);
if (rename (induction_directory, induction_directory_mv) != 0)
{
log_error ("ERROR: Rename directory %s to %s: %s", induction_directory, induction_directory_mv, strerror (errno));
return -1;
}
}
else
{
log_error ("ERROR: %s: %s", induction_directory, strerror (errno));
return -1;
}
}
if (mkdir (induction_directory, 0700) == -1)
{
log_error ("ERROR: %s: %s", induction_directory, strerror (errno));
return -1;
}
}
}
else
{
induction_directory = user_options->induction_dir;
}
}
}
data.induction_directory = induction_directory;
/**
* tuning db
*/
char tuning_db_file[256] = { 0 };
snprintf (tuning_db_file, sizeof (tuning_db_file) - 1, "%s/%s", folder_config->shared_dir, TUNING_DB_FILE);
tuning_db_t *tuning_db = tuning_db_init (tuning_db_file);
/**
* outfile-check directory
*/
char *outfile_check_directory = NULL;
if ((user_options->keyspace == false) && (user_options->benchmark == false) && (user_options->opencl_info == false))
{
if (user_options->outfile_check_dir == NULL)
{
outfile_check_directory = (char *) mymalloc (HCBUFSIZ_TINY);
snprintf (outfile_check_directory, HCBUFSIZ_TINY - 1, "%s/%s.%s", folder_config->session_dir, user_options->session, OUTFILES_DIR);
}
else
{
outfile_check_directory = user_options->outfile_check_dir;
}
struct stat outfile_check_stat;
if (stat (outfile_check_directory, &outfile_check_stat) == 0)
{
uint is_dir = S_ISDIR (outfile_check_stat.st_mode);
if (is_dir == 0)
{
log_error ("ERROR: Directory specified in outfile-check '%s' is not a valid directory", outfile_check_directory);
return -1;
}
}
else if (user_options->outfile_check_dir == NULL)
{
if (mkdir (outfile_check_directory, 0700) == -1)
{
log_error ("ERROR: %s: %s", outfile_check_directory, strerror (errno));
return -1;
}
}
}
data.outfile_check_directory = outfile_check_directory;
/**
* cpu affinity
*/
if (user_options->cpu_affinity)
{
set_cpu_affinity (user_options->cpu_affinity);
}
if (user_options->rp_gen_seed_chgd == false)
{
srand (user_options->rp_gen_seed);
}
else
{
srand (proc_start);
}
/**
* logfile init
*/
if (user_options->logfile_disable == 0)
{
char *logfile = (char *) mymalloc (HCBUFSIZ_TINY);
snprintf (logfile, HCBUFSIZ_TINY - 1, "%s/%s.log", folder_config->session_dir, user_options->session);
data.logfile = logfile;
char *topid = logfile_generate_topid ();
data.topid = topid;
}
logfile_top_msg ("START");
logfile_top_uint (user_options->attack_mode);
logfile_top_uint (user_options->benchmark);
logfile_top_uint (user_options->stdout_flag);
logfile_top_uint (user_options->bitmap_min);
logfile_top_uint (user_options->bitmap_max);
logfile_top_uint (user_options->debug_mode);
logfile_top_uint (user_options->force);
logfile_top_uint (user_options->kernel_accel);
logfile_top_uint (user_options->kernel_loops);
logfile_top_uint (user_options->nvidia_spin_damp);
logfile_top_uint (user_options->hash_mode);
logfile_top_uint (user_options->hex_charset);
logfile_top_uint (user_options->hex_salt);
logfile_top_uint (user_options->hex_wordlist);
logfile_top_uint (user_options->increment);
logfile_top_uint (user_options->increment_max);
logfile_top_uint (user_options->increment_min);
logfile_top_uint (user_options->keyspace);
logfile_top_uint (user_options->left);
logfile_top_uint (user_options->logfile_disable);
logfile_top_uint (user_options->loopback);
logfile_top_uint (user_options->markov_classic);
logfile_top_uint (user_options->markov_disable);
logfile_top_uint (user_options->markov_threshold);
logfile_top_uint (user_options->outfile_autohex);
logfile_top_uint (user_options->outfile_check_timer);
logfile_top_uint (user_options->outfile_format);
logfile_top_uint (user_options->potfile_disable);
logfile_top_string (user_options->potfile_path);
logfile_top_uint (user_options->powertune_enable);
logfile_top_uint (user_options->scrypt_tmto);
logfile_top_uint (user_options->quiet);
logfile_top_uint (user_options->remove);
logfile_top_uint (user_options->remove_timer);
logfile_top_uint (user_options->restore);
logfile_top_uint (user_options->restore_disable);
logfile_top_uint (user_options->restore_timer);
logfile_top_uint (user_options->rp_gen);
logfile_top_uint (user_options->rp_gen_func_max);
logfile_top_uint (user_options->rp_gen_func_min);
logfile_top_uint (user_options->rp_gen_seed);
logfile_top_uint (user_options->runtime);
logfile_top_uint (user_options->segment_size);
logfile_top_uint (user_options->show);
logfile_top_uint (user_options->status);
logfile_top_uint (user_options->machine_readable);
logfile_top_uint (user_options->status_timer);
logfile_top_uint (user_options->usage);
logfile_top_uint (user_options->username);
logfile_top_uint (user_options->version);
logfile_top_uint (user_options->weak_hash_threshold);
logfile_top_uint (user_options->workload_profile);
logfile_top_uint64 (user_options->limit);
logfile_top_uint64 (user_options->skip);
logfile_top_char (user_options->separator);
logfile_top_string (user_options->cpu_affinity);
logfile_top_string (user_options->custom_charset_1);
logfile_top_string (user_options->custom_charset_2);
logfile_top_string (user_options->custom_charset_3);
logfile_top_string (user_options->custom_charset_4);
logfile_top_string (user_options->debug_file);
logfile_top_string (user_options->opencl_devices);
logfile_top_string (user_options->opencl_platforms);
logfile_top_string (user_options->opencl_device_types);
logfile_top_uint (user_options->opencl_vector_width);
logfile_top_string (user_options->induction_dir);
logfile_top_string (user_options->markov_hcstat);
logfile_top_string (user_options->outfile);
logfile_top_string (user_options->outfile_check_dir);
logfile_top_string (user_options->rule_buf_l);
logfile_top_string (user_options->rule_buf_r);
logfile_top_string (user_options->session);
logfile_top_string (user_options->truecrypt_keyfiles);
logfile_top_string (user_options->veracrypt_keyfiles);
logfile_top_uint (user_options->veracrypt_pim);
/**
* Init OpenCL library loader
*/
opencl_ctx_t *opencl_ctx = (opencl_ctx_t *) mymalloc (sizeof (opencl_ctx_t));
data.opencl_ctx = opencl_ctx;
const int rc_opencl_init = opencl_ctx_init (opencl_ctx, user_options);
if (rc_opencl_init == -1)
{
log_error ("ERROR: opencl_ctx_init() failed");
return -1;
}
/**
* status, monitor and outfile remove threads
*/
uint outer_threads_cnt = 0;
hc_thread_t *outer_threads = (hc_thread_t *) mycalloc (10, sizeof (hc_thread_t));
data.shutdown_outer = 0;
if (user_options->keyspace == false && user_options->benchmark == false && user_options->stdout_flag == false)
{
if ((user_options_extra->wordlist_mode == WL_MODE_FILE) || (user_options_extra->wordlist_mode == WL_MODE_MASK))
{
hc_thread_create (outer_threads[outer_threads_cnt], thread_keypress, NULL);
outer_threads_cnt++;
}
}
/**
* config
*/
hashconfig_t *hashconfig = (hashconfig_t *) mymalloc (sizeof (hashconfig_t));
data.hashconfig = hashconfig;
uint algorithm_pos = 0;
uint algorithm_max = 1;
const int *algorithms = DEFAULT_BENCHMARK_ALGORITHMS_BUF;
if (user_options->benchmark == true && user_options->hash_mode_chgd == false) algorithm_max = DEFAULT_BENCHMARK_ALGORITHMS_CNT;
for (algorithm_pos = 0; algorithm_pos < algorithm_max; algorithm_pos++)
{
opencl_ctx->devices_status = STATUS_INIT;
//opencl_ctx->run_main_level1 = true;
opencl_ctx->run_main_level2 = true;
opencl_ctx->run_main_level3 = true;
opencl_ctx->run_thread_level1 = true;
opencl_ctx->run_thread_level2 = true;
/*
* We need to reset 'rd' in benchmark mode otherwise when the user hits 'bypass'
* the following algos are skipped entirely
*/
if (algorithm_pos > 0)
{
local_free (rd);
rd = init_restore (argc, argv, user_options);
data.rd = rd;
}
/**
* update hash_mode in case of multihash benchmark
*/
if (user_options->benchmark == true)
{
if (user_options->hash_mode_chgd == false)
{
user_options->hash_mode = algorithms[algorithm_pos];
}
user_options->quiet = true;
}
/**
* setup variables and buffers depending on hash_mode
*/
const int rc_hashconfig = hashconfig_init (hashconfig, user_options);
if (rc_hashconfig == -1) return -1;
/**
* outfile
*/
outfile_ctx_t *outfile_ctx = mymalloc (sizeof (outfile_ctx_t));
data.outfile_ctx = outfile_ctx;
outfile_init (outfile_ctx, user_options);
/**
* Sanity check for hashfile vs outfile (should not point to the same physical file)
*/
const int rc_outfile_and_hashfile = outfile_and_hashfile (outfile_ctx, myargv[user_options_extra->optind]);
if (rc_outfile_and_hashfile == -1) return -1;
/**
* potfile
*/
potfile_ctx_t *potfile_ctx = mymalloc (sizeof (potfile_ctx_t));
data.potfile_ctx = potfile_ctx;
potfile_init (potfile_ctx, folder_config->profile_dir, user_options->potfile_path, user_options->potfile_disable);
if (user_options->show == true || user_options->left == true)
{
outfile_write_open (outfile_ctx);
SUPPRESS_OUTPUT = 1;
potfile_read_open (potfile_ctx);
potfile_read_parse (potfile_ctx, hashconfig);
potfile_read_close (potfile_ctx);
SUPPRESS_OUTPUT = 0;
}
/**
* load hashes, stage 1
*/
hashes_t *hashes = (hashes_t *) mymalloc (sizeof (hashes_t));
data.hashes = hashes;
const int rc_hashes_init_stage1 = hashes_init_stage1 (hashes, hashconfig, potfile_ctx, outfile_ctx, user_options, myargv[user_options_extra->optind]);
if (rc_hashes_init_stage1 == -1) return -1;
logfile_top_var_string ("hashfile", hashes->hashfile);
logfile_top_uint (hashes->hashlist_mode);
logfile_top_uint (hashes->hashlist_format);
if ((user_options->keyspace == false) && (user_options->stdout_flag == false) && (user_options->opencl_info == false))
{
if (hashes->hashes_cnt == 0)
{
log_error ("ERROR: No hashes loaded");
return -1;
}
}
if (user_options->show == true || user_options->left == true)
{
outfile_write_close (outfile_ctx);
potfile_hash_free (potfile_ctx, hashconfig);
if (user_options->quiet == false) log_info_nn ("");
return 0;
}
/**
* Potfile removes
*/
int potfile_remove_cracks = 0;
if (user_options->potfile_disable == 0)
{
if (user_options->quiet == false) log_info_nn ("Comparing hashes with potfile entries...");
potfile_remove_cracks = potfile_remove_parse (potfile_ctx, hashconfig, hashes);
}
/**
* load hashes, stage 2
*/
uint hashes_cnt_orig = hashes->hashes_cnt;
const int rc_hashes_init_stage2 = hashes_init_stage2 (hashes, hashconfig, opencl_ctx, user_options);
if (rc_hashes_init_stage2 == -1) return -1;
/**
* Automatic Optimizers
*/
hashconfig_general_defaults (hashconfig, hashes, user_options);
if (hashes->salts_cnt == 1)
hashconfig->opti_type |= OPTI_TYPE_SINGLE_SALT;
if (hashes->digests_cnt == 1)
hashconfig->opti_type |= OPTI_TYPE_SINGLE_HASH;
if (hashconfig->attack_exec == ATTACK_EXEC_INSIDE_KERNEL)
hashconfig->opti_type |= OPTI_TYPE_NOT_ITERATED;
if (user_options->attack_mode == ATTACK_MODE_BF)
hashconfig->opti_type |= OPTI_TYPE_BRUTE_FORCE;
if (hashconfig->opti_type & OPTI_TYPE_BRUTE_FORCE)
{
if (hashconfig->opti_type & OPTI_TYPE_SINGLE_HASH)
{
if (hashconfig->opti_type & OPTI_TYPE_APPENDED_SALT)
{
if (hashconfig->opts_type & OPTS_TYPE_ST_ADD80)
{
hashconfig->opts_type &= ~OPTS_TYPE_ST_ADD80;
hashconfig->opts_type |= OPTS_TYPE_PT_ADD80;
}
if (hashconfig->opts_type & OPTS_TYPE_ST_ADDBITS14)
{
hashconfig->opts_type &= ~OPTS_TYPE_ST_ADDBITS14;
hashconfig->opts_type |= OPTS_TYPE_PT_ADDBITS14;
}
if (hashconfig->opts_type & OPTS_TYPE_ST_ADDBITS15)
{
hashconfig->opts_type &= ~OPTS_TYPE_ST_ADDBITS15;
hashconfig->opts_type |= OPTS_TYPE_PT_ADDBITS15;
}
}
}
}
/**
* dictstat
*/
dictstat_ctx_t *dictstat_ctx = mymalloc (sizeof (dictstat_ctx_t));
dictstat_init (dictstat_ctx, folder_config->profile_dir);
if (user_options->keyspace == false)
{
dictstat_read (dictstat_ctx);
}
/**
* loopback
*/
loopback_ctx_t *loopback_ctx = mymalloc (sizeof (loopback_ctx_t));
data.loopback_ctx = loopback_ctx;
loopback_init (loopback_ctx);
/**
* debugfile
*/
debugfile_ctx_t *debugfile_ctx = mymalloc (sizeof (debugfile_ctx_t));
data.debugfile_ctx = debugfile_ctx;
debugfile_init (debugfile_ctx, user_options->debug_mode, user_options->debug_file);
/**
* word len
*/
uint pw_min = hashconfig_general_pw_min (hashconfig);
uint pw_max = hashconfig_general_pw_max (hashconfig);
/**
* charsets : keep them together for more easy maintainnce
*/
cs_t mp_sys[6] = { { { 0 }, 0 } };
cs_t mp_usr[4] = { { { 0 }, 0 } };
mp_setup_sys (mp_sys);
if (user_options->custom_charset_1) mp_setup_usr (mp_sys, mp_usr, user_options->custom_charset_1, 0, hashconfig);
if (user_options->custom_charset_2) mp_setup_usr (mp_sys, mp_usr, user_options->custom_charset_2, 1, hashconfig);
if (user_options->custom_charset_3) mp_setup_usr (mp_sys, mp_usr, user_options->custom_charset_3, 2, hashconfig);
if (user_options->custom_charset_4) mp_setup_usr (mp_sys, mp_usr, user_options->custom_charset_4, 3, hashconfig);
/**
* Some algorithm, like descrypt, can benefit from JIT compilation
*/
opencl_ctx->force_jit_compilation = -1;
if (hashconfig->hash_mode == 8900)
{
opencl_ctx->force_jit_compilation = 8900;
}
else if (hashconfig->hash_mode == 9300)
{
opencl_ctx->force_jit_compilation = 8900;
}
else if (hashconfig->hash_mode == 1500 && user_options->attack_mode == ATTACK_MODE_BF && hashes->salts_cnt == 1)
{
opencl_ctx->force_jit_compilation = 1500;
}
/**
* generate bitmap tables
*/
const uint bitmap_shift1 = 5;
const uint bitmap_shift2 = 13;
if (user_options->bitmap_max < user_options->bitmap_min) user_options->bitmap_max = user_options->bitmap_min;
uint *bitmap_s1_a = (uint *) mymalloc ((1u << user_options->bitmap_max) * sizeof (uint));
uint *bitmap_s1_b = (uint *) mymalloc ((1u << user_options->bitmap_max) * sizeof (uint));
uint *bitmap_s1_c = (uint *) mymalloc ((1u << user_options->bitmap_max) * sizeof (uint));
uint *bitmap_s1_d = (uint *) mymalloc ((1u << user_options->bitmap_max) * sizeof (uint));
uint *bitmap_s2_a = (uint *) mymalloc ((1u << user_options->bitmap_max) * sizeof (uint));
uint *bitmap_s2_b = (uint *) mymalloc ((1u << user_options->bitmap_max) * sizeof (uint));
uint *bitmap_s2_c = (uint *) mymalloc ((1u << user_options->bitmap_max) * sizeof (uint));
uint *bitmap_s2_d = (uint *) mymalloc ((1u << user_options->bitmap_max) * sizeof (uint));
uint bitmap_bits;
uint bitmap_nums;
uint bitmap_mask;
uint bitmap_size;
for (bitmap_bits = user_options->bitmap_min; bitmap_bits < user_options->bitmap_max; bitmap_bits++)
{
if (user_options->quiet == false) log_info_nn ("Generating bitmap tables with %u bits...", bitmap_bits);
bitmap_nums = 1u << bitmap_bits;
bitmap_mask = bitmap_nums - 1;
bitmap_size = bitmap_nums * sizeof (uint);
if ((hashes->digests_cnt & bitmap_mask) == hashes->digests_cnt) break;
if (generate_bitmaps (hashes->digests_cnt, hashconfig->dgst_size, bitmap_shift1, (char *) hashes->digests_buf, hashconfig->dgst_pos0, hashconfig->dgst_pos1, hashconfig->dgst_pos2, hashconfig->dgst_pos3, bitmap_mask, bitmap_size, bitmap_s1_a, bitmap_s1_b, bitmap_s1_c, bitmap_s1_d, hashes->digests_cnt / 2) == 0x7fffffff) continue;
if (generate_bitmaps (hashes->digests_cnt, hashconfig->dgst_size, bitmap_shift2, (char *) hashes->digests_buf, hashconfig->dgst_pos0, hashconfig->dgst_pos1, hashconfig->dgst_pos2, hashconfig->dgst_pos3, bitmap_mask, bitmap_size, bitmap_s1_a, bitmap_s1_b, bitmap_s1_c, bitmap_s1_d, hashes->digests_cnt / 2) == 0x7fffffff) continue;
break;
}
bitmap_nums = 1u << bitmap_bits;
bitmap_mask = bitmap_nums - 1;
bitmap_size = bitmap_nums * sizeof (uint);
generate_bitmaps (hashes->digests_cnt, hashconfig->dgst_size, bitmap_shift1, (char *) hashes->digests_buf, hashconfig->dgst_pos0, hashconfig->dgst_pos1, hashconfig->dgst_pos2, hashconfig->dgst_pos3, bitmap_mask, bitmap_size, bitmap_s1_a, bitmap_s1_b, bitmap_s1_c, bitmap_s1_d, -1ul);
generate_bitmaps (hashes->digests_cnt, hashconfig->dgst_size, bitmap_shift2, (char *) hashes->digests_buf, hashconfig->dgst_pos0, hashconfig->dgst_pos1, hashconfig->dgst_pos2, hashconfig->dgst_pos3, bitmap_mask, bitmap_size, bitmap_s2_a, bitmap_s2_b, bitmap_s2_c, bitmap_s2_d, -1ul);
/**
* load rules
*/
uint *all_kernel_rules_cnt = NULL;
kernel_rule_t **all_kernel_rules_buf = NULL;
if (user_options->rp_files_cnt)
{
all_kernel_rules_cnt = (uint *) mycalloc (user_options->rp_files_cnt, sizeof (uint));
all_kernel_rules_buf = (kernel_rule_t **) mycalloc (user_options->rp_files_cnt, sizeof (kernel_rule_t *));
}
char *rule_buf = (char *) mymalloc (HCBUFSIZ_LARGE);
int rule_len = 0;
for (uint i = 0; i < user_options->rp_files_cnt; i++)
{
uint kernel_rules_avail = 0;
uint kernel_rules_cnt = 0;
kernel_rule_t *kernel_rules_buf = NULL;
char *rp_file = user_options->rp_files[i];
char in[BLOCK_SIZE] = { 0 };
char out[BLOCK_SIZE] = { 0 };
FILE *fp = NULL;
uint rule_line = 0;
if ((fp = fopen (rp_file, "rb")) == NULL)
{
log_error ("ERROR: %s: %s", rp_file, strerror (errno));
return -1;
}
while (!feof (fp))
{
memset (rule_buf, 0, HCBUFSIZ_LARGE);
rule_len = fgetl (fp, rule_buf);
rule_line++;
if (rule_len == 0) continue;
if (rule_buf[0] == '#') continue;
if (kernel_rules_avail == kernel_rules_cnt)
{
kernel_rules_buf = (kernel_rule_t *) myrealloc (kernel_rules_buf, kernel_rules_avail * sizeof (kernel_rule_t), INCR_RULES * sizeof (kernel_rule_t));
kernel_rules_avail += INCR_RULES;
}
memset (in, 0, BLOCK_SIZE);
memset (out, 0, BLOCK_SIZE);
int result = _old_apply_rule (rule_buf, rule_len, in, 1, out);
if (result == -1)
{
log_info ("WARNING: Skipping invalid or unsupported rule in file %s on line %u: %s", rp_file, rule_line, rule_buf);
continue;
}
if (cpu_rule_to_kernel_rule (rule_buf, rule_len, &kernel_rules_buf[kernel_rules_cnt]) == -1)
{
log_info ("WARNING: Cannot convert rule for use on OpenCL device in file %s on line %u: %s", rp_file, rule_line, rule_buf);
memset (&kernel_rules_buf[kernel_rules_cnt], 0, sizeof (kernel_rule_t)); // needs to be cleared otherwise we could have some remaining data
continue;
}
kernel_rules_cnt++;
}
fclose (fp);
all_kernel_rules_cnt[i] = kernel_rules_cnt;
all_kernel_rules_buf[i] = kernel_rules_buf;
}
/**
* merge rules or automatic rule generator
*/
uint kernel_rules_cnt = 0;
kernel_rule_t *kernel_rules_buf = NULL;
if (user_options->attack_mode == ATTACK_MODE_STRAIGHT)
{
if (user_options->rp_files_cnt)
{
kernel_rules_cnt = 1;
uint *repeats = (uint *) mycalloc (user_options->rp_files_cnt + 1, sizeof (uint));
repeats[0] = kernel_rules_cnt;
for (uint i = 0; i < user_options->rp_files_cnt; i++)
{
kernel_rules_cnt *= all_kernel_rules_cnt[i];
repeats[i + 1] = kernel_rules_cnt;
}
kernel_rules_buf = (kernel_rule_t *) mycalloc (kernel_rules_cnt, sizeof (kernel_rule_t));
memset (kernel_rules_buf, 0, kernel_rules_cnt * sizeof (kernel_rule_t));
for (uint i = 0; i < kernel_rules_cnt; i++)
{
uint out_pos = 0;
kernel_rule_t *out = &kernel_rules_buf[i];
for (uint j = 0; j < user_options->rp_files_cnt; j++)
{
uint in_off = (i / repeats[j]) % all_kernel_rules_cnt[j];
uint in_pos;
kernel_rule_t *in = &all_kernel_rules_buf[j][in_off];
for (in_pos = 0; in->cmds[in_pos]; in_pos++, out_pos++)
{
if (out_pos == RULES_MAX - 1)
{
// log_info ("WARNING: Truncating chaining of rule %d and rule %d as maximum number of function calls per rule exceeded", i, in_off);
break;
}
out->cmds[out_pos] = in->cmds[in_pos];
}
}
}
local_free (repeats);
}
else if (user_options->rp_gen)
{
uint kernel_rules_avail = 0;
while (kernel_rules_cnt < user_options->rp_gen)
{
if (kernel_rules_avail == kernel_rules_cnt)
{
kernel_rules_buf = (kernel_rule_t *) myrealloc (kernel_rules_buf, kernel_rules_avail * sizeof (kernel_rule_t), INCR_RULES * sizeof (kernel_rule_t));
kernel_rules_avail += INCR_RULES;
}
memset (rule_buf, 0, HCBUFSIZ_LARGE);
rule_len = (int) generate_random_rule (rule_buf, user_options->rp_gen_func_min, user_options->rp_gen_func_max);
if (cpu_rule_to_kernel_rule (rule_buf, rule_len, &kernel_rules_buf[kernel_rules_cnt]) == -1) continue;
kernel_rules_cnt++;
}
}
}
myfree (rule_buf);
/**
* generate NOP rules
*/
if ((user_options->rp_files_cnt == 0) && (user_options->rp_gen == 0))
{
kernel_rules_buf = (kernel_rule_t *) mymalloc (sizeof (kernel_rule_t));
kernel_rules_buf[kernel_rules_cnt].cmds[0] = RULE_OP_MANGLE_NOOP;
kernel_rules_cnt++;
}
data.kernel_rules_cnt = kernel_rules_cnt;
data.kernel_rules_buf = kernel_rules_buf;
if (kernel_rules_cnt == 0)
{
log_error ("ERROR: No valid rules left");
return -1;
}
/**
* If we have a NOOP rule then we can process words from wordlists > length 32 for slow hashes
*/
int has_noop = 0;
for (uint kernel_rules_pos = 0; kernel_rules_pos < kernel_rules_cnt; kernel_rules_pos++)
{
if (kernel_rules_buf[kernel_rules_pos].cmds[0] != RULE_OP_MANGLE_NOOP) continue;
if (kernel_rules_buf[kernel_rules_pos].cmds[1] != 0) continue;
has_noop = 1;
}
if (has_noop == 0)
{
switch (user_options_extra->attack_kern)
{
case ATTACK_KERN_STRAIGHT: if (pw_max > PW_DICTMAX) pw_max = PW_DICTMAX1;
break;
case ATTACK_KERN_COMBI: if (pw_max > PW_DICTMAX) pw_max = PW_DICTMAX1;
break;
}
}
else
{
if (hashconfig->attack_exec == ATTACK_EXEC_INSIDE_KERNEL)
{
switch (user_options_extra->attack_kern)
{
case ATTACK_KERN_STRAIGHT: if (pw_max > PW_DICTMAX) pw_max = PW_DICTMAX1;
break;
case ATTACK_KERN_COMBI: if (pw_max > PW_DICTMAX) pw_max = PW_DICTMAX1;
break;
}
}
else
{
// in this case we can process > 32
}
}
const int rc_devices_init = opencl_ctx_devices_init (opencl_ctx, hashconfig, tuning_db, user_options, algorithm_pos);
if (rc_devices_init == -1)
{
log_error ("ERROR: opencl_ctx_devices_init() failed");
return -1;
}
/**
* HM devices: init
*/
hm_attrs_t hm_adapters_adl[DEVICES_MAX];
hm_attrs_t hm_adapters_nvapi[DEVICES_MAX];
hm_attrs_t hm_adapters_nvml[DEVICES_MAX];
hm_attrs_t hm_adapters_xnvctrl[DEVICES_MAX];
memset (hm_adapters_adl, 0, sizeof (hm_adapters_adl));
memset (hm_adapters_nvapi, 0, sizeof (hm_adapters_nvapi));
memset (hm_adapters_nvml, 0, sizeof (hm_adapters_nvml));
memset (hm_adapters_xnvctrl, 0, sizeof (hm_adapters_xnvctrl));
if (user_options->gpu_temp_disable == false)
{
ADL_PTR *adl = (ADL_PTR *) mymalloc (sizeof (ADL_PTR));
NVAPI_PTR *nvapi = (NVAPI_PTR *) mymalloc (sizeof (NVAPI_PTR));
NVML_PTR *nvml = (NVML_PTR *) mymalloc (sizeof (NVML_PTR));
XNVCTRL_PTR *xnvctrl = (XNVCTRL_PTR *) mymalloc (sizeof (XNVCTRL_PTR));
data.hm_adl = NULL;
data.hm_nvapi = NULL;
data.hm_nvml = NULL;
data.hm_xnvctrl = NULL;
if ((opencl_ctx->need_nvml == 1) && (nvml_init (nvml) == 0))
{
data.hm_nvml = nvml;
}
if (data.hm_nvml)
{
if (hm_NVML_nvmlInit (data.hm_nvml) == NVML_SUCCESS)
{
HM_ADAPTER_NVML nvmlGPUHandle[DEVICES_MAX] = { 0 };
int tmp_in = hm_get_adapter_index_nvml (nvmlGPUHandle);
int tmp_out = 0;
for (int i = 0; i < tmp_in; i++)
{
hm_adapters_nvml[tmp_out++].nvml = nvmlGPUHandle[i];
}
for (int i = 0; i < tmp_out; i++)
{
unsigned int speed;
if (hm_NVML_nvmlDeviceGetFanSpeed (data.hm_nvml, 0, hm_adapters_nvml[i].nvml, &speed) == NVML_SUCCESS) hm_adapters_nvml[i].fan_get_supported = 1;
// doesn't seem to create any advantages
//hm_NVML_nvmlDeviceSetComputeMode (data.hm_nvml, 1, hm_adapters_nvml[i].nvml, NVML_COMPUTEMODE_EXCLUSIVE_PROCESS);
//hm_NVML_nvmlDeviceSetGpuOperationMode (data.hm_nvml, 1, hm_adapters_nvml[i].nvml, NVML_GOM_ALL_ON);
}
}
}
if ((opencl_ctx->need_nvapi == 1) && (nvapi_init (nvapi) == 0))
{
data.hm_nvapi = nvapi;
}
if (data.hm_nvapi)
{
if (hm_NvAPI_Initialize (data.hm_nvapi) == NVAPI_OK)
{
HM_ADAPTER_NVAPI nvGPUHandle[DEVICES_MAX] = { 0 };
int tmp_in = hm_get_adapter_index_nvapi (nvGPUHandle);
int tmp_out = 0;
for (int i = 0; i < tmp_in; i++)
{
hm_adapters_nvapi[tmp_out++].nvapi = nvGPUHandle[i];
}
}
}
if ((opencl_ctx->need_xnvctrl == 1) && (xnvctrl_init (xnvctrl) == 0))
{
data.hm_xnvctrl = xnvctrl;
}
if (data.hm_xnvctrl)
{
if (hm_XNVCTRL_XOpenDisplay (data.hm_xnvctrl) == 0)
{
for (uint device_id = 0; device_id < opencl_ctx->devices_cnt; device_id++)
{
hc_device_param_t *device_param = &opencl_ctx->devices_param[device_id];
if ((device_param->device_type & CL_DEVICE_TYPE_GPU) == 0) continue;
hm_adapters_xnvctrl[device_id].xnvctrl = device_id;
int speed = 0;
if (get_fan_speed_current (data.hm_xnvctrl, device_id, &speed) == 0) hm_adapters_xnvctrl[device_id].fan_get_supported = 1;
}
}
}
if ((opencl_ctx->need_adl == 1) && (adl_init (adl) == 0))
{
data.hm_adl = adl;
}
if (data.hm_adl)
{
if (hm_ADL_Main_Control_Create (data.hm_adl, ADL_Main_Memory_Alloc, 0) == ADL_OK)
{
// total number of adapters
int hm_adapters_num;
if (get_adapters_num_adl (data.hm_adl, &hm_adapters_num) != 0) return -1;
// adapter info
LPAdapterInfo lpAdapterInfo = hm_get_adapter_info_adl (data.hm_adl, hm_adapters_num);
if (lpAdapterInfo == NULL) return -1;
// get a list (of ids of) valid/usable adapters
int num_adl_adapters = 0;
u32 *valid_adl_device_list = hm_get_list_valid_adl_adapters (hm_adapters_num, &num_adl_adapters, lpAdapterInfo);
if (num_adl_adapters > 0)
{
hc_thread_mutex_lock (mux_hwmon);
// hm_get_opencl_busid_devid (hm_adapters_adl, devices_all_cnt, devices_all);
hm_get_adapter_index_adl (hm_adapters_adl, valid_adl_device_list, num_adl_adapters, lpAdapterInfo);
hm_get_overdrive_version (data.hm_adl, hm_adapters_adl, valid_adl_device_list, num_adl_adapters, lpAdapterInfo);
hm_check_fanspeed_control (data.hm_adl, hm_adapters_adl, valid_adl_device_list, num_adl_adapters, lpAdapterInfo);
hc_thread_mutex_unlock (mux_hwmon);
}
myfree (valid_adl_device_list);
myfree (lpAdapterInfo);
}
}
if (data.hm_adl == NULL && data.hm_nvml == NULL && data.hm_xnvctrl == NULL)
{
user_options->gpu_temp_disable = true;
}
}
/**
* OpenCL devices: allocate buffer for device specific information
*/
ADLOD6MemClockState *od_clock_mem_status = (ADLOD6MemClockState *) mycalloc (opencl_ctx->devices_cnt, sizeof (ADLOD6MemClockState));
int *od_power_control_status = (int *) mycalloc (opencl_ctx->devices_cnt, sizeof (int));
unsigned int *nvml_power_limit = (unsigned int *) mycalloc (opencl_ctx->devices_cnt, sizeof (unsigned int));
/**
* User-defined GPU temp handling
*/
if (user_options->gpu_temp_disable == true)
{
user_options->gpu_temp_abort = 0;
user_options->gpu_temp_retain = 0;
}
/**
* enable custom signal handler(s)
*/
if (user_options->benchmark == false)
{
hc_signal (sigHandler_default);
}
else
{
hc_signal (sigHandler_benchmark);
}
/**
* inform the user
*/
if (user_options->quiet == false)
{
log_info ("Hashes: %u digests; %u unique digests, %u unique salts", hashes_cnt_orig, hashes->digests_cnt, hashes->salts_cnt);
log_info ("Bitmaps: %u bits, %u entries, 0x%08x mask, %u bytes, %u/%u rotates", bitmap_bits, bitmap_nums, bitmap_mask, bitmap_size, bitmap_shift1, bitmap_shift2);
if (user_options->attack_mode == ATTACK_MODE_STRAIGHT)
{
log_info ("Rules: %u", kernel_rules_cnt);
}
if (hashconfig->opti_type)
{
log_info ("Applicable Optimizers:");
for (uint i = 0; i < 32; i++)
{
const uint opti_bit = 1u << i;
if (hashconfig->opti_type & opti_bit) log_info ("* %s", stroptitype (opti_bit));
}
}
/**
* Watchdog and Temperature balance
*/
if (user_options->gpu_temp_disable == false && data.hm_adl == NULL && data.hm_nvml == NULL && data.hm_xnvctrl == NULL)
{
log_info ("Watchdog: Hardware Monitoring Interface not found on your system");
}
if (user_options->gpu_temp_abort == 0)
{
log_info ("Watchdog: Temperature abort trigger disabled");
}
else
{
log_info ("Watchdog: Temperature abort trigger set to %uc", user_options->gpu_temp_abort);
}
if (user_options->gpu_temp_retain == 0)
{
log_info ("Watchdog: Temperature retain trigger disabled");
}
else
{
log_info ("Watchdog: Temperature retain trigger set to %uc", user_options->gpu_temp_retain);
}
if (user_options->quiet == false) log_info ("");
}
/**
* HM devices: copy
*/
if (user_options->gpu_temp_disable == false)
{
for (uint device_id = 0; device_id < opencl_ctx->devices_cnt; device_id++)
{
hc_device_param_t *device_param = &opencl_ctx->devices_param[device_id];
if ((device_param->device_type & CL_DEVICE_TYPE_GPU) == 0) continue;
if (device_param->skipped) continue;
const uint platform_devices_id = device_param->platform_devices_id;
if (device_param->device_vendor_id == VENDOR_ID_AMD)
{
data.hm_device[device_id].adl = hm_adapters_adl[platform_devices_id].adl;
data.hm_device[device_id].nvapi = 0;
data.hm_device[device_id].nvml = 0;
data.hm_device[device_id].xnvctrl = 0;
data.hm_device[device_id].od_version = hm_adapters_adl[platform_devices_id].od_version;
data.hm_device[device_id].fan_get_supported = hm_adapters_adl[platform_devices_id].fan_get_supported;
data.hm_device[device_id].fan_set_supported = 0;
}
if (device_param->device_vendor_id == VENDOR_ID_NV)
{
data.hm_device[device_id].adl = 0;
data.hm_device[device_id].nvapi = hm_adapters_nvapi[platform_devices_id].nvapi;
data.hm_device[device_id].nvml = hm_adapters_nvml[platform_devices_id].nvml;
data.hm_device[device_id].xnvctrl = hm_adapters_xnvctrl[platform_devices_id].xnvctrl;
data.hm_device[device_id].od_version = 0;
data.hm_device[device_id].fan_get_supported = hm_adapters_nvml[platform_devices_id].fan_get_supported;
data.hm_device[device_id].fan_set_supported = 0;
}
}
}
/**
* powertune on user request
*/
if (user_options->powertune_enable == true)
{
hc_thread_mutex_lock (mux_hwmon);
for (uint device_id = 0; device_id < opencl_ctx->devices_cnt; device_id++)
{
hc_device_param_t *device_param = &opencl_ctx->devices_param[device_id];
if (device_param->skipped) continue;
if (opencl_ctx->devices_param[device_id].device_vendor_id == VENDOR_ID_AMD)
{
/**
* Temporary fix:
* with AMD r9 295x cards it seems that we need to set the powertune value just AFTER the ocl init stuff
* otherwise after hc_clCreateContext () etc, powertune value was set back to "normal" and cards unfortunately
* were not working @ full speed (setting hm_ADL_Overdrive_PowerControl_Set () here seems to fix the problem)
* Driver / ADL bug?
*/
if (data.hm_device[device_id].od_version == 6)
{
int ADL_rc;
// check powertune capabilities first, if not available then skip device
int powertune_supported = 0;
if ((ADL_rc = hm_ADL_Overdrive6_PowerControl_Caps (data.hm_adl, data.hm_device[device_id].adl, &powertune_supported)) != ADL_OK)
{
log_error ("ERROR: Failed to get ADL PowerControl Capabilities");
return -1;
}
// first backup current value, we will restore it later
if (powertune_supported != 0)
{
// powercontrol settings
ADLOD6PowerControlInfo powertune = {0, 0, 0, 0, 0};
if ((ADL_rc = hm_ADL_Overdrive_PowerControlInfo_Get (data.hm_adl, data.hm_device[device_id].adl, &powertune)) == ADL_OK)
{
ADL_rc = hm_ADL_Overdrive_PowerControl_Get (data.hm_adl, data.hm_device[device_id].adl, &od_power_control_status[device_id]);
}
if (ADL_rc != ADL_OK)
{
log_error ("ERROR: Failed to get current ADL PowerControl settings");
return -1;
}
if ((ADL_rc = hm_ADL_Overdrive_PowerControl_Set (data.hm_adl, data.hm_device[device_id].adl, powertune.iMaxValue)) != ADL_OK)
{
log_error ("ERROR: Failed to set new ADL PowerControl values");
return -1;
}
// clocks
memset (&od_clock_mem_status[device_id], 0, sizeof (ADLOD6MemClockState));
od_clock_mem_status[device_id].state.iNumberOfPerformanceLevels = 2;
if ((ADL_rc = hm_ADL_Overdrive_StateInfo_Get (data.hm_adl, data.hm_device[device_id].adl, ADL_OD6_GETSTATEINFO_CUSTOM_PERFORMANCE, &od_clock_mem_status[device_id])) != ADL_OK)
{
log_error ("ERROR: Failed to get ADL memory and engine clock frequency");
return -1;
}
// Query capabilities only to see if profiles were not "damaged", if so output a warning but do accept the users profile settings
ADLOD6Capabilities caps = {0, 0, 0, {0, 0, 0}, {0, 0, 0}, 0, 0};
if ((ADL_rc = hm_ADL_Overdrive_Capabilities_Get (data.hm_adl, data.hm_device[device_id].adl, &caps)) != ADL_OK)
{
log_error ("ERROR: Failed to get ADL device capabilities");
return -1;
}
int engine_clock_max = (int) (0.6666 * caps.sEngineClockRange.iMax);
int memory_clock_max = (int) (0.6250 * caps.sMemoryClockRange.iMax);
int warning_trigger_engine = (int) (0.25 * engine_clock_max);
int warning_trigger_memory = (int) (0.25 * memory_clock_max);
int engine_clock_profile_max = od_clock_mem_status[device_id].state.aLevels[1].iEngineClock;
int memory_clock_profile_max = od_clock_mem_status[device_id].state.aLevels[1].iMemoryClock;
// warning if profile has too low max values
if ((engine_clock_max - engine_clock_profile_max) > warning_trigger_engine)
{
log_info ("WARN: The custom profile seems to have too low maximum engine clock values. You therefore may not reach full performance");
}
if ((memory_clock_max - memory_clock_profile_max) > warning_trigger_memory)
{
log_info ("WARN: The custom profile seems to have too low maximum memory clock values. You therefore may not reach full performance");
}
ADLOD6StateInfo *performance_state = (ADLOD6StateInfo*) mycalloc (1, sizeof (ADLOD6StateInfo) + sizeof (ADLOD6PerformanceLevel));
performance_state->iNumberOfPerformanceLevels = 2;
performance_state->aLevels[0].iEngineClock = engine_clock_profile_max;
performance_state->aLevels[1].iEngineClock = engine_clock_profile_max;
performance_state->aLevels[0].iMemoryClock = memory_clock_profile_max;
performance_state->aLevels[1].iMemoryClock = memory_clock_profile_max;
if ((ADL_rc = hm_ADL_Overdrive_State_Set (data.hm_adl, data.hm_device[device_id].adl, ADL_OD6_SETSTATE_PERFORMANCE, performance_state)) != ADL_OK)
{
log_info ("ERROR: Failed to set ADL performance state");
return -1;
}
local_free (performance_state);
}
// set powertune value only
if (powertune_supported != 0)
{
// powertune set
ADLOD6PowerControlInfo powertune = {0, 0, 0, 0, 0};
if ((ADL_rc = hm_ADL_Overdrive_PowerControlInfo_Get (data.hm_adl, data.hm_device[device_id].adl, &powertune)) != ADL_OK)
{
log_error ("ERROR: Failed to get current ADL PowerControl settings");
return -1;
}
if ((ADL_rc = hm_ADL_Overdrive_PowerControl_Set (data.hm_adl, data.hm_device[device_id].adl, powertune.iMaxValue)) != ADL_OK)
{
log_error ("ERROR: Failed to set new ADL PowerControl values");
return -1;
}
}
}
}
if (opencl_ctx->devices_param[device_id].device_vendor_id == VENDOR_ID_NV)
{
// first backup current value, we will restore it later
unsigned int limit;
int powertune_supported = 0;
if (hm_NVML_nvmlDeviceGetPowerManagementLimit (data.hm_nvml, 0, data.hm_device[device_id].nvml, &limit) == NVML_SUCCESS)
{
powertune_supported = 1;
}
// if backup worked, activate the maximum allowed
if (powertune_supported != 0)
{
unsigned int minLimit;
unsigned int maxLimit;
if (hm_NVML_nvmlDeviceGetPowerManagementLimitConstraints (data.hm_nvml, 0, data.hm_device[device_id].nvml, &minLimit, &maxLimit) == NVML_SUCCESS)
{
if (maxLimit > 0)
{
if (hm_NVML_nvmlDeviceSetPowerManagementLimit (data.hm_nvml, 0, data.hm_device[device_id].nvml, maxLimit) == NVML_SUCCESS)
{
// now we can be sure we need to reset later
nvml_power_limit[device_id] = limit;
}
}
}
}
}
}
hc_thread_mutex_unlock (mux_hwmon);
}
#if defined (DEBUG)
if (user_options->benchmark == true) log_info ("Hashmode: %d", hashconfig->hash_mode);
#endif
if (user_options->quiet == false) log_info_nn ("Initializing device kernels and memory...");
session_ctx_t *session_ctx = (session_ctx_t *) mymalloc (sizeof (session_ctx_t));
data.session_ctx = session_ctx;
session_ctx_init (session_ctx, kernel_rules_cnt, kernel_rules_buf, bitmap_size, bitmap_mask, bitmap_shift1, bitmap_shift2, bitmap_s1_a, bitmap_s1_b, bitmap_s1_c, bitmap_s1_d, bitmap_s2_a, bitmap_s2_b, bitmap_s2_c, bitmap_s2_d);
opencl_session_begin (opencl_ctx, hashconfig, hashes, session_ctx, user_options, user_options_extra, folder_config);
if (user_options->quiet == false) log_info_nn ("");
/**
* Store initial fanspeed if gpu_temp_retain is enabled
*/
if (user_options->gpu_temp_disable == false)
{
if (user_options->gpu_temp_retain)
{
for (uint device_id = 0; device_id < opencl_ctx->devices_cnt; device_id++)
{
hc_device_param_t *device_param = &opencl_ctx->devices_param[device_id];
if (device_param->skipped) continue;
hc_thread_mutex_lock (mux_hwmon);
if (data.hm_device[device_id].fan_get_supported == 1)
{
const int fanspeed = hm_get_fanspeed_with_device_id (opencl_ctx, device_id);
const int fanpolicy = hm_get_fanpolicy_with_device_id (opencl_ctx, device_id);
// we also set it to tell the OS we take control over the fan and it's automatic controller
// if it was set to automatic. we do not control user-defined fanspeeds.
if (fanpolicy == 1)
{
data.hm_device[device_id].fan_set_supported = 1;
int rc = -1;
if (device_param->device_vendor_id == VENDOR_ID_AMD)
{
rc = hm_set_fanspeed_with_device_id_adl (device_id, fanspeed, 1);
}
else if (device_param->device_vendor_id == VENDOR_ID_NV)
{
#if defined (__linux__)
rc = set_fan_control (data.hm_xnvctrl, data.hm_device[device_id].xnvctrl, NV_CTRL_GPU_COOLER_MANUAL_CONTROL_TRUE);
#endif
#if defined (_WIN)
rc = hm_set_fanspeed_with_device_id_nvapi (device_id, fanspeed, 1);
#endif
}
if (rc == 0)
{
data.hm_device[device_id].fan_set_supported = 1;
}
else
{
log_info ("WARNING: Failed to set initial fan speed for device #%u", device_id + 1);
data.hm_device[device_id].fan_set_supported = 0;
}
}
else
{
data.hm_device[device_id].fan_set_supported = 0;
}
}
hc_thread_mutex_unlock (mux_hwmon);
}
}
}
/**
* In benchmark-mode, inform user which algorithm is checked
*/
if (user_options->benchmark == true)
{
if (user_options->machine_readable == false)
{
//quiet = 0;
//user_options->quiet = quiet;
char *hash_type = strhashtype (hashconfig->hash_mode); // not a bug
log_info ("Hashtype: %s", hash_type);
log_info ("");
}
}
/**
* keep track of the progress
*/
data.words_progress_done = (u64 *) mycalloc (hashes->salts_cnt, sizeof (u64));
data.words_progress_rejected = (u64 *) mycalloc (hashes->salts_cnt, sizeof (u64));
data.words_progress_restored = (u64 *) mycalloc (hashes->salts_cnt, sizeof (u64));
/**
* open filehandles
*/
#if defined (_WIN)
if (_setmode (_fileno (stdin), _O_BINARY) == -1)
{
log_error ("ERROR: %s: %s", "stdin", strerror (errno));
return -1;
}
if (_setmode (_fileno (stdout), _O_BINARY) == -1)
{
log_error ("ERROR: %s: %s", "stdout", strerror (errno));
return -1;
}
if (_setmode (_fileno (stderr), _O_BINARY) == -1)
{
log_error ("ERROR: %s: %s", "stderr", strerror (errno));
return -1;
}
#endif
/**
* dictionary pad
*/
wl_data_t *wl_data = (wl_data_t *) mymalloc (sizeof (wl_data_t));
wl_data_init (wl_data, user_options, hashconfig);
cs_t *css_buf = NULL;
uint css_cnt = 0;
uint dictcnt = 0;
uint maskcnt = 1;
char **masks = NULL;
char **dictfiles = NULL;
uint mask_from_file = 0;
if (user_options->attack_mode == ATTACK_MODE_STRAIGHT)
{
if (user_options_extra->wordlist_mode == WL_MODE_FILE)
{
int wls_left = myargc - (user_options_extra->optind + 1);
for (int i = 0; i < wls_left; i++)
{
char *l0_filename = myargv[user_options_extra->optind + 1 + i];
struct stat l0_stat;
if (stat (l0_filename, &l0_stat) == -1)
{
log_error ("ERROR: %s: %s", l0_filename, strerror (errno));
return -1;
}
uint is_dir = S_ISDIR (l0_stat.st_mode);
if (is_dir == 0)
{
dictfiles = (char **) myrealloc (dictfiles, dictcnt * sizeof (char *), sizeof (char *));
dictcnt++;
dictfiles[dictcnt - 1] = l0_filename;
}
else
{
// do not allow --keyspace w/ a directory
if (user_options->keyspace == true)
{
log_error ("ERROR: Keyspace parameter is not allowed together with a directory");
return -1;
}
char **dictionary_files = NULL;
dictionary_files = scan_directory (l0_filename);
if (dictionary_files != NULL)
{
qsort (dictionary_files, count_dictionaries (dictionary_files), sizeof (char *), sort_by_stringptr);
for (int d = 0; dictionary_files[d] != NULL; d++)
{
char *l1_filename = dictionary_files[d];
struct stat l1_stat;
if (stat (l1_filename, &l1_stat) == -1)
{
log_error ("ERROR: %s: %s", l1_filename, strerror (errno));
return -1;
}
if (S_ISREG (l1_stat.st_mode))
{
dictfiles = (char **) myrealloc (dictfiles, dictcnt * sizeof (char *), sizeof (char *));
dictcnt++;
dictfiles[dictcnt - 1] = mystrdup (l1_filename);
}
}
}
local_free (dictionary_files);
}
}
if (dictcnt < 1)
{
log_error ("ERROR: No usable dictionary file found.");
return -1;
}
}
else if (user_options_extra->wordlist_mode == WL_MODE_STDIN)
{
dictcnt = 1;
}
}
else if (user_options->attack_mode == ATTACK_MODE_COMBI)
{
// display
char *dictfile1 = myargv[user_options_extra->optind + 1 + 0];
char *dictfile2 = myargv[user_options_extra->optind + 1 + 1];
// find the bigger dictionary and use as base
FILE *fp1 = NULL;
FILE *fp2 = NULL;
struct stat tmp_stat;
if ((fp1 = fopen (dictfile1, "rb")) == NULL)
{
log_error ("ERROR: %s: %s", dictfile1, strerror (errno));
return -1;
}
if (stat (dictfile1, &tmp_stat) == -1)
{
log_error ("ERROR: %s: %s", dictfile1, strerror (errno));
fclose (fp1);
return -1;
}
if (S_ISDIR (tmp_stat.st_mode))
{
log_error ("ERROR: %s must be a regular file", dictfile1, strerror (errno));
fclose (fp1);
return -1;
}
if ((fp2 = fopen (dictfile2, "rb")) == NULL)
{
log_error ("ERROR: %s: %s", dictfile2, strerror (errno));
fclose (fp1);
return -1;
}
if (stat (dictfile2, &tmp_stat) == -1)
{
log_error ("ERROR: %s: %s", dictfile2, strerror (errno));
fclose (fp1);
fclose (fp2);
return -1;
}
if (S_ISDIR (tmp_stat.st_mode))
{
log_error ("ERROR: %s must be a regular file", dictfile2, strerror (errno));
fclose (fp1);
fclose (fp2);
return -1;
}
data.combs_cnt = 1;
//user_options->quiet = 1;
const u64 words1_cnt = count_words (wl_data, user_options, user_options_extra, fp1, dictfile1, dictstat_ctx);
//user_options->quiet = quiet;
if (words1_cnt == 0)
{
log_error ("ERROR: %s: empty file", dictfile1);
fclose (fp1);
fclose (fp2);
return -1;
}
data.combs_cnt = 1;
//user_options->quiet = 1;
const u64 words2_cnt = count_words (wl_data, user_options, user_options_extra, fp2, dictfile2, dictstat_ctx);
//user_options->quiet = quiet;
if (words2_cnt == 0)
{
log_error ("ERROR: %s: empty file", dictfile2);
fclose (fp1);
fclose (fp2);
return -1;
}
fclose (fp1);
fclose (fp2);
data.dictfile = dictfile1;
data.dictfile2 = dictfile2;
if (words1_cnt >= words2_cnt)
{
data.combs_cnt = words2_cnt;
data.combs_mode = COMBINATOR_MODE_BASE_LEFT;
dictfiles = &data.dictfile;
dictcnt = 1;
}
else
{
data.combs_cnt = words1_cnt;
data.combs_mode = COMBINATOR_MODE_BASE_RIGHT;
dictfiles = &data.dictfile2;
dictcnt = 1;
// we also have to switch wordlist related rules!
char *tmpc = user_options->rule_buf_l;
user_options->rule_buf_l = user_options->rule_buf_r;
user_options->rule_buf_r = tmpc;
int tmpi = user_options_extra->rule_len_l;
user_options_extra->rule_len_l = user_options_extra->rule_len_r;
user_options_extra->rule_len_r = tmpi;
}
}
else if (user_options->attack_mode == ATTACK_MODE_BF)
{
char *mask = NULL;
maskcnt = 0;
if (user_options->benchmark == false)
{
mask = myargv[user_options_extra->optind + 1];
masks = (char **) mymalloc (INCR_MASKS * sizeof (char *));
if ((user_options_extra->optind + 2) <= myargc)
{
struct stat file_stat;
if (stat (mask, &file_stat) == -1)
{
maskcnt = 1;
masks[maskcnt - 1] = mystrdup (mask);
}
else
{
int wls_left = myargc - (user_options_extra->optind + 1);
uint masks_avail = INCR_MASKS;
for (int i = 0; i < wls_left; i++)
{
if (i != 0)
{
mask = myargv[user_options_extra->optind + 1 + i];
if (stat (mask, &file_stat) == -1)
{
log_error ("ERROR: %s: %s", mask, strerror (errno));
return -1;
}
}
uint is_file = S_ISREG (file_stat.st_mode);
if (is_file == 1)
{
FILE *mask_fp;
if ((mask_fp = fopen (mask, "r")) == NULL)
{
log_error ("ERROR: %s: %s", mask, strerror (errno));
return -1;
}
char *line_buf = (char *) mymalloc (HCBUFSIZ_LARGE);
while (!feof (mask_fp))
{
memset (line_buf, 0, HCBUFSIZ_LARGE);
int line_len = fgetl (mask_fp, line_buf);
if (line_len == 0) continue;
if (line_buf[0] == '#') continue;
if (masks_avail == maskcnt)
{
masks = (char **) myrealloc (masks, masks_avail * sizeof (char *), INCR_MASKS * sizeof (char *));
masks_avail += INCR_MASKS;
}
masks[maskcnt] = mystrdup (line_buf);
maskcnt++;
}
myfree (line_buf);
fclose (mask_fp);
}
else
{
log_error ("ERROR: %s: unsupported file-type", mask);
return -1;
}
}
mask_from_file = 1;
}
}
else
{
user_options->custom_charset_1 = (char *) "?l?d?u";
user_options->custom_charset_2 = (char *) "?l?d";
user_options->custom_charset_3 = (char *) "?l?d*!$@_";
mp_setup_usr (mp_sys, mp_usr, user_options->custom_charset_1, 0, hashconfig);
mp_setup_usr (mp_sys, mp_usr, user_options->custom_charset_2, 1, hashconfig);
mp_setup_usr (mp_sys, mp_usr, user_options->custom_charset_3, 2, hashconfig);
maskcnt = 1;
masks[maskcnt - 1] = mystrdup ("?1?2?2?2?2?2?2?3?3?3?3?d?d?d?d");
user_options->increment = true;
}
}
else
{
/**
* generate full masks and charsets
*/
mask = hashconfig_benchmark_mask (hashconfig);
pw_min = mp_get_length (mask);
pw_max = pw_min;
masks = (char **) mymalloc (sizeof (char *));
maskcnt = 1;
masks[maskcnt - 1] = mystrdup (mask);
user_options->increment = true;
}
dictfiles = (char **) mycalloc (pw_max, sizeof (char *));
if (user_options->increment == true)
{
if (user_options->increment_min > pw_min) pw_min = user_options->increment_min;
if (user_options->increment_max < pw_max) pw_max = user_options->increment_max;
}
}
else if (user_options->attack_mode == ATTACK_MODE_HYBRID1)
{
data.combs_mode = COMBINATOR_MODE_BASE_LEFT;
// display
char *mask = myargv[myargc - 1];
maskcnt = 0;
masks = (char **) mymalloc (1 * sizeof (char *));
// mod
struct stat file_stat;
if (stat (mask, &file_stat) == -1)
{
maskcnt = 1;
masks[maskcnt - 1] = mystrdup (mask);
}
else
{
uint is_file = S_ISREG (file_stat.st_mode);
if (is_file == 1)
{
FILE *mask_fp;
if ((mask_fp = fopen (mask, "r")) == NULL)
{
log_error ("ERROR: %s: %s", mask, strerror (errno));
return -1;
}
char *line_buf = (char *) mymalloc (HCBUFSIZ_LARGE);
uint masks_avail = 1;
while (!feof (mask_fp))
{
memset (line_buf, 0, HCBUFSIZ_LARGE);
int line_len = fgetl (mask_fp, line_buf);
if (line_len == 0) continue;
if (line_buf[0] == '#') continue;
if (masks_avail == maskcnt)
{
masks = (char **) myrealloc (masks, masks_avail * sizeof (char *), INCR_MASKS * sizeof (char *));
masks_avail += INCR_MASKS;
}
masks[maskcnt] = mystrdup (line_buf);
maskcnt++;
}
myfree (line_buf);
fclose (mask_fp);
mask_from_file = 1;
}
else
{
maskcnt = 1;
masks[maskcnt - 1] = mystrdup (mask);
}
}
// base
int wls_left = myargc - (user_options_extra->optind + 2);
for (int i = 0; i < wls_left; i++)
{
char *filename = myargv[user_options_extra->optind + 1 + i];
struct stat file_stat;
if (stat (filename, &file_stat) == -1)
{
log_error ("ERROR: %s: %s", filename, strerror (errno));
return -1;
}
uint is_dir = S_ISDIR (file_stat.st_mode);
if (is_dir == 0)
{
dictfiles = (char **) myrealloc (dictfiles, dictcnt * sizeof (char *), sizeof (char *));
dictcnt++;
dictfiles[dictcnt - 1] = filename;
}
else
{
// do not allow --keyspace w/ a directory
if (user_options->keyspace == true)
{
log_error ("ERROR: Keyspace parameter is not allowed together with a directory");
return -1;
}
char **dictionary_files = NULL;
dictionary_files = scan_directory (filename);
if (dictionary_files != NULL)
{
qsort (dictionary_files, count_dictionaries (dictionary_files), sizeof (char *), sort_by_stringptr);
for (int d = 0; dictionary_files[d] != NULL; d++)
{
char *l1_filename = dictionary_files[d];
struct stat l1_stat;
if (stat (l1_filename, &l1_stat) == -1)
{
log_error ("ERROR: %s: %s", l1_filename, strerror (errno));
return -1;
}
if (S_ISREG (l1_stat.st_mode))
{
dictfiles = (char **) myrealloc (dictfiles, dictcnt * sizeof (char *), sizeof (char *));
dictcnt++;
dictfiles[dictcnt - 1] = mystrdup (l1_filename);
}
}
}
local_free (dictionary_files);
}
}
if (dictcnt < 1)
{
log_error ("ERROR: No usable dictionary file found.");
return -1;
}
if (user_options->increment == true)
{
maskcnt = 0;
uint mask_min = user_options->increment_min; // we can't reject smaller masks here
uint mask_max = (user_options->increment_max < pw_max) ? user_options->increment_max : pw_max;
for (uint mask_cur = mask_min; mask_cur <= mask_max; mask_cur++)
{
char *cur_mask = mp_get_truncated_mask (mask, strlen (mask), mask_cur);
if (cur_mask == NULL) break;
masks[maskcnt] = cur_mask;
maskcnt++;
masks = (char **) myrealloc (masks, maskcnt * sizeof (char *), sizeof (char *));
}
}
}
else if (user_options->attack_mode == ATTACK_MODE_HYBRID2)
{
data.combs_mode = COMBINATOR_MODE_BASE_RIGHT;
// display
char *mask = myargv[user_options_extra->optind + 1 + 0];
maskcnt = 0;
masks = (char **) mymalloc (1 * sizeof (char *));
// mod
struct stat file_stat;
if (stat (mask, &file_stat) == -1)
{
maskcnt = 1;
masks[maskcnt - 1] = mystrdup (mask);
}
else
{
uint is_file = S_ISREG (file_stat.st_mode);
if (is_file == 1)
{
FILE *mask_fp;
if ((mask_fp = fopen (mask, "r")) == NULL)
{
log_error ("ERROR: %s: %s", mask, strerror (errno));
return -1;
}
char *line_buf = (char *) mymalloc (HCBUFSIZ_LARGE);
uint masks_avail = 1;
while (!feof (mask_fp))
{
memset (line_buf, 0, HCBUFSIZ_LARGE);
int line_len = fgetl (mask_fp, line_buf);
if (line_len == 0) continue;
if (line_buf[0] == '#') continue;
if (masks_avail == maskcnt)
{
masks = (char **) myrealloc (masks, masks_avail * sizeof (char *), INCR_MASKS * sizeof (char *));
masks_avail += INCR_MASKS;
}
masks[maskcnt] = mystrdup (line_buf);
maskcnt++;
}
myfree (line_buf);
fclose (mask_fp);
mask_from_file = 1;
}
else
{
maskcnt = 1;
masks[maskcnt - 1] = mystrdup (mask);
}
}
// base
int wls_left = myargc - (user_options_extra->optind + 2);
for (int i = 0; i < wls_left; i++)
{
char *filename = myargv[user_options_extra->optind + 2 + i];
struct stat file_stat;
if (stat (filename, &file_stat) == -1)
{
log_error ("ERROR: %s: %s", filename, strerror (errno));
return -1;
}
uint is_dir = S_ISDIR (file_stat.st_mode);
if (is_dir == 0)
{
dictfiles = (char **) myrealloc (dictfiles, dictcnt * sizeof (char *), sizeof (char *));
dictcnt++;
dictfiles[dictcnt - 1] = filename;
}
else
{
// do not allow --keyspace w/ a directory
if (user_options->keyspace == true)
{
log_error ("ERROR: Keyspace parameter is not allowed together with a directory");
return -1;
}
char **dictionary_files = NULL;
dictionary_files = scan_directory (filename);
if (dictionary_files != NULL)
{
qsort (dictionary_files, count_dictionaries (dictionary_files), sizeof (char *), sort_by_stringptr);
for (int d = 0; dictionary_files[d] != NULL; d++)
{
char *l1_filename = dictionary_files[d];
struct stat l1_stat;
if (stat (l1_filename, &l1_stat) == -1)
{
log_error ("ERROR: %s: %s", l1_filename, strerror (errno));
return -1;
}
if (S_ISREG (l1_stat.st_mode))
{
dictfiles = (char **) myrealloc (dictfiles, dictcnt * sizeof (char *), sizeof (char *));
dictcnt++;
dictfiles[dictcnt - 1] = mystrdup (l1_filename);
}
}
}
local_free (dictionary_files);
}
}
if (dictcnt < 1)
{
log_error ("ERROR: No usable dictionary file found.");
return -1;
}
if (user_options->increment == true)
{
maskcnt = 0;
uint mask_min = user_options->increment_min; // we can't reject smaller masks here
uint mask_max = (user_options->increment_max < pw_max) ? user_options->increment_max : pw_max;
for (uint mask_cur = mask_min; mask_cur <= mask_max; mask_cur++)
{
char *cur_mask = mp_get_truncated_mask (mask, strlen (mask), mask_cur);
if (cur_mask == NULL) break;
masks[maskcnt] = cur_mask;
maskcnt++;
masks = (char **) myrealloc (masks, maskcnt * sizeof (char *), sizeof (char *));
}
}
}
data.pw_min = pw_min;
data.pw_max = pw_max;
/**
* weak hash check
*/
potfile_write_open (potfile_ctx);
/**
* weak hash check
*/
if (user_options->weak_hash_threshold >= hashes->salts_cnt)
{
hc_device_param_t *device_param = NULL;
for (uint device_id = 0; device_id < opencl_ctx->devices_cnt; device_id++)
{
device_param = &opencl_ctx->devices_param[device_id];
if (device_param->skipped) continue;
break;
}
if (user_options->quiet == false) log_info_nn ("Checking for weak hashes...");
for (uint salt_pos = 0; salt_pos < hashes->salts_cnt; salt_pos++)
{
weak_hash_check (opencl_ctx, device_param, hashconfig, hashes, salt_pos);
}
// Display hack, guarantee that there is at least one \r before real start
//if (user_options->quiet == false) log_info ("");
}
/**
* status and monitor threads
*/
uint inner_threads_cnt = 0;
hc_thread_t *inner_threads = (hc_thread_t *) mycalloc (10, sizeof (hc_thread_t));
data.shutdown_inner = 0;
/**
* Outfile remove
*/
if (user_options->keyspace == false && user_options->benchmark == false && user_options->stdout_flag == false)
{
hc_thread_create (inner_threads[inner_threads_cnt], thread_monitor, NULL);
inner_threads_cnt++;
if (user_options->outfile_check_timer != 0)
{
if (data.outfile_check_directory != NULL)
{
if ((hashconfig->hash_mode != 5200) &&
!((hashconfig->hash_mode >= 6200) && (hashconfig->hash_mode <= 6299)) &&
!((hashconfig->hash_mode >= 13700) && (hashconfig->hash_mode <= 13799)) &&
(hashconfig->hash_mode != 9000))
{
hc_thread_create (inner_threads[inner_threads_cnt], thread_outfile_remove, NULL);
inner_threads_cnt++;
}
else
{
user_options->outfile_check_timer = 0;
}
}
else
{
user_options->outfile_check_timer = 0;
}
}
}
data.outfile_check_timer = user_options->outfile_check_timer;
/**
* main loop
*/
if (user_options->quiet == false)
{
if (potfile_remove_cracks > 0)
{
if (potfile_remove_cracks == 1) log_info ("INFO: Removed 1 hash found in potfile\n");
else log_info ("INFO: Removed %d hashes found in potfile\n", potfile_remove_cracks);
}
}
char **induction_dictionaries = NULL;
int induction_dictionaries_cnt = 0;
hcstat_table_t *root_table_buf = NULL;
hcstat_table_t *markov_table_buf = NULL;
uint initial_restore_done = 0;
data.maskcnt = maskcnt;
for (uint maskpos = rd->maskpos; maskpos < maskcnt; maskpos++)
{
//opencl_ctx->run_main_level1 = true;
//opencl_ctx->run_main_level2 = true;
opencl_ctx->run_main_level3 = true;
opencl_ctx->run_thread_level1 = true;
opencl_ctx->run_thread_level2 = true;
if (maskpos > rd->maskpos)
{
rd->dictpos = 0;
}
rd->maskpos = maskpos;
data.maskpos = maskpos;
if (user_options->attack_mode == ATTACK_MODE_HYBRID1 || user_options->attack_mode == ATTACK_MODE_HYBRID2 || user_options->attack_mode == ATTACK_MODE_BF)
{
char *mask = masks[maskpos];
if (mask_from_file == 1)
{
if (mask[0] == '\\' && mask[1] == '#') mask++; // escaped comment sign (sharp) "\#"
char *str_ptr;
uint str_pos;
uint mask_offset = 0;
uint separator_cnt;
for (separator_cnt = 0; separator_cnt < 4; separator_cnt++)
{
str_ptr = strstr (mask + mask_offset, ",");
if (str_ptr == NULL) break;
str_pos = str_ptr - mask;
// escaped separator, i.e. "\,"
if (str_pos > 0)
{
if (mask[str_pos - 1] == '\\')
{
separator_cnt --;
mask_offset = str_pos + 1;
continue;
}
}
// reset the offset
mask_offset = 0;
mask[str_pos] = '\0';
switch (separator_cnt)
{
case 0:
mp_reset_usr (mp_usr, 0);
user_options->custom_charset_1 = mask;
mp_setup_usr (mp_sys, mp_usr, user_options->custom_charset_1, 0, hashconfig);
break;
case 1:
mp_reset_usr (mp_usr, 1);
user_options->custom_charset_2 = mask;
mp_setup_usr (mp_sys, mp_usr, user_options->custom_charset_2, 1, hashconfig);
break;
case 2:
mp_reset_usr (mp_usr, 2);
user_options->custom_charset_3 = mask;
mp_setup_usr (mp_sys, mp_usr, user_options->custom_charset_3, 2, hashconfig);
break;
case 3:
mp_reset_usr (mp_usr, 3);
user_options->custom_charset_4 = mask;
mp_setup_usr (mp_sys, mp_usr, user_options->custom_charset_4, 3, hashconfig);
break;
}
mask = mask + str_pos + 1;
}
/**
* What follows is a very special case where "\," is within the mask field of a line in a .hcmask file only because otherwise (without the "\")
* it would be interpreted as a custom charset definition.
*
* We need to replace all "\," with just "," within the mask (but allow the special case "\\," which means "\" followed by ",")
* Note: "\\" is not needed to replace all "\" within the mask! The meaning of "\\" within a line containing the string "\\," is just to allow "\" followed by ","
*/
uint mask_len_cur = strlen (mask);
uint mask_out_pos = 0;
char mask_prev = 0;
for (uint mask_iter = 0; mask_iter < mask_len_cur; mask_iter++, mask_out_pos++)
{
if (mask[mask_iter] == ',')
{
if (mask_prev == '\\')
{
mask_out_pos -= 1; // this means: skip the previous "\"
}
}
mask_prev = mask[mask_iter];
mask[mask_out_pos] = mask[mask_iter];
}
mask[mask_out_pos] = '\0';
}
if ((user_options->attack_mode == ATTACK_MODE_HYBRID1) || (user_options->attack_mode == ATTACK_MODE_HYBRID2))
{
if (maskpos > 0)
{
local_free (css_buf);
local_free (data.root_css_buf);
local_free (data.markov_css_buf);
local_free (masks[maskpos - 1]);
}
css_buf = mp_gen_css (mask, strlen (mask), mp_sys, mp_usr, &css_cnt, hashconfig);
data.mask = mask;
data.css_cnt = css_cnt;
data.css_buf = css_buf;
uint uniq_tbls[SP_PW_MAX][CHARSIZ] = { { 0 } };
mp_css_to_uniq_tbl (css_cnt, css_buf, uniq_tbls);
if (root_table_buf == NULL) root_table_buf = (hcstat_table_t *) mycalloc (SP_ROOT_CNT, sizeof (hcstat_table_t));
if (markov_table_buf == NULL) markov_table_buf = (hcstat_table_t *) mycalloc (SP_MARKOV_CNT, sizeof (hcstat_table_t));
sp_setup_tbl (folder_config->shared_dir, user_options->markov_hcstat, user_options->markov_disable, user_options->markov_classic, root_table_buf, markov_table_buf);
cs_t *root_css_buf = (cs_t *) mycalloc (SP_PW_MAX, sizeof (cs_t));
cs_t *markov_css_buf = (cs_t *) mycalloc (SP_PW_MAX * CHARSIZ, sizeof (cs_t));
data.root_css_buf = root_css_buf;
data.markov_css_buf = markov_css_buf;
sp_tbl_to_css (root_table_buf, markov_table_buf, root_css_buf, markov_css_buf, user_options->markov_threshold, uniq_tbls);
data.combs_cnt = sp_get_sum (0, css_cnt, root_css_buf);
local_free (root_table_buf);
local_free (markov_table_buf);
// args
for (uint device_id = 0; device_id < opencl_ctx->devices_cnt; device_id++)
{
hc_device_param_t *device_param = &opencl_ctx->devices_param[device_id];
if (device_param->skipped) continue;
device_param->kernel_params_mp[0] = &device_param->d_combs;
device_param->kernel_params_mp[1] = &device_param->d_root_css_buf;
device_param->kernel_params_mp[2] = &device_param->d_markov_css_buf;
device_param->kernel_params_mp_buf64[3] = 0;
device_param->kernel_params_mp_buf32[4] = css_cnt;
device_param->kernel_params_mp_buf32[5] = 0;
device_param->kernel_params_mp_buf32[6] = 0;
device_param->kernel_params_mp_buf32[7] = 0;
if (user_options->attack_mode == ATTACK_MODE_HYBRID1)
{
if (hashconfig->opts_type & OPTS_TYPE_PT_ADD01) device_param->kernel_params_mp_buf32[5] = full01;
if (hashconfig->opts_type & OPTS_TYPE_PT_ADD80) device_param->kernel_params_mp_buf32[5] = full80;
if (hashconfig->opts_type & OPTS_TYPE_PT_ADDBITS14) device_param->kernel_params_mp_buf32[6] = 1;
if (hashconfig->opts_type & OPTS_TYPE_PT_ADDBITS15) device_param->kernel_params_mp_buf32[7] = 1;
}
else if (user_options->attack_mode == ATTACK_MODE_HYBRID2)
{
device_param->kernel_params_mp_buf32[5] = 0;
device_param->kernel_params_mp_buf32[6] = 0;
device_param->kernel_params_mp_buf32[7] = 0;
}
cl_int CL_err = CL_SUCCESS;
for (uint i = 0; i < 3; i++) CL_err |= hc_clSetKernelArg (opencl_ctx->ocl, device_param->kernel_mp, i, sizeof (cl_mem), (void *) device_param->kernel_params_mp[i]);
for (uint i = 3; i < 4; i++) CL_err |= hc_clSetKernelArg (opencl_ctx->ocl, device_param->kernel_mp, i, sizeof (cl_ulong), (void *) device_param->kernel_params_mp[i]);
for (uint i = 4; i < 8; i++) CL_err |= hc_clSetKernelArg (opencl_ctx->ocl, device_param->kernel_mp, i, sizeof (cl_uint), (void *) device_param->kernel_params_mp[i]);
if (CL_err != CL_SUCCESS)
{
log_error ("ERROR: clSetKernelArg(): %s\n", val2cstr_cl (CL_err));
return -1;
}
CL_err |= hc_clEnqueueWriteBuffer (opencl_ctx->ocl, device_param->command_queue, device_param->d_root_css_buf, CL_TRUE, 0, device_param->size_root_css, root_css_buf, 0, NULL, NULL);
CL_err |= hc_clEnqueueWriteBuffer (opencl_ctx->ocl, device_param->command_queue, device_param->d_markov_css_buf, CL_TRUE, 0, device_param->size_markov_css, markov_css_buf, 0, NULL, NULL);
if (CL_err != CL_SUCCESS)
{
log_error ("ERROR: clEnqueueWriteBuffer(): %s\n", val2cstr_cl (CL_err));
return -1;
}
}
}
else if (user_options->attack_mode == ATTACK_MODE_BF)
{
dictcnt = 0; // number of "sub-masks", i.e. when using incremental mode
if (user_options->increment == true)
{
for (uint i = 0; i < dictcnt; i++)
{
local_free (dictfiles[i]);
}
for (uint pw_len = MAX (1, pw_min); pw_len <= pw_max; pw_len++)
{
char *l1_filename = mp_get_truncated_mask (mask, strlen (mask), pw_len);
if (l1_filename == NULL) break;
dictcnt++;
dictfiles[dictcnt - 1] = l1_filename;
}
}
else
{
dictcnt++;
dictfiles[dictcnt - 1] = mask;
}
if (dictcnt == 0)
{
log_error ("ERROR: Mask is too small");
return -1;
}
}
}
free (induction_dictionaries);
// induction_dictionaries_cnt = 0; // implied
if (user_options->attack_mode != ATTACK_MODE_BF)
{
if ((user_options->keyspace == false) && (user_options->benchmark == false) && (user_options->opencl_info == false))
{
induction_dictionaries = scan_directory (induction_directory);
induction_dictionaries_cnt = count_dictionaries (induction_dictionaries);
}
}
if (induction_dictionaries_cnt)
{
qsort (induction_dictionaries, induction_dictionaries_cnt, sizeof (char *), sort_by_mtime);
}
/**
* prevent the user from using --skip/--limit together w/ maskfile and or dictfile
*/
if (user_options->skip != 0 || user_options->limit != 0)
{
if ((maskcnt > 1) || (dictcnt > 1))
{
log_error ("ERROR: --skip/--limit are not supported with --increment or mask files");
return -1;
}
}
/**
* prevent the user from using --keyspace together w/ maskfile and or dictfile
*/
if (user_options->keyspace == true)
{
if ((maskcnt > 1) || (dictcnt > 1))
{
log_error ("ERROR: --keyspace is not supported with --increment or mask files");
return -1;
}
}
for (uint dictpos = rd->dictpos; dictpos < dictcnt; dictpos++)
{
if (opencl_ctx->run_main_level3 == false) break;
//opencl_ctx->run_main_level1 = true;
//opencl_ctx->run_main_level2 = true;
//opencl_ctx->run_main_level3 = true;
opencl_ctx->run_thread_level1 = true;
opencl_ctx->run_thread_level2 = true;
rd->dictpos = dictpos;
char *subid = logfile_generate_subid ();
data.subid = subid;
logfile_sub_msg ("START");
memset (data.words_progress_done, 0, hashes->salts_cnt * sizeof (u64));
memset (data.words_progress_rejected, 0, hashes->salts_cnt * sizeof (u64));
memset (data.words_progress_restored, 0, hashes->salts_cnt * sizeof (u64));
memset (data.cpt_buf, 0, CPT_BUF * sizeof (cpt_t));
data.cpt_pos = 0;
data.cpt_start = time (NULL);
data.cpt_total = 0;
if (user_options->restore == false)
{
rd->words_cur = user_options->skip;
user_options->skip = 0;
}
data.ms_paused = 0;
data.kernel_power_final = 0;
data.words_cur = rd->words_cur;
for (uint device_id = 0; device_id < opencl_ctx->devices_cnt; device_id++)
{
hc_device_param_t *device_param = &opencl_ctx->devices_param[device_id];
if (device_param->skipped) continue;
device_param->speed_pos = 0;
memset (device_param->speed_cnt, 0, SPEED_CACHE * sizeof (u64));
memset (device_param->speed_ms, 0, SPEED_CACHE * sizeof (double));
device_param->exec_pos = 0;
memset (device_param->exec_ms, 0, EXEC_CACHE * sizeof (double));
device_param->outerloop_pos = 0;
device_param->outerloop_left = 0;
device_param->innerloop_pos = 0;
device_param->innerloop_left = 0;
// some more resets:
if (device_param->pws_buf) memset (device_param->pws_buf, 0, device_param->size_pws);
device_param->pws_cnt = 0;
device_param->words_off = 0;
device_param->words_done = 0;
}
// figure out some workload
if (user_options->attack_mode == ATTACK_MODE_STRAIGHT)
{
if (user_options_extra->wordlist_mode == WL_MODE_FILE)
{
char *dictfile = NULL;
if (induction_dictionaries_cnt)
{
dictfile = induction_dictionaries[0];
}
else
{
dictfile = dictfiles[dictpos];
}
data.dictfile = dictfile;
logfile_sub_string (dictfile);
for (uint i = 0; i < user_options->rp_files_cnt; i++)
{
logfile_sub_var_string ("rulefile", user_options->rp_files[i]);
}
FILE *fd2 = fopen (dictfile, "rb");
if (fd2 == NULL)
{
log_error ("ERROR: %s: %s", dictfile, strerror (errno));
return -1;
}
data.words_cnt = count_words (wl_data, user_options, user_options_extra, fd2, dictfile, dictstat_ctx);
fclose (fd2);
if (data.words_cnt == 0)
{
logfile_sub_msg ("STOP");
continue;
}
}
}
else if (user_options->attack_mode == ATTACK_MODE_COMBI)
{
char *dictfile = data.dictfile;
char *dictfile2 = data.dictfile2;
logfile_sub_string (dictfile);
logfile_sub_string (dictfile2);
if (data.combs_mode == COMBINATOR_MODE_BASE_LEFT)
{
FILE *fd2 = fopen (dictfile, "rb");
if (fd2 == NULL)
{
log_error ("ERROR: %s: %s", dictfile, strerror (errno));
return -1;
}
data.words_cnt = count_words (wl_data, user_options, user_options_extra, fd2, dictfile, dictstat_ctx);
fclose (fd2);
}
else if (data.combs_mode == COMBINATOR_MODE_BASE_RIGHT)
{
FILE *fd2 = fopen (dictfile2, "rb");
if (fd2 == NULL)
{
log_error ("ERROR: %s: %s", dictfile2, strerror (errno));
return -1;
}
data.words_cnt = count_words (wl_data, user_options, user_options_extra, fd2, dictfile2, dictstat_ctx);
fclose (fd2);
}
if (data.words_cnt == 0)
{
logfile_sub_msg ("STOP");
continue;
}
}
else if ((user_options->attack_mode == ATTACK_MODE_HYBRID1) || (user_options->attack_mode == ATTACK_MODE_HYBRID2))
{
char *dictfile = NULL;
if (induction_dictionaries_cnt)
{
dictfile = induction_dictionaries[0];
}
else
{
dictfile = dictfiles[dictpos];
}
data.dictfile = dictfile;
char *mask = data.mask;
logfile_sub_string (dictfile);
logfile_sub_string (mask);
FILE *fd2 = fopen (dictfile, "rb");
if (fd2 == NULL)
{
log_error ("ERROR: %s: %s", dictfile, strerror (errno));
return -1;
}
data.words_cnt = count_words (wl_data, user_options, user_options_extra, fd2, dictfile, dictstat_ctx);
fclose (fd2);
if (data.words_cnt == 0)
{
logfile_sub_msg ("STOP");
continue;
}
}
else if (user_options->attack_mode == ATTACK_MODE_BF)
{
local_free (css_buf);
local_free (data.root_css_buf);
local_free (data.markov_css_buf);
char *mask = dictfiles[dictpos];
logfile_sub_string (mask);
// base
css_buf = mp_gen_css (mask, strlen (mask), mp_sys, mp_usr, &css_cnt, hashconfig);
if (hashconfig->opts_type & OPTS_TYPE_PT_UNICODE)
{
uint css_cnt_unicode = css_cnt * 2;
cs_t *css_buf_unicode = (cs_t *) mycalloc (css_cnt_unicode, sizeof (cs_t));
for (uint i = 0, j = 0; i < css_cnt; i += 1, j += 2)
{
memcpy (&css_buf_unicode[j + 0], &css_buf[i], sizeof (cs_t));
css_buf_unicode[j + 1].cs_buf[0] = 0;
css_buf_unicode[j + 1].cs_len = 1;
}
free (css_buf);
css_buf = css_buf_unicode;
css_cnt = css_cnt_unicode;
}
// check if mask is not too large or too small for pw_min/pw_max (*2 if unicode)
uint mask_min = pw_min;
uint mask_max = pw_max;
if (hashconfig->opts_type & OPTS_TYPE_PT_UNICODE)
{
mask_min *= 2;
mask_max *= 2;
}
if ((css_cnt < mask_min) || (css_cnt > mask_max))
{
if (css_cnt < mask_min)
{
log_info ("WARNING: Skipping mask '%s' because it is smaller than the minimum password length", mask);
}
if (css_cnt > mask_max)
{
log_info ("WARNING: Skipping mask '%s' because it is larger than the maximum password length", mask);
}
// skip to next mask
logfile_sub_msg ("STOP");
continue;
}
uint save_css_cnt = css_cnt;
if (hashconfig->opti_type & OPTI_TYPE_SINGLE_HASH)
{
if (hashconfig->opti_type & OPTI_TYPE_APPENDED_SALT)
{
uint salt_len = (uint) hashes->salts_buf[0].salt_len;
char *salt_buf = (char *) hashes->salts_buf[0].salt_buf;
uint css_cnt_salt = css_cnt + salt_len;
cs_t *css_buf_salt = (cs_t *) mycalloc (css_cnt_salt, sizeof (cs_t));
memcpy (css_buf_salt, css_buf, css_cnt * sizeof (cs_t));
for (uint i = 0, j = css_cnt; i < salt_len; i++, j++)
{
css_buf_salt[j].cs_buf[0] = salt_buf[i];
css_buf_salt[j].cs_len = 1;
}
free (css_buf);
css_buf = css_buf_salt;
css_cnt = css_cnt_salt;
}
}
data.mask = mask;
data.css_cnt = css_cnt;
data.css_buf = css_buf;
if (maskpos > 0 && dictpos == 0) free (masks[maskpos - 1]);
uint uniq_tbls[SP_PW_MAX][CHARSIZ] = { { 0 } };
mp_css_to_uniq_tbl (css_cnt, css_buf, uniq_tbls);
if (root_table_buf == NULL) root_table_buf = (hcstat_table_t *) mycalloc (SP_ROOT_CNT, sizeof (hcstat_table_t));
if (markov_table_buf == NULL) markov_table_buf = (hcstat_table_t *) mycalloc (SP_MARKOV_CNT, sizeof (hcstat_table_t));
sp_setup_tbl (folder_config->shared_dir, user_options->markov_hcstat, user_options->markov_disable, user_options->markov_classic, root_table_buf, markov_table_buf);
cs_t *root_css_buf = (cs_t *) mycalloc (SP_PW_MAX, sizeof (cs_t));
cs_t *markov_css_buf = (cs_t *) mycalloc (SP_PW_MAX * CHARSIZ, sizeof (cs_t));
data.root_css_buf = root_css_buf;
data.markov_css_buf = markov_css_buf;
sp_tbl_to_css (root_table_buf, markov_table_buf, root_css_buf, markov_css_buf, user_options->markov_threshold, uniq_tbls);
data.words_cnt = sp_get_sum (0, css_cnt, root_css_buf);
local_free (root_table_buf);
local_free (markov_table_buf);
// copy + args
uint css_cnt_l = css_cnt;
uint css_cnt_r;
if (hashconfig->attack_exec == ATTACK_EXEC_INSIDE_KERNEL)
{
if (save_css_cnt < 6)
{
css_cnt_r = 1;
}
else if (save_css_cnt == 6)
{
css_cnt_r = 2;
}
else
{
if (hashconfig->opts_type & OPTS_TYPE_PT_UNICODE)
{
if (save_css_cnt == 8 || save_css_cnt == 10)
{
css_cnt_r = 2;
}
else
{
css_cnt_r = 4;
}
}
else
{
if ((css_buf[0].cs_len * css_buf[1].cs_len * css_buf[2].cs_len) > 256)
{
css_cnt_r = 3;
}
else
{
css_cnt_r = 4;
}
}
}
}
else
{
css_cnt_r = 1;
/* unfinished code?
int sum = css_buf[css_cnt_r - 1].cs_len;
for (uint i = 1; i < 4 && i < css_cnt; i++)
{
if (sum > 1) break; // we really don't need alot of amplifier them for slow hashes
css_cnt_r++;
sum *= css_buf[css_cnt_r - 1].cs_len;
}
*/
}
css_cnt_l -= css_cnt_r;
data.bfs_cnt = sp_get_sum (0, css_cnt_r, root_css_buf);
for (uint device_id = 0; device_id < opencl_ctx->devices_cnt; device_id++)
{
hc_device_param_t *device_param = &opencl_ctx->devices_param[device_id];
if (device_param->skipped) continue;
device_param->kernel_params_mp_l[0] = &device_param->d_pws_buf;
device_param->kernel_params_mp_l[1] = &device_param->d_root_css_buf;
device_param->kernel_params_mp_l[2] = &device_param->d_markov_css_buf;
device_param->kernel_params_mp_l_buf64[3] = 0;
device_param->kernel_params_mp_l_buf32[4] = css_cnt_l;
device_param->kernel_params_mp_l_buf32[5] = css_cnt_r;
device_param->kernel_params_mp_l_buf32[6] = 0;
device_param->kernel_params_mp_l_buf32[7] = 0;
device_param->kernel_params_mp_l_buf32[8] = 0;
if (hashconfig->opts_type & OPTS_TYPE_PT_ADD01) device_param->kernel_params_mp_l_buf32[6] = full01;
if (hashconfig->opts_type & OPTS_TYPE_PT_ADD80) device_param->kernel_params_mp_l_buf32[6] = full80;
if (hashconfig->opts_type & OPTS_TYPE_PT_ADDBITS14) device_param->kernel_params_mp_l_buf32[7] = 1;
if (hashconfig->opts_type & OPTS_TYPE_PT_ADDBITS15) device_param->kernel_params_mp_l_buf32[8] = 1;
device_param->kernel_params_mp_r[0] = &device_param->d_bfs;
device_param->kernel_params_mp_r[1] = &device_param->d_root_css_buf;
device_param->kernel_params_mp_r[2] = &device_param->d_markov_css_buf;
device_param->kernel_params_mp_r_buf64[3] = 0;
device_param->kernel_params_mp_r_buf32[4] = css_cnt_r;
device_param->kernel_params_mp_r_buf32[5] = 0;
device_param->kernel_params_mp_r_buf32[6] = 0;
device_param->kernel_params_mp_r_buf32[7] = 0;
cl_int CL_err = CL_SUCCESS;
for (uint i = 0; i < 3; i++) CL_err |= hc_clSetKernelArg (opencl_ctx->ocl, device_param->kernel_mp_l, i, sizeof (cl_mem), (void *) device_param->kernel_params_mp_l[i]);
for (uint i = 3; i < 4; i++) CL_err |= hc_clSetKernelArg (opencl_ctx->ocl, device_param->kernel_mp_l, i, sizeof (cl_ulong), (void *) device_param->kernel_params_mp_l[i]);
for (uint i = 4; i < 9; i++) CL_err |= hc_clSetKernelArg (opencl_ctx->ocl, device_param->kernel_mp_l, i, sizeof (cl_uint), (void *) device_param->kernel_params_mp_l[i]);
for (uint i = 0; i < 3; i++) CL_err |= hc_clSetKernelArg (opencl_ctx->ocl, device_param->kernel_mp_r, i, sizeof (cl_mem), (void *) device_param->kernel_params_mp_r[i]);
for (uint i = 3; i < 4; i++) CL_err |= hc_clSetKernelArg (opencl_ctx->ocl, device_param->kernel_mp_r, i, sizeof (cl_ulong), (void *) device_param->kernel_params_mp_r[i]);
for (uint i = 4; i < 8; i++) CL_err |= hc_clSetKernelArg (opencl_ctx->ocl, device_param->kernel_mp_r, i, sizeof (cl_uint), (void *) device_param->kernel_params_mp_r[i]);
if (CL_err != CL_SUCCESS)
{
log_error ("ERROR: clSetKernelArg(): %s\n", val2cstr_cl (CL_err));
return -1;
}
CL_err |= hc_clEnqueueWriteBuffer (opencl_ctx->ocl, device_param->command_queue, device_param->d_root_css_buf, CL_TRUE, 0, device_param->size_root_css, root_css_buf, 0, NULL, NULL);
CL_err |= hc_clEnqueueWriteBuffer (opencl_ctx->ocl, device_param->command_queue, device_param->d_markov_css_buf, CL_TRUE, 0, device_param->size_markov_css, markov_css_buf, 0, NULL, NULL);
if (CL_err != CL_SUCCESS)
{
log_error ("ERROR: clEnqueueWriteBuffer(): %s\n", val2cstr_cl (CL_err));
return -1;
}
}
}
u64 words_base = data.words_cnt;
if (user_options_extra->attack_kern == ATTACK_KERN_STRAIGHT)
{
if (data.kernel_rules_cnt)
{
words_base /= data.kernel_rules_cnt;
}
}
else if (user_options_extra->attack_kern == ATTACK_KERN_COMBI)
{
if (data.combs_cnt)
{
words_base /= data.combs_cnt;
}
}
else if (user_options_extra->attack_kern == ATTACK_KERN_BF)
{
if (data.bfs_cnt)
{
words_base /= data.bfs_cnt;
}
}
data.words_base = words_base;
if (user_options->keyspace == true)
{
log_info ("%" PRIu64 "", words_base);
return 0;
}
if (data.words_cur > data.words_base)
{
log_error ("ERROR: Restore value greater keyspace");
return -1;
}
if (data.words_cur)
{
if (user_options_extra->attack_kern == ATTACK_KERN_STRAIGHT)
{
for (uint i = 0; i < hashes->salts_cnt; i++)
{
data.words_progress_restored[i] = data.words_cur * data.kernel_rules_cnt;
}
}
else if (user_options_extra->attack_kern == ATTACK_KERN_COMBI)
{
for (uint i = 0; i < hashes->salts_cnt; i++)
{
data.words_progress_restored[i] = data.words_cur * data.combs_cnt;
}
}
else if (user_options_extra->attack_kern == ATTACK_KERN_BF)
{
for (uint i = 0; i < hashes->salts_cnt; i++)
{
data.words_progress_restored[i] = data.words_cur * data.bfs_cnt;
}
}
}
/*
* Update dictionary statistic
*/
if (user_options->keyspace == false)
{
dictstat_write (dictstat_ctx);
}
/**
* Update loopback file
*/
if (user_options->loopback == true)
{
loopback_write_open (loopback_ctx, induction_directory);
}
/**
* some algorithms have a maximum kernel-loops count
*/
for (uint device_id = 0; device_id < opencl_ctx->devices_cnt; device_id++)
{
hc_device_param_t *device_param = &opencl_ctx->devices_param[device_id];
if (device_param->skipped) continue;
if (device_param->kernel_loops_min < device_param->kernel_loops_max)
{
u32 innerloop_cnt = 0;
if (hashconfig->attack_exec == ATTACK_EXEC_INSIDE_KERNEL)
{
if (user_options_extra->attack_kern == ATTACK_KERN_STRAIGHT) innerloop_cnt = data.kernel_rules_cnt;
else if (user_options_extra->attack_kern == ATTACK_KERN_COMBI) innerloop_cnt = data.combs_cnt;
else if (user_options_extra->attack_kern == ATTACK_KERN_BF) innerloop_cnt = data.bfs_cnt;
}
else
{
innerloop_cnt = hashes->salts_buf[0].salt_iter;
}
if ((innerloop_cnt >= device_param->kernel_loops_min) &&
(innerloop_cnt <= device_param->kernel_loops_max))
{
device_param->kernel_loops_max = innerloop_cnt;
}
}
}
/**
* create autotune threads
*/
hc_thread_t *c_threads = (hc_thread_t *) mycalloc (opencl_ctx->devices_cnt, sizeof (hc_thread_t));
opencl_ctx->devices_status = STATUS_AUTOTUNE;
for (uint device_id = 0; device_id < opencl_ctx->devices_cnt; device_id++)
{
hc_device_param_t *device_param = &opencl_ctx->devices_param[device_id];
hc_thread_create (c_threads[device_id], thread_autotune, device_param);
}
hc_thread_wait (opencl_ctx->devices_cnt, c_threads);
/*
* Inform user about possible slow speeds
*/
uint hardware_power_all = 0;
uint kernel_power_all = 0;
for (uint device_id = 0; device_id < opencl_ctx->devices_cnt; device_id++)
{
hc_device_param_t *device_param = &opencl_ctx->devices_param[device_id];
hardware_power_all += device_param->hardware_power;
kernel_power_all += device_param->kernel_power;
}
data.hardware_power_all = hardware_power_all; // hardware_power_all is the same as kernel_power_all but without the influence of kernel_accel on the devices
data.kernel_power_all = kernel_power_all;
if ((user_options_extra->wordlist_mode == WL_MODE_FILE) || (user_options_extra->wordlist_mode == WL_MODE_MASK))
{
if (data.words_base < kernel_power_all)
{
if (user_options->quiet == false)
{
clear_prompt ();
log_info ("ATTENTION!");
log_info (" The wordlist or mask you are using is too small.");
log_info (" Therefore, hashcat is unable to utilize the full parallelization power of your device(s).");
log_info (" The cracking speed will drop.");
log_info (" Workaround: https://hashcat.net/wiki/doku.php?id=frequently_asked_questions#how_to_create_more_work_for_full_speed");
log_info ("");
}
}
}
/**
* create cracker threads
*/
opencl_ctx->devices_status = STATUS_RUNNING;
if (initial_restore_done == 0)
{
if (user_options->restore_disable == false) cycle_restore (opencl_ctx);
initial_restore_done = 1;
}
hc_timer_set (&data.timer_running);
if ((user_options_extra->wordlist_mode == WL_MODE_FILE) || (user_options_extra->wordlist_mode == WL_MODE_MASK))
{
if ((user_options->quiet == false) && (user_options->status == false) && (user_options->benchmark == false))
{
if (user_options->quiet == false) send_prompt ();
}
}
else if (user_options_extra->wordlist_mode == WL_MODE_STDIN)
{
if (user_options->quiet == false) log_info ("Starting attack in stdin mode...");
if (user_options->quiet == false) log_info ("");
}
time_t runtime_start;
time (&runtime_start);
data.runtime_start = runtime_start;
data.prepare_time += runtime_start - prepare_start;
for (uint device_id = 0; device_id < opencl_ctx->devices_cnt; device_id++)
{
hc_device_param_t *device_param = &opencl_ctx->devices_param[device_id];
if (user_options_extra->wordlist_mode == WL_MODE_STDIN)
{
hc_thread_create (c_threads[device_id], thread_calc_stdin, device_param);
}
else
{
hc_thread_create (c_threads[device_id], thread_calc, device_param);
}
}
hc_thread_wait (opencl_ctx->devices_cnt, c_threads);
local_free (c_threads);
if ((opencl_ctx->devices_status != STATUS_CRACKED)
&& (opencl_ctx->devices_status != STATUS_ABORTED)
&& (opencl_ctx->devices_status != STATUS_QUIT)
&& (opencl_ctx->devices_status != STATUS_BYPASS))
{
opencl_ctx->devices_status = STATUS_EXHAUSTED;
}
logfile_sub_var_uint ("status-after-work", opencl_ctx->devices_status);
user_options->restore = false;
if (induction_dictionaries_cnt)
{
unlink (induction_dictionaries[0]);
}
free (induction_dictionaries);
if (user_options->attack_mode != ATTACK_MODE_BF)
{
if ((user_options->keyspace == false) && (user_options->benchmark == false) && (user_options->opencl_info == false))
{
induction_dictionaries = scan_directory (induction_directory);
induction_dictionaries_cnt = count_dictionaries (induction_dictionaries);
}
}
if (user_options->benchmark == true)
{
status_benchmark (opencl_ctx, hashconfig, user_options);
if (user_options->machine_readable == false)
{
log_info ("");
}
}
else
{
if (user_options->quiet == false)
{
clear_prompt ();
log_info ("");
status_display (opencl_ctx, hashconfig, hashes, user_options, user_options_extra);
log_info ("");
}
else
{
if (user_options->status == true)
{
status_display (opencl_ctx, hashconfig, hashes, user_options, user_options_extra);
}
}
}
if (induction_dictionaries_cnt)
{
qsort (induction_dictionaries, induction_dictionaries_cnt, sizeof (char *), sort_by_mtime);
// yeah, this next statement is a little hack to make sure that --loopback runs correctly (because with it we guarantee that the loop iterates one more time)
dictpos--;
}
/**
* Update loopback file
*/
if (user_options->loopback == true)
{
loopback_write_close (loopback_ctx);
}
time_t runtime_stop;
time (&runtime_stop);
data.runtime_stop = runtime_stop;
logfile_sub_uint (runtime_start);
logfile_sub_uint (runtime_stop);
time (&prepare_start);
logfile_sub_msg ("STOP");
global_free (subid);
// finalize task
if (opencl_ctx->run_main_level3 == false) break;
}
if (opencl_ctx->run_main_level2 == false) break;
}
// problems could occur if already at startup everything was cracked (because of .pot file reading etc), we must set some variables here to avoid NULL pointers
if (user_options->attack_mode == ATTACK_MODE_STRAIGHT)
{
if (user_options_extra->wordlist_mode == WL_MODE_FILE)
{
if (data.dictfile == NULL)
{
if (dictfiles != NULL)
{
data.dictfile = dictfiles[0];
hc_timer_set (&data.timer_running);
}
}
}
}
// NOTE: combi is okay because it is already set beforehand
else if (user_options->attack_mode == ATTACK_MODE_HYBRID1 || user_options->attack_mode == ATTACK_MODE_HYBRID2)
{
if (data.dictfile == NULL)
{
if (dictfiles != NULL)
{
hc_timer_set (&data.timer_running);
data.dictfile = dictfiles[0];
}
}
}
else if (user_options->attack_mode == ATTACK_MODE_BF)
{
if (data.mask == NULL)
{
hc_timer_set (&data.timer_running);
data.mask = masks[0];
}
}
// if cracked / aborted remove last induction dictionary
for (int file_pos = 0; file_pos < induction_dictionaries_cnt; file_pos++)
{
struct stat induct_stat;
if (stat (induction_dictionaries[file_pos], &induct_stat) == 0)
{
unlink (induction_dictionaries[file_pos]);
}
}
// wait for inner threads
data.shutdown_inner = 1;
for (uint thread_idx = 0; thread_idx < inner_threads_cnt; thread_idx++)
{
hc_thread_wait (1, &inner_threads[thread_idx]);
}
local_free (inner_threads);
// we dont need restore file anymore
if (user_options->restore_disable == false)
{
if ((opencl_ctx->devices_status == STATUS_EXHAUSTED) || (opencl_ctx->devices_status == STATUS_CRACKED))
{
unlink (eff_restore_file);
unlink (new_restore_file);
}
else
{
cycle_restore (opencl_ctx);
}
}
// finally save left hashes
if ((hashes->hashlist_mode == HL_MODE_FILE) && (user_options->remove == 1) && (hashes->digests_saved != hashes->digests_done))
{
save_hash (user_options, hashconfig, hashes);
}
/**
* Clean up
*/
// reset default fan speed
if (user_options->gpu_temp_disable == false)
{
if (user_options->gpu_temp_retain)
{
hc_thread_mutex_lock (mux_hwmon);
for (uint device_id = 0; device_id < opencl_ctx->devices_cnt; device_id++)
{
hc_device_param_t *device_param = &opencl_ctx->devices_param[device_id];
if (device_param->skipped) continue;
if (data.hm_device[device_id].fan_set_supported == 1)
{
int rc = -1;
if (device_param->device_vendor_id == VENDOR_ID_AMD)
{
rc = hm_set_fanspeed_with_device_id_adl (device_id, 100, 0);
}
else if (device_param->device_vendor_id == VENDOR_ID_NV)
{
#if defined (__linux__)
rc = set_fan_control (data.hm_xnvctrl, data.hm_device[device_id].xnvctrl, NV_CTRL_GPU_COOLER_MANUAL_CONTROL_FALSE);
#endif
#if defined (_WIN)
rc = hm_set_fanspeed_with_device_id_nvapi (device_id, 100, 0);
#endif
}
if (rc == -1) log_info ("WARNING: Failed to restore default fan speed and policy for device #%", device_id + 1);
}
}
hc_thread_mutex_unlock (mux_hwmon);
}
}
// reset power tuning
if (user_options->powertune_enable == true)
{
hc_thread_mutex_lock (mux_hwmon);
for (uint device_id = 0; device_id < opencl_ctx->devices_cnt; device_id++)
{
hc_device_param_t *device_param = &opencl_ctx->devices_param[device_id];
if (device_param->skipped) continue;
if (opencl_ctx->devices_param[device_id].device_vendor_id == VENDOR_ID_AMD)
{
if (data.hm_device[device_id].od_version == 6)
{
// check powertune capabilities first, if not available then skip device
int powertune_supported = 0;
if ((hm_ADL_Overdrive6_PowerControl_Caps (data.hm_adl, data.hm_device[device_id].adl, &powertune_supported)) != ADL_OK)
{
log_error ("ERROR: Failed to get ADL PowerControl Capabilities");
return -1;
}
if (powertune_supported != 0)
{
// powercontrol settings
if ((hm_ADL_Overdrive_PowerControl_Set (data.hm_adl, data.hm_device[device_id].adl, od_power_control_status[device_id])) != ADL_OK)
{
log_info ("ERROR: Failed to restore the ADL PowerControl values");
return -1;
}
// clocks
ADLOD6StateInfo *performance_state = (ADLOD6StateInfo*) mycalloc (1, sizeof (ADLOD6StateInfo) + sizeof (ADLOD6PerformanceLevel));
performance_state->iNumberOfPerformanceLevels = 2;
performance_state->aLevels[0].iEngineClock = od_clock_mem_status[device_id].state.aLevels[0].iEngineClock;
performance_state->aLevels[1].iEngineClock = od_clock_mem_status[device_id].state.aLevels[1].iEngineClock;
performance_state->aLevels[0].iMemoryClock = od_clock_mem_status[device_id].state.aLevels[0].iMemoryClock;
performance_state->aLevels[1].iMemoryClock = od_clock_mem_status[device_id].state.aLevels[1].iMemoryClock;
if ((hm_ADL_Overdrive_State_Set (data.hm_adl, data.hm_device[device_id].adl, ADL_OD6_SETSTATE_PERFORMANCE, performance_state)) != ADL_OK)
{
log_info ("ERROR: Failed to restore ADL performance state");
return -1;
}
local_free (performance_state);
}
}
}
if (opencl_ctx->devices_param[device_id].device_vendor_id == VENDOR_ID_NV)
{
unsigned int power_limit = nvml_power_limit[device_id];
if (power_limit > 0)
{
hm_NVML_nvmlDeviceSetPowerManagementLimit (data.hm_nvml, 0, data.hm_device[device_id].nvml, power_limit);
}
}
}
hc_thread_mutex_unlock (mux_hwmon);
}
if (user_options->gpu_temp_disable == false)
{
if (data.hm_nvml)
{
hm_NVML_nvmlShutdown (data.hm_nvml);
nvml_close (data.hm_nvml);
data.hm_nvml = NULL;
}
if (data.hm_nvapi)
{
hm_NvAPI_Unload (data.hm_nvapi);
nvapi_close (data.hm_nvapi);
data.hm_nvapi = NULL;
}
if (data.hm_xnvctrl)
{
hm_XNVCTRL_XCloseDisplay (data.hm_xnvctrl);
xnvctrl_close (data.hm_xnvctrl);
data.hm_xnvctrl = NULL;
}
if (data.hm_adl)
{
hm_ADL_Main_Control_Destroy (data.hm_adl);
adl_close (data.hm_adl);
data.hm_adl = NULL;
}
}
if (opencl_ctx->run_main_level1 == false) break;
// free memory
opencl_session_destroy (opencl_ctx);
opencl_ctx_devices_destroy (opencl_ctx);
local_free (masks);
debugfile_destroy (debugfile_ctx);
outfile_destroy (outfile_ctx);
potfile_write_close (potfile_ctx);
potfile_destroy (potfile_ctx);
dictstat_destroy (dictstat_ctx);
loopback_destroy (loopback_ctx);
wl_data_destroy (wl_data);
local_free (all_kernel_rules_cnt);
local_free (all_kernel_rules_buf);
local_free (bitmap_s1_a);
local_free (bitmap_s1_b);
local_free (bitmap_s1_c);
local_free (bitmap_s1_d);
local_free (bitmap_s2_a);
local_free (bitmap_s2_b);
local_free (bitmap_s2_c);
local_free (bitmap_s2_d);
local_free (od_clock_mem_status);
local_free (od_power_control_status);
local_free (nvml_power_limit);
global_free (kernel_rules_buf);
global_free (root_css_buf);
global_free (markov_css_buf);
hashes_destroy (hashes);
global_free (words_progress_done);
global_free (words_progress_rejected);
global_free (words_progress_restored);
}
// wait for outer threads
data.shutdown_outer = 1;
for (uint thread_idx = 0; thread_idx < outer_threads_cnt; thread_idx++)
{
hc_thread_wait (1, &outer_threads[thread_idx]);
}
local_free (outer_threads);
// destroy others mutex
hc_thread_mutex_delete (mux_display);
hc_thread_mutex_delete (mux_hwmon);
// free memory
local_free (hashconfig);
local_free (eff_restore_file);
local_free (new_restore_file);
local_free (rd);
// tuning db
tuning_db_destroy (tuning_db);
// induction directory
if (induction_directory != NULL)
{
if (rmdir (induction_directory) == -1)
{
if (errno == ENOENT)
{
// good, we can ignore
}
else if (errno == ENOTEMPTY)
{
// good, we can ignore
}
else
{
log_error ("ERROR: %s: %s", induction_directory, strerror (errno));
return -1;
}
}
local_free (induction_directory);
}
// outfile-check directory
if (outfile_check_directory != NULL)
{
if (rmdir (outfile_check_directory) == -1)
{
if (errno == ENOENT)
{
// good, we can ignore
}
else if (errno == ENOTEMPTY)
{
// good, we can ignore
}
else
{
log_error ("ERROR: %s: %s", outfile_check_directory, strerror (errno));
return -1;
}
}
local_free (outfile_check_directory);
}
time_t proc_stop;
time (&proc_stop);
logfile_top_uint (proc_start);
logfile_top_uint (proc_stop);
logfile_top_msg ("STOP");
if (user_options->quiet == false) log_info_nn ("Started: %s", ctime (&proc_start));
if (user_options->quiet == false) log_info_nn ("Stopped: %s", ctime (&proc_stop));
u32 rc_final = -1;
if (opencl_ctx->devices_status == STATUS_ABORTED) rc_final = 2;
if (opencl_ctx->devices_status == STATUS_QUIT) rc_final = 2;
if (opencl_ctx->devices_status == STATUS_EXHAUSTED) rc_final = 1;
if (opencl_ctx->devices_status == STATUS_CRACKED) rc_final = 0;
opencl_ctx_destroy (opencl_ctx);
folder_config_destroy (folder_config);
return rc_final;
}