/** * Author......: See docs/credits.txt * License.....: MIT */ #if defined (__APPLE__) #include #endif // __APPLE__ #include "common.h" #include #include #include #include #include #include #include #if defined (_POSIX) #include #include #endif // _POSIX #include "types.h" #include "interface.h" #include "timer.h" #include "bitops.h" #include "memory.h" #include "folder.h" #include "convert.h" #include "logging.h" #include "logfile.h" #include "ext_OpenCL.h" #include "ext_ADL.h" #include "ext_nvapi.h" #include "ext_nvml.h" #include "ext_xnvctrl.h" #include "cpu_aes.h" #include "cpu_crc32.h" #include "cpu_des.h" #include "cpu_md5.h" #include "cpu_sha1.h" #include "cpu_sha256.h" #include "filehandling.h" #include "tuningdb.h" #include "thread.h" #include "opencl.h" #include "hwmon.h" #include "restore.h" #include "hash_management.h" #include "locking.h" #include "rp_cpu.h" #include "rp_kernel_on_cpu.h" #include "terminal.h" #include "inc_hash_constants.h" #include "shared.h" #include "mpsp.h" #include "outfile.h" #include "potfile.h" #include "debugfile.h" #include "loopback.h" #include "data.h" #include "affinity.h" #include "bitmap.h" #include "usage.h" #include "status.h" #include "hlfmt.h" #include "filenames.h" #include "stdout.h" #include "dictstat.h" #include "wordlist.h" #include "version.h" #include "benchmark.h" #include "outfile_check.h" #include "weak_hash.h" #include "remove.h" #include "debugfile.h" #include "runtime.h" #include "attack_mode.h" #include "powertune.h" #include "autotune.h" #include "induct.h" #include "dispatch.h" #include "monitor.h" #include "session.h" #include "user_options.h" extern hc_global_data_t data; extern int SUPPRESS_OUTPUT; extern hc_thread_mutex_t mux_hwmon; extern hc_thread_mutex_t mux_display; extern const unsigned int full01; extern const unsigned int full80; extern const int DEFAULT_BENCHMARK_ALGORITHMS_BUF[]; const int comptime = COMPTIME; static void setup_environment_variables () { char *compute = getenv ("COMPUTE"); if (compute) { static char display[100]; snprintf (display, sizeof (display) - 1, "DISPLAY=%s", compute); putenv (display); } else { if (getenv ("DISPLAY") == NULL) putenv ((char *) "DISPLAY=:0"); } if (getenv ("GPU_MAX_ALLOC_PERCENT") == NULL) putenv ((char *) "GPU_MAX_ALLOC_PERCENT=100"); if (getenv ("CPU_MAX_ALLOC_PERCENT") == NULL) putenv ((char *) "CPU_MAX_ALLOC_PERCENT=100"); if (getenv ("GPU_USE_SYNC_OBJECTS") == NULL) putenv ((char *) "GPU_USE_SYNC_OBJECTS=1"); if (getenv ("CUDA_CACHE_DISABLE") == NULL) putenv ((char *) "CUDA_CACHE_DISABLE=1"); if (getenv ("POCL_KERNEL_CACHE") == NULL) putenv ((char *) "POCL_KERNEL_CACHE=0"); } static void setup_umask () { umask (077); } int main (int argc, char **argv) { #if defined (_WIN) SetConsoleWindowSize (132); #endif /** * To help users a bit */ setup_environment_variables (); setup_umask (); /** * Real init */ memset (&data, 0, sizeof (hc_global_data_t)); time_t proc_start; time (&proc_start); data.proc_start = proc_start; time_t prepare_start; time (&prepare_start); hc_thread_mutex_init (mux_display); hc_thread_mutex_init (mux_hwmon); /** * folder */ folder_config_t *folder_config = (folder_config_t *) mymalloc (sizeof (folder_config_t)); char *install_folder = NULL; char *shared_folder = NULL; #if defined (INSTALL_FOLDER) install_folder = INSTALL_FOLDER; #endif #if defined (SHARED_FOLDER) shared_folder = SHARED_FOLDER; #endif folder_config_init (folder_config, install_folder, shared_folder); /** * commandline parameters */ user_options_t *user_options = (user_options_t *) mymalloc (sizeof (user_options_t)); data.user_options = user_options; user_options_init (user_options, argc, argv); const int rc_user_options_parse1 = user_options_parse (user_options, argc, argv); if (rc_user_options_parse1 == -1) return -1; /** * session */ char *eff_restore_file = (char *) mymalloc (HCBUFSIZ_TINY); char *new_restore_file = (char *) mymalloc (HCBUFSIZ_TINY); snprintf (eff_restore_file, HCBUFSIZ_TINY - 1, "%s/%s.restore", folder_config->session_dir, user_options->session); snprintf (new_restore_file, HCBUFSIZ_TINY - 1, "%s/%s.restore.new", folder_config->session_dir, user_options->session); data.eff_restore_file = eff_restore_file; data.new_restore_file = new_restore_file; restore_data_t *rd = init_restore (argc, argv, user_options); data.rd = rd; /** * restore file */ int myargc = argc; char **myargv = argv; if (user_options->restore == true) { read_restore (eff_restore_file, rd); if (rd->version < RESTORE_VERSION_MIN) { log_error ("ERROR: Incompatible restore-file version"); return -1; } myargc = rd->argc; myargv = rd->argv; #if defined (_POSIX) rd->pid = getpid (); #elif defined (_WIN) rd->pid = GetCurrentProcessId (); #endif } const int rc_user_options_parse2 = user_options_parse (user_options, myargc, myargv); if (rc_user_options_parse2 == -1) return -1; user_options_extra_t *user_options_extra = (user_options_extra_t *) mymalloc (sizeof (user_options_extra_t)); data.user_options_extra = user_options_extra; const int rc_user_options_extra_init = user_options_extra_init (user_options, myargc, myargv, user_options_extra); if (rc_user_options_extra_init == -1) return -1; const int rc_user_options_sanity = user_options_sanity (user_options, myargc, myargv, user_options_extra); if (rc_user_options_sanity == -1) return -1; // temporarily start if (1) { data.attack_mode = user_options->attack_mode; data.benchmark = user_options->benchmark; data.force = user_options->force; data.hex_charset = user_options->hex_charset; data.hex_salt = user_options->hex_salt; data.hex_wordlist = user_options->hex_wordlist; data.logfile_disable = user_options->logfile_disable; data.loopback = user_options->loopback; data.machine_readable = user_options->machine_readable; data.outfile_check_timer = user_options->outfile_check_timer; data.powertune_enable = user_options->powertune_enable; data.quiet = user_options->quiet; data.runtime = user_options->runtime; data.scrypt_tmto = user_options->scrypt_tmto; data.segment_size = user_options->segment_size; data.session = user_options->session; data.status = user_options->status; data.status_timer = user_options->status_timer; data.truecrypt_keyfiles = user_options->truecrypt_keyfiles; data.veracrypt_keyfiles = user_options->veracrypt_keyfiles; data.veracrypt_pim = user_options->veracrypt_pim; data.wordlist_mode = user_options_extra->wordlist_mode; data.attack_kern = user_options_extra->attack_kern; } if (user_options->version) { log_info ("%s", VERSION_TAG); return 0; } if (user_options->usage) { usage_big_print (PROGNAME); return 0; } /** * Inform user things getting started, * - this is giving us a visual header before preparations start, so we do not need to clear them afterwards * - we do not need to check algorithm_pos */ if (user_options->quiet == false) { if (user_options->benchmark == true) { if (user_options->machine_readable == false) { log_info ("%s (%s) starting in benchmark-mode...", PROGNAME, VERSION_TAG); log_info (""); } else { log_info ("# %s (%s) %s", PROGNAME, VERSION_TAG, ctime (&proc_start)); } } else if (user_options->restore == true) { log_info ("%s (%s) starting in restore-mode...", PROGNAME, VERSION_TAG); log_info (""); } else if (user_options->stdout_flag == true) { // do nothing } else if (user_options->keyspace == true) { // do nothing } else { if ((user_options->show == true) || (user_options->left == true)) { // do nothing } else { log_info ("%s (%s) starting...", PROGNAME, VERSION_TAG); log_info (""); } } } /** * induction directory */ char *induction_directory = NULL; if (user_options->attack_mode != ATTACK_MODE_BF) { if ((user_options->keyspace == false) && (user_options->benchmark == false) && (user_options->opencl_info == false)) { if (user_options->induction_dir == NULL) { induction_directory = (char *) mymalloc (HCBUFSIZ_TINY); snprintf (induction_directory, HCBUFSIZ_TINY - 1, "%s/%s.%s", folder_config->session_dir, user_options->session, INDUCT_DIR); // create induction folder if it does not already exist if (user_options->keyspace == false) { if (rmdir (induction_directory) == -1) { if (errno == ENOENT) { // good, we can ignore } else if (errno == ENOTEMPTY) { char *induction_directory_mv = (char *) mymalloc (HCBUFSIZ_TINY); snprintf (induction_directory_mv, HCBUFSIZ_TINY - 1, "%s/%s.induct.%d", folder_config->session_dir, user_options->session, (int) proc_start); if (rename (induction_directory, induction_directory_mv) != 0) { log_error ("ERROR: Rename directory %s to %s: %s", induction_directory, induction_directory_mv, strerror (errno)); return -1; } } else { log_error ("ERROR: %s: %s", induction_directory, strerror (errno)); return -1; } } if (mkdir (induction_directory, 0700) == -1) { log_error ("ERROR: %s: %s", induction_directory, strerror (errno)); return -1; } } } else { induction_directory = user_options->induction_dir; } } } data.induction_directory = induction_directory; /** * tuning db */ char tuning_db_file[256] = { 0 }; snprintf (tuning_db_file, sizeof (tuning_db_file) - 1, "%s/%s", folder_config->shared_dir, TUNING_DB_FILE); tuning_db_t *tuning_db = tuning_db_init (tuning_db_file); /** * outfile-check directory */ char *outfile_check_directory = NULL; if ((user_options->keyspace == false) && (user_options->benchmark == false) && (user_options->opencl_info == false)) { if (user_options->outfile_check_dir == NULL) { outfile_check_directory = (char *) mymalloc (HCBUFSIZ_TINY); snprintf (outfile_check_directory, HCBUFSIZ_TINY - 1, "%s/%s.%s", folder_config->session_dir, user_options->session, OUTFILES_DIR); } else { outfile_check_directory = user_options->outfile_check_dir; } struct stat outfile_check_stat; if (stat (outfile_check_directory, &outfile_check_stat) == 0) { uint is_dir = S_ISDIR (outfile_check_stat.st_mode); if (is_dir == 0) { log_error ("ERROR: Directory specified in outfile-check '%s' is not a valid directory", outfile_check_directory); return -1; } } else if (user_options->outfile_check_dir == NULL) { if (mkdir (outfile_check_directory, 0700) == -1) { log_error ("ERROR: %s: %s", outfile_check_directory, strerror (errno)); return -1; } } } data.outfile_check_directory = outfile_check_directory; /** * cpu affinity */ if (user_options->cpu_affinity) { set_cpu_affinity (user_options->cpu_affinity); } if (user_options->rp_gen_seed_chgd == false) { srand (user_options->rp_gen_seed); } else { srand (proc_start); } /** * logfile init */ if (user_options->logfile_disable == 0) { char *logfile = (char *) mymalloc (HCBUFSIZ_TINY); snprintf (logfile, HCBUFSIZ_TINY - 1, "%s/%s.log", folder_config->session_dir, user_options->session); data.logfile = logfile; char *topid = logfile_generate_topid (); data.topid = topid; } logfile_top_msg ("START"); logfile_top_uint (user_options->attack_mode); logfile_top_uint (user_options->benchmark); logfile_top_uint (user_options->stdout_flag); logfile_top_uint (user_options->bitmap_min); logfile_top_uint (user_options->bitmap_max); logfile_top_uint (user_options->debug_mode); logfile_top_uint (user_options->force); logfile_top_uint (user_options->kernel_accel); logfile_top_uint (user_options->kernel_loops); logfile_top_uint (user_options->nvidia_spin_damp); logfile_top_uint (user_options->hash_mode); logfile_top_uint (user_options->hex_charset); logfile_top_uint (user_options->hex_salt); logfile_top_uint (user_options->hex_wordlist); logfile_top_uint (user_options->increment); logfile_top_uint (user_options->increment_max); logfile_top_uint (user_options->increment_min); logfile_top_uint (user_options->keyspace); logfile_top_uint (user_options->left); logfile_top_uint (user_options->logfile_disable); logfile_top_uint (user_options->loopback); logfile_top_uint (user_options->markov_classic); logfile_top_uint (user_options->markov_disable); logfile_top_uint (user_options->markov_threshold); logfile_top_uint (user_options->outfile_autohex); logfile_top_uint (user_options->outfile_check_timer); logfile_top_uint (user_options->outfile_format); logfile_top_uint (user_options->potfile_disable); logfile_top_string (user_options->potfile_path); logfile_top_uint (user_options->powertune_enable); logfile_top_uint (user_options->scrypt_tmto); logfile_top_uint (user_options->quiet); logfile_top_uint (user_options->remove); logfile_top_uint (user_options->remove_timer); logfile_top_uint (user_options->restore); logfile_top_uint (user_options->restore_disable); logfile_top_uint (user_options->restore_timer); logfile_top_uint (user_options->rp_gen); logfile_top_uint (user_options->rp_gen_func_max); logfile_top_uint (user_options->rp_gen_func_min); logfile_top_uint (user_options->rp_gen_seed); logfile_top_uint (user_options->runtime); logfile_top_uint (user_options->segment_size); logfile_top_uint (user_options->show); logfile_top_uint (user_options->status); logfile_top_uint (user_options->machine_readable); logfile_top_uint (user_options->status_timer); logfile_top_uint (user_options->usage); logfile_top_uint (user_options->username); logfile_top_uint (user_options->version); logfile_top_uint (user_options->weak_hash_threshold); logfile_top_uint (user_options->workload_profile); logfile_top_uint64 (user_options->limit); logfile_top_uint64 (user_options->skip); logfile_top_char (user_options->separator); logfile_top_string (user_options->cpu_affinity); logfile_top_string (user_options->custom_charset_1); logfile_top_string (user_options->custom_charset_2); logfile_top_string (user_options->custom_charset_3); logfile_top_string (user_options->custom_charset_4); logfile_top_string (user_options->debug_file); logfile_top_string (user_options->opencl_devices); logfile_top_string (user_options->opencl_platforms); logfile_top_string (user_options->opencl_device_types); logfile_top_uint (user_options->opencl_vector_width); logfile_top_string (user_options->induction_dir); logfile_top_string (user_options->markov_hcstat); logfile_top_string (user_options->outfile); logfile_top_string (user_options->outfile_check_dir); logfile_top_string (user_options->rule_buf_l); logfile_top_string (user_options->rule_buf_r); logfile_top_string (user_options->session); logfile_top_string (user_options->truecrypt_keyfiles); logfile_top_string (user_options->veracrypt_keyfiles); logfile_top_uint (user_options->veracrypt_pim); /** * Init OpenCL library loader */ opencl_ctx_t *opencl_ctx = (opencl_ctx_t *) mymalloc (sizeof (opencl_ctx_t)); data.opencl_ctx = opencl_ctx; const int rc_opencl_init = opencl_ctx_init (opencl_ctx, user_options); if (rc_opencl_init == -1) { log_error ("ERROR: opencl_ctx_init() failed"); return -1; } /** * status, monitor and outfile remove threads */ uint outer_threads_cnt = 0; hc_thread_t *outer_threads = (hc_thread_t *) mycalloc (10, sizeof (hc_thread_t)); data.shutdown_outer = 0; if (user_options->keyspace == false && user_options->benchmark == false && user_options->stdout_flag == false) { if ((user_options_extra->wordlist_mode == WL_MODE_FILE) || (user_options_extra->wordlist_mode == WL_MODE_MASK)) { hc_thread_create (outer_threads[outer_threads_cnt], thread_keypress, NULL); outer_threads_cnt++; } } /** * config */ hashconfig_t *hashconfig = (hashconfig_t *) mymalloc (sizeof (hashconfig_t)); data.hashconfig = hashconfig; uint algorithm_pos = 0; uint algorithm_max = 1; const int *algorithms = DEFAULT_BENCHMARK_ALGORITHMS_BUF; if (user_options->benchmark == true && user_options->hash_mode_chgd == false) algorithm_max = DEFAULT_BENCHMARK_ALGORITHMS_CNT; for (algorithm_pos = 0; algorithm_pos < algorithm_max; algorithm_pos++) { opencl_ctx->devices_status = STATUS_INIT; //opencl_ctx->run_main_level1 = true; opencl_ctx->run_main_level2 = true; opencl_ctx->run_main_level3 = true; opencl_ctx->run_thread_level1 = true; opencl_ctx->run_thread_level2 = true; /* * We need to reset 'rd' in benchmark mode otherwise when the user hits 'bypass' * the following algos are skipped entirely */ if (algorithm_pos > 0) { local_free (rd); rd = init_restore (argc, argv, user_options); data.rd = rd; } /** * update hash_mode in case of multihash benchmark */ if (user_options->benchmark == true) { if (user_options->hash_mode_chgd == false) { user_options->hash_mode = algorithms[algorithm_pos]; } user_options->quiet = true; } /** * setup variables and buffers depending on hash_mode */ const int rc_hashconfig = hashconfig_init (hashconfig, user_options); if (rc_hashconfig == -1) return -1; /** * outfile */ outfile_ctx_t *outfile_ctx = mymalloc (sizeof (outfile_ctx_t)); data.outfile_ctx = outfile_ctx; outfile_init (outfile_ctx, user_options); /** * Sanity check for hashfile vs outfile (should not point to the same physical file) */ const int rc_outfile_and_hashfile = outfile_and_hashfile (outfile_ctx, myargv[user_options_extra->optind]); if (rc_outfile_and_hashfile == -1) return -1; /** * potfile */ potfile_ctx_t *potfile_ctx = mymalloc (sizeof (potfile_ctx_t)); data.potfile_ctx = potfile_ctx; potfile_init (potfile_ctx, folder_config->profile_dir, user_options->potfile_path, user_options->potfile_disable); if (user_options->show == true || user_options->left == true) { outfile_write_open (outfile_ctx); SUPPRESS_OUTPUT = 1; potfile_read_open (potfile_ctx); potfile_read_parse (potfile_ctx, hashconfig); potfile_read_close (potfile_ctx); SUPPRESS_OUTPUT = 0; } /** * load hashes, stage 1 */ hashes_t *hashes = (hashes_t *) mymalloc (sizeof (hashes_t)); data.hashes = hashes; const int rc_hashes_init_stage1 = hashes_init_stage1 (hashes, hashconfig, potfile_ctx, outfile_ctx, user_options, myargv[user_options_extra->optind]); if (rc_hashes_init_stage1 == -1) return -1; logfile_top_var_string ("hashfile", hashes->hashfile); logfile_top_uint (hashes->hashlist_mode); logfile_top_uint (hashes->hashlist_format); if ((user_options->keyspace == false) && (user_options->stdout_flag == false) && (user_options->opencl_info == false)) { if (hashes->hashes_cnt == 0) { log_error ("ERROR: No hashes loaded"); return -1; } } if (user_options->show == true || user_options->left == true) { outfile_write_close (outfile_ctx); potfile_hash_free (potfile_ctx, hashconfig); if (user_options->quiet == false) log_info_nn (""); return 0; } /** * Potfile removes */ int potfile_remove_cracks = 0; if (user_options->potfile_disable == 0) { if (user_options->quiet == false) log_info_nn ("Comparing hashes with potfile entries..."); potfile_remove_cracks = potfile_remove_parse (potfile_ctx, hashconfig, hashes); } /** * load hashes, stage 2 */ uint hashes_cnt_orig = hashes->hashes_cnt; const int rc_hashes_init_stage2 = hashes_init_stage2 (hashes, hashconfig, opencl_ctx, user_options); if (rc_hashes_init_stage2 == -1) return -1; /** * Automatic Optimizers */ hashconfig_general_defaults (hashconfig, hashes, user_options); if (hashes->salts_cnt == 1) hashconfig->opti_type |= OPTI_TYPE_SINGLE_SALT; if (hashes->digests_cnt == 1) hashconfig->opti_type |= OPTI_TYPE_SINGLE_HASH; if (hashconfig->attack_exec == ATTACK_EXEC_INSIDE_KERNEL) hashconfig->opti_type |= OPTI_TYPE_NOT_ITERATED; if (user_options->attack_mode == ATTACK_MODE_BF) hashconfig->opti_type |= OPTI_TYPE_BRUTE_FORCE; if (hashconfig->opti_type & OPTI_TYPE_BRUTE_FORCE) { if (hashconfig->opti_type & OPTI_TYPE_SINGLE_HASH) { if (hashconfig->opti_type & OPTI_TYPE_APPENDED_SALT) { if (hashconfig->opts_type & OPTS_TYPE_ST_ADD80) { hashconfig->opts_type &= ~OPTS_TYPE_ST_ADD80; hashconfig->opts_type |= OPTS_TYPE_PT_ADD80; } if (hashconfig->opts_type & OPTS_TYPE_ST_ADDBITS14) { hashconfig->opts_type &= ~OPTS_TYPE_ST_ADDBITS14; hashconfig->opts_type |= OPTS_TYPE_PT_ADDBITS14; } if (hashconfig->opts_type & OPTS_TYPE_ST_ADDBITS15) { hashconfig->opts_type &= ~OPTS_TYPE_ST_ADDBITS15; hashconfig->opts_type |= OPTS_TYPE_PT_ADDBITS15; } } } } /** * dictstat */ dictstat_ctx_t *dictstat_ctx = mymalloc (sizeof (dictstat_ctx_t)); dictstat_init (dictstat_ctx, folder_config->profile_dir); if (user_options->keyspace == false) { dictstat_read (dictstat_ctx); } /** * loopback */ loopback_ctx_t *loopback_ctx = mymalloc (sizeof (loopback_ctx_t)); data.loopback_ctx = loopback_ctx; loopback_init (loopback_ctx); /** * debugfile */ debugfile_ctx_t *debugfile_ctx = mymalloc (sizeof (debugfile_ctx_t)); data.debugfile_ctx = debugfile_ctx; debugfile_init (debugfile_ctx, user_options->debug_mode, user_options->debug_file); /** * word len */ uint pw_min = hashconfig_general_pw_min (hashconfig); uint pw_max = hashconfig_general_pw_max (hashconfig); /** * charsets : keep them together for more easy maintainnce */ cs_t mp_sys[6] = { { { 0 }, 0 } }; cs_t mp_usr[4] = { { { 0 }, 0 } }; mp_setup_sys (mp_sys); if (user_options->custom_charset_1) mp_setup_usr (mp_sys, mp_usr, user_options->custom_charset_1, 0, hashconfig); if (user_options->custom_charset_2) mp_setup_usr (mp_sys, mp_usr, user_options->custom_charset_2, 1, hashconfig); if (user_options->custom_charset_3) mp_setup_usr (mp_sys, mp_usr, user_options->custom_charset_3, 2, hashconfig); if (user_options->custom_charset_4) mp_setup_usr (mp_sys, mp_usr, user_options->custom_charset_4, 3, hashconfig); /** * Some algorithm, like descrypt, can benefit from JIT compilation */ opencl_ctx->force_jit_compilation = -1; if (hashconfig->hash_mode == 8900) { opencl_ctx->force_jit_compilation = 8900; } else if (hashconfig->hash_mode == 9300) { opencl_ctx->force_jit_compilation = 8900; } else if (hashconfig->hash_mode == 1500 && user_options->attack_mode == ATTACK_MODE_BF && hashes->salts_cnt == 1) { opencl_ctx->force_jit_compilation = 1500; } /** * generate bitmap tables */ const uint bitmap_shift1 = 5; const uint bitmap_shift2 = 13; if (user_options->bitmap_max < user_options->bitmap_min) user_options->bitmap_max = user_options->bitmap_min; uint *bitmap_s1_a = (uint *) mymalloc ((1u << user_options->bitmap_max) * sizeof (uint)); uint *bitmap_s1_b = (uint *) mymalloc ((1u << user_options->bitmap_max) * sizeof (uint)); uint *bitmap_s1_c = (uint *) mymalloc ((1u << user_options->bitmap_max) * sizeof (uint)); uint *bitmap_s1_d = (uint *) mymalloc ((1u << user_options->bitmap_max) * sizeof (uint)); uint *bitmap_s2_a = (uint *) mymalloc ((1u << user_options->bitmap_max) * sizeof (uint)); uint *bitmap_s2_b = (uint *) mymalloc ((1u << user_options->bitmap_max) * sizeof (uint)); uint *bitmap_s2_c = (uint *) mymalloc ((1u << user_options->bitmap_max) * sizeof (uint)); uint *bitmap_s2_d = (uint *) mymalloc ((1u << user_options->bitmap_max) * sizeof (uint)); uint bitmap_bits; uint bitmap_nums; uint bitmap_mask; uint bitmap_size; for (bitmap_bits = user_options->bitmap_min; bitmap_bits < user_options->bitmap_max; bitmap_bits++) { if (user_options->quiet == false) log_info_nn ("Generating bitmap tables with %u bits...", bitmap_bits); bitmap_nums = 1u << bitmap_bits; bitmap_mask = bitmap_nums - 1; bitmap_size = bitmap_nums * sizeof (uint); if ((hashes->digests_cnt & bitmap_mask) == hashes->digests_cnt) break; if (generate_bitmaps (hashes->digests_cnt, hashconfig->dgst_size, bitmap_shift1, (char *) hashes->digests_buf, hashconfig->dgst_pos0, hashconfig->dgst_pos1, hashconfig->dgst_pos2, hashconfig->dgst_pos3, bitmap_mask, bitmap_size, bitmap_s1_a, bitmap_s1_b, bitmap_s1_c, bitmap_s1_d, hashes->digests_cnt / 2) == 0x7fffffff) continue; if (generate_bitmaps (hashes->digests_cnt, hashconfig->dgst_size, bitmap_shift2, (char *) hashes->digests_buf, hashconfig->dgst_pos0, hashconfig->dgst_pos1, hashconfig->dgst_pos2, hashconfig->dgst_pos3, bitmap_mask, bitmap_size, bitmap_s1_a, bitmap_s1_b, bitmap_s1_c, bitmap_s1_d, hashes->digests_cnt / 2) == 0x7fffffff) continue; break; } bitmap_nums = 1u << bitmap_bits; bitmap_mask = bitmap_nums - 1; bitmap_size = bitmap_nums * sizeof (uint); generate_bitmaps (hashes->digests_cnt, hashconfig->dgst_size, bitmap_shift1, (char *) hashes->digests_buf, hashconfig->dgst_pos0, hashconfig->dgst_pos1, hashconfig->dgst_pos2, hashconfig->dgst_pos3, bitmap_mask, bitmap_size, bitmap_s1_a, bitmap_s1_b, bitmap_s1_c, bitmap_s1_d, -1ul); generate_bitmaps (hashes->digests_cnt, hashconfig->dgst_size, bitmap_shift2, (char *) hashes->digests_buf, hashconfig->dgst_pos0, hashconfig->dgst_pos1, hashconfig->dgst_pos2, hashconfig->dgst_pos3, bitmap_mask, bitmap_size, bitmap_s2_a, bitmap_s2_b, bitmap_s2_c, bitmap_s2_d, -1ul); /** * load rules */ uint *all_kernel_rules_cnt = NULL; kernel_rule_t **all_kernel_rules_buf = NULL; if (user_options->rp_files_cnt) { all_kernel_rules_cnt = (uint *) mycalloc (user_options->rp_files_cnt, sizeof (uint)); all_kernel_rules_buf = (kernel_rule_t **) mycalloc (user_options->rp_files_cnt, sizeof (kernel_rule_t *)); } char *rule_buf = (char *) mymalloc (HCBUFSIZ_LARGE); int rule_len = 0; for (uint i = 0; i < user_options->rp_files_cnt; i++) { uint kernel_rules_avail = 0; uint kernel_rules_cnt = 0; kernel_rule_t *kernel_rules_buf = NULL; char *rp_file = user_options->rp_files[i]; char in[BLOCK_SIZE] = { 0 }; char out[BLOCK_SIZE] = { 0 }; FILE *fp = NULL; uint rule_line = 0; if ((fp = fopen (rp_file, "rb")) == NULL) { log_error ("ERROR: %s: %s", rp_file, strerror (errno)); return -1; } while (!feof (fp)) { memset (rule_buf, 0, HCBUFSIZ_LARGE); rule_len = fgetl (fp, rule_buf); rule_line++; if (rule_len == 0) continue; if (rule_buf[0] == '#') continue; if (kernel_rules_avail == kernel_rules_cnt) { kernel_rules_buf = (kernel_rule_t *) myrealloc (kernel_rules_buf, kernel_rules_avail * sizeof (kernel_rule_t), INCR_RULES * sizeof (kernel_rule_t)); kernel_rules_avail += INCR_RULES; } memset (in, 0, BLOCK_SIZE); memset (out, 0, BLOCK_SIZE); int result = _old_apply_rule (rule_buf, rule_len, in, 1, out); if (result == -1) { log_info ("WARNING: Skipping invalid or unsupported rule in file %s on line %u: %s", rp_file, rule_line, rule_buf); continue; } if (cpu_rule_to_kernel_rule (rule_buf, rule_len, &kernel_rules_buf[kernel_rules_cnt]) == -1) { log_info ("WARNING: Cannot convert rule for use on OpenCL device in file %s on line %u: %s", rp_file, rule_line, rule_buf); memset (&kernel_rules_buf[kernel_rules_cnt], 0, sizeof (kernel_rule_t)); // needs to be cleared otherwise we could have some remaining data continue; } kernel_rules_cnt++; } fclose (fp); all_kernel_rules_cnt[i] = kernel_rules_cnt; all_kernel_rules_buf[i] = kernel_rules_buf; } /** * merge rules or automatic rule generator */ uint kernel_rules_cnt = 0; kernel_rule_t *kernel_rules_buf = NULL; if (user_options->attack_mode == ATTACK_MODE_STRAIGHT) { if (user_options->rp_files_cnt) { kernel_rules_cnt = 1; uint *repeats = (uint *) mycalloc (user_options->rp_files_cnt + 1, sizeof (uint)); repeats[0] = kernel_rules_cnt; for (uint i = 0; i < user_options->rp_files_cnt; i++) { kernel_rules_cnt *= all_kernel_rules_cnt[i]; repeats[i + 1] = kernel_rules_cnt; } kernel_rules_buf = (kernel_rule_t *) mycalloc (kernel_rules_cnt, sizeof (kernel_rule_t)); memset (kernel_rules_buf, 0, kernel_rules_cnt * sizeof (kernel_rule_t)); for (uint i = 0; i < kernel_rules_cnt; i++) { uint out_pos = 0; kernel_rule_t *out = &kernel_rules_buf[i]; for (uint j = 0; j < user_options->rp_files_cnt; j++) { uint in_off = (i / repeats[j]) % all_kernel_rules_cnt[j]; uint in_pos; kernel_rule_t *in = &all_kernel_rules_buf[j][in_off]; for (in_pos = 0; in->cmds[in_pos]; in_pos++, out_pos++) { if (out_pos == RULES_MAX - 1) { // log_info ("WARNING: Truncating chaining of rule %d and rule %d as maximum number of function calls per rule exceeded", i, in_off); break; } out->cmds[out_pos] = in->cmds[in_pos]; } } } local_free (repeats); } else if (user_options->rp_gen) { uint kernel_rules_avail = 0; while (kernel_rules_cnt < user_options->rp_gen) { if (kernel_rules_avail == kernel_rules_cnt) { kernel_rules_buf = (kernel_rule_t *) myrealloc (kernel_rules_buf, kernel_rules_avail * sizeof (kernel_rule_t), INCR_RULES * sizeof (kernel_rule_t)); kernel_rules_avail += INCR_RULES; } memset (rule_buf, 0, HCBUFSIZ_LARGE); rule_len = (int) generate_random_rule (rule_buf, user_options->rp_gen_func_min, user_options->rp_gen_func_max); if (cpu_rule_to_kernel_rule (rule_buf, rule_len, &kernel_rules_buf[kernel_rules_cnt]) == -1) continue; kernel_rules_cnt++; } } } myfree (rule_buf); /** * generate NOP rules */ if ((user_options->rp_files_cnt == 0) && (user_options->rp_gen == 0)) { kernel_rules_buf = (kernel_rule_t *) mymalloc (sizeof (kernel_rule_t)); kernel_rules_buf[kernel_rules_cnt].cmds[0] = RULE_OP_MANGLE_NOOP; kernel_rules_cnt++; } data.kernel_rules_cnt = kernel_rules_cnt; data.kernel_rules_buf = kernel_rules_buf; if (kernel_rules_cnt == 0) { log_error ("ERROR: No valid rules left"); return -1; } /** * If we have a NOOP rule then we can process words from wordlists > length 32 for slow hashes */ int has_noop = 0; for (uint kernel_rules_pos = 0; kernel_rules_pos < kernel_rules_cnt; kernel_rules_pos++) { if (kernel_rules_buf[kernel_rules_pos].cmds[0] != RULE_OP_MANGLE_NOOP) continue; if (kernel_rules_buf[kernel_rules_pos].cmds[1] != 0) continue; has_noop = 1; } if (has_noop == 0) { switch (user_options_extra->attack_kern) { case ATTACK_KERN_STRAIGHT: if (pw_max > PW_DICTMAX) pw_max = PW_DICTMAX1; break; case ATTACK_KERN_COMBI: if (pw_max > PW_DICTMAX) pw_max = PW_DICTMAX1; break; } } else { if (hashconfig->attack_exec == ATTACK_EXEC_INSIDE_KERNEL) { switch (user_options_extra->attack_kern) { case ATTACK_KERN_STRAIGHT: if (pw_max > PW_DICTMAX) pw_max = PW_DICTMAX1; break; case ATTACK_KERN_COMBI: if (pw_max > PW_DICTMAX) pw_max = PW_DICTMAX1; break; } } else { // in this case we can process > 32 } } const int rc_devices_init = opencl_ctx_devices_init (opencl_ctx, hashconfig, tuning_db, user_options, algorithm_pos); if (rc_devices_init == -1) { log_error ("ERROR: opencl_ctx_devices_init() failed"); return -1; } /** * HM devices: init */ hm_attrs_t hm_adapters_adl[DEVICES_MAX]; hm_attrs_t hm_adapters_nvapi[DEVICES_MAX]; hm_attrs_t hm_adapters_nvml[DEVICES_MAX]; hm_attrs_t hm_adapters_xnvctrl[DEVICES_MAX]; memset (hm_adapters_adl, 0, sizeof (hm_adapters_adl)); memset (hm_adapters_nvapi, 0, sizeof (hm_adapters_nvapi)); memset (hm_adapters_nvml, 0, sizeof (hm_adapters_nvml)); memset (hm_adapters_xnvctrl, 0, sizeof (hm_adapters_xnvctrl)); if (user_options->gpu_temp_disable == false) { ADL_PTR *adl = (ADL_PTR *) mymalloc (sizeof (ADL_PTR)); NVAPI_PTR *nvapi = (NVAPI_PTR *) mymalloc (sizeof (NVAPI_PTR)); NVML_PTR *nvml = (NVML_PTR *) mymalloc (sizeof (NVML_PTR)); XNVCTRL_PTR *xnvctrl = (XNVCTRL_PTR *) mymalloc (sizeof (XNVCTRL_PTR)); data.hm_adl = NULL; data.hm_nvapi = NULL; data.hm_nvml = NULL; data.hm_xnvctrl = NULL; if ((opencl_ctx->need_nvml == 1) && (nvml_init (nvml) == 0)) { data.hm_nvml = nvml; } if (data.hm_nvml) { if (hm_NVML_nvmlInit (data.hm_nvml) == NVML_SUCCESS) { HM_ADAPTER_NVML nvmlGPUHandle[DEVICES_MAX] = { 0 }; int tmp_in = hm_get_adapter_index_nvml (nvmlGPUHandle); int tmp_out = 0; for (int i = 0; i < tmp_in; i++) { hm_adapters_nvml[tmp_out++].nvml = nvmlGPUHandle[i]; } for (int i = 0; i < tmp_out; i++) { unsigned int speed; if (hm_NVML_nvmlDeviceGetFanSpeed (data.hm_nvml, 0, hm_adapters_nvml[i].nvml, &speed) == NVML_SUCCESS) hm_adapters_nvml[i].fan_get_supported = 1; // doesn't seem to create any advantages //hm_NVML_nvmlDeviceSetComputeMode (data.hm_nvml, 1, hm_adapters_nvml[i].nvml, NVML_COMPUTEMODE_EXCLUSIVE_PROCESS); //hm_NVML_nvmlDeviceSetGpuOperationMode (data.hm_nvml, 1, hm_adapters_nvml[i].nvml, NVML_GOM_ALL_ON); } } } if ((opencl_ctx->need_nvapi == 1) && (nvapi_init (nvapi) == 0)) { data.hm_nvapi = nvapi; } if (data.hm_nvapi) { if (hm_NvAPI_Initialize (data.hm_nvapi) == NVAPI_OK) { HM_ADAPTER_NVAPI nvGPUHandle[DEVICES_MAX] = { 0 }; int tmp_in = hm_get_adapter_index_nvapi (nvGPUHandle); int tmp_out = 0; for (int i = 0; i < tmp_in; i++) { hm_adapters_nvapi[tmp_out++].nvapi = nvGPUHandle[i]; } } } if ((opencl_ctx->need_xnvctrl == 1) && (xnvctrl_init (xnvctrl) == 0)) { data.hm_xnvctrl = xnvctrl; } if (data.hm_xnvctrl) { if (hm_XNVCTRL_XOpenDisplay (data.hm_xnvctrl) == 0) { for (uint device_id = 0; device_id < opencl_ctx->devices_cnt; device_id++) { hc_device_param_t *device_param = &opencl_ctx->devices_param[device_id]; if ((device_param->device_type & CL_DEVICE_TYPE_GPU) == 0) continue; hm_adapters_xnvctrl[device_id].xnvctrl = device_id; int speed = 0; if (get_fan_speed_current (data.hm_xnvctrl, device_id, &speed) == 0) hm_adapters_xnvctrl[device_id].fan_get_supported = 1; } } } if ((opencl_ctx->need_adl == 1) && (adl_init (adl) == 0)) { data.hm_adl = adl; } if (data.hm_adl) { if (hm_ADL_Main_Control_Create (data.hm_adl, ADL_Main_Memory_Alloc, 0) == ADL_OK) { // total number of adapters int hm_adapters_num; if (get_adapters_num_adl (data.hm_adl, &hm_adapters_num) != 0) return -1; // adapter info LPAdapterInfo lpAdapterInfo = hm_get_adapter_info_adl (data.hm_adl, hm_adapters_num); if (lpAdapterInfo == NULL) return -1; // get a list (of ids of) valid/usable adapters int num_adl_adapters = 0; u32 *valid_adl_device_list = hm_get_list_valid_adl_adapters (hm_adapters_num, &num_adl_adapters, lpAdapterInfo); if (num_adl_adapters > 0) { hc_thread_mutex_lock (mux_hwmon); // hm_get_opencl_busid_devid (hm_adapters_adl, devices_all_cnt, devices_all); hm_get_adapter_index_adl (hm_adapters_adl, valid_adl_device_list, num_adl_adapters, lpAdapterInfo); hm_get_overdrive_version (data.hm_adl, hm_adapters_adl, valid_adl_device_list, num_adl_adapters, lpAdapterInfo); hm_check_fanspeed_control (data.hm_adl, hm_adapters_adl, valid_adl_device_list, num_adl_adapters, lpAdapterInfo); hc_thread_mutex_unlock (mux_hwmon); } myfree (valid_adl_device_list); myfree (lpAdapterInfo); } } if (data.hm_adl == NULL && data.hm_nvml == NULL && data.hm_xnvctrl == NULL) { user_options->gpu_temp_disable = true; } } /** * OpenCL devices: allocate buffer for device specific information */ ADLOD6MemClockState *od_clock_mem_status = (ADLOD6MemClockState *) mycalloc (opencl_ctx->devices_cnt, sizeof (ADLOD6MemClockState)); int *od_power_control_status = (int *) mycalloc (opencl_ctx->devices_cnt, sizeof (int)); unsigned int *nvml_power_limit = (unsigned int *) mycalloc (opencl_ctx->devices_cnt, sizeof (unsigned int)); /** * User-defined GPU temp handling */ if (user_options->gpu_temp_disable == true) { user_options->gpu_temp_abort = 0; user_options->gpu_temp_retain = 0; } /** * enable custom signal handler(s) */ if (user_options->benchmark == false) { hc_signal (sigHandler_default); } else { hc_signal (sigHandler_benchmark); } /** * inform the user */ if (user_options->quiet == false) { log_info ("Hashes: %u digests; %u unique digests, %u unique salts", hashes_cnt_orig, hashes->digests_cnt, hashes->salts_cnt); log_info ("Bitmaps: %u bits, %u entries, 0x%08x mask, %u bytes, %u/%u rotates", bitmap_bits, bitmap_nums, bitmap_mask, bitmap_size, bitmap_shift1, bitmap_shift2); if (user_options->attack_mode == ATTACK_MODE_STRAIGHT) { log_info ("Rules: %u", kernel_rules_cnt); } if (hashconfig->opti_type) { log_info ("Applicable Optimizers:"); for (uint i = 0; i < 32; i++) { const uint opti_bit = 1u << i; if (hashconfig->opti_type & opti_bit) log_info ("* %s", stroptitype (opti_bit)); } } /** * Watchdog and Temperature balance */ if (user_options->gpu_temp_disable == false && data.hm_adl == NULL && data.hm_nvml == NULL && data.hm_xnvctrl == NULL) { log_info ("Watchdog: Hardware Monitoring Interface not found on your system"); } if (user_options->gpu_temp_abort == 0) { log_info ("Watchdog: Temperature abort trigger disabled"); } else { log_info ("Watchdog: Temperature abort trigger set to %uc", user_options->gpu_temp_abort); } if (user_options->gpu_temp_retain == 0) { log_info ("Watchdog: Temperature retain trigger disabled"); } else { log_info ("Watchdog: Temperature retain trigger set to %uc", user_options->gpu_temp_retain); } if (user_options->quiet == false) log_info (""); } /** * HM devices: copy */ if (user_options->gpu_temp_disable == false) { for (uint device_id = 0; device_id < opencl_ctx->devices_cnt; device_id++) { hc_device_param_t *device_param = &opencl_ctx->devices_param[device_id]; if ((device_param->device_type & CL_DEVICE_TYPE_GPU) == 0) continue; if (device_param->skipped) continue; const uint platform_devices_id = device_param->platform_devices_id; if (device_param->device_vendor_id == VENDOR_ID_AMD) { data.hm_device[device_id].adl = hm_adapters_adl[platform_devices_id].adl; data.hm_device[device_id].nvapi = 0; data.hm_device[device_id].nvml = 0; data.hm_device[device_id].xnvctrl = 0; data.hm_device[device_id].od_version = hm_adapters_adl[platform_devices_id].od_version; data.hm_device[device_id].fan_get_supported = hm_adapters_adl[platform_devices_id].fan_get_supported; data.hm_device[device_id].fan_set_supported = 0; } if (device_param->device_vendor_id == VENDOR_ID_NV) { data.hm_device[device_id].adl = 0; data.hm_device[device_id].nvapi = hm_adapters_nvapi[platform_devices_id].nvapi; data.hm_device[device_id].nvml = hm_adapters_nvml[platform_devices_id].nvml; data.hm_device[device_id].xnvctrl = hm_adapters_xnvctrl[platform_devices_id].xnvctrl; data.hm_device[device_id].od_version = 0; data.hm_device[device_id].fan_get_supported = hm_adapters_nvml[platform_devices_id].fan_get_supported; data.hm_device[device_id].fan_set_supported = 0; } } } /** * powertune on user request */ if (user_options->powertune_enable == true) { hc_thread_mutex_lock (mux_hwmon); for (uint device_id = 0; device_id < opencl_ctx->devices_cnt; device_id++) { hc_device_param_t *device_param = &opencl_ctx->devices_param[device_id]; if (device_param->skipped) continue; if (opencl_ctx->devices_param[device_id].device_vendor_id == VENDOR_ID_AMD) { /** * Temporary fix: * with AMD r9 295x cards it seems that we need to set the powertune value just AFTER the ocl init stuff * otherwise after hc_clCreateContext () etc, powertune value was set back to "normal" and cards unfortunately * were not working @ full speed (setting hm_ADL_Overdrive_PowerControl_Set () here seems to fix the problem) * Driver / ADL bug? */ if (data.hm_device[device_id].od_version == 6) { int ADL_rc; // check powertune capabilities first, if not available then skip device int powertune_supported = 0; if ((ADL_rc = hm_ADL_Overdrive6_PowerControl_Caps (data.hm_adl, data.hm_device[device_id].adl, &powertune_supported)) != ADL_OK) { log_error ("ERROR: Failed to get ADL PowerControl Capabilities"); return -1; } // first backup current value, we will restore it later if (powertune_supported != 0) { // powercontrol settings ADLOD6PowerControlInfo powertune = {0, 0, 0, 0, 0}; if ((ADL_rc = hm_ADL_Overdrive_PowerControlInfo_Get (data.hm_adl, data.hm_device[device_id].adl, &powertune)) == ADL_OK) { ADL_rc = hm_ADL_Overdrive_PowerControl_Get (data.hm_adl, data.hm_device[device_id].adl, &od_power_control_status[device_id]); } if (ADL_rc != ADL_OK) { log_error ("ERROR: Failed to get current ADL PowerControl settings"); return -1; } if ((ADL_rc = hm_ADL_Overdrive_PowerControl_Set (data.hm_adl, data.hm_device[device_id].adl, powertune.iMaxValue)) != ADL_OK) { log_error ("ERROR: Failed to set new ADL PowerControl values"); return -1; } // clocks memset (&od_clock_mem_status[device_id], 0, sizeof (ADLOD6MemClockState)); od_clock_mem_status[device_id].state.iNumberOfPerformanceLevels = 2; if ((ADL_rc = hm_ADL_Overdrive_StateInfo_Get (data.hm_adl, data.hm_device[device_id].adl, ADL_OD6_GETSTATEINFO_CUSTOM_PERFORMANCE, &od_clock_mem_status[device_id])) != ADL_OK) { log_error ("ERROR: Failed to get ADL memory and engine clock frequency"); return -1; } // Query capabilities only to see if profiles were not "damaged", if so output a warning but do accept the users profile settings ADLOD6Capabilities caps = {0, 0, 0, {0, 0, 0}, {0, 0, 0}, 0, 0}; if ((ADL_rc = hm_ADL_Overdrive_Capabilities_Get (data.hm_adl, data.hm_device[device_id].adl, &caps)) != ADL_OK) { log_error ("ERROR: Failed to get ADL device capabilities"); return -1; } int engine_clock_max = (int) (0.6666 * caps.sEngineClockRange.iMax); int memory_clock_max = (int) (0.6250 * caps.sMemoryClockRange.iMax); int warning_trigger_engine = (int) (0.25 * engine_clock_max); int warning_trigger_memory = (int) (0.25 * memory_clock_max); int engine_clock_profile_max = od_clock_mem_status[device_id].state.aLevels[1].iEngineClock; int memory_clock_profile_max = od_clock_mem_status[device_id].state.aLevels[1].iMemoryClock; // warning if profile has too low max values if ((engine_clock_max - engine_clock_profile_max) > warning_trigger_engine) { log_info ("WARN: The custom profile seems to have too low maximum engine clock values. You therefore may not reach full performance"); } if ((memory_clock_max - memory_clock_profile_max) > warning_trigger_memory) { log_info ("WARN: The custom profile seems to have too low maximum memory clock values. You therefore may not reach full performance"); } ADLOD6StateInfo *performance_state = (ADLOD6StateInfo*) mycalloc (1, sizeof (ADLOD6StateInfo) + sizeof (ADLOD6PerformanceLevel)); performance_state->iNumberOfPerformanceLevels = 2; performance_state->aLevels[0].iEngineClock = engine_clock_profile_max; performance_state->aLevels[1].iEngineClock = engine_clock_profile_max; performance_state->aLevels[0].iMemoryClock = memory_clock_profile_max; performance_state->aLevels[1].iMemoryClock = memory_clock_profile_max; if ((ADL_rc = hm_ADL_Overdrive_State_Set (data.hm_adl, data.hm_device[device_id].adl, ADL_OD6_SETSTATE_PERFORMANCE, performance_state)) != ADL_OK) { log_info ("ERROR: Failed to set ADL performance state"); return -1; } local_free (performance_state); } // set powertune value only if (powertune_supported != 0) { // powertune set ADLOD6PowerControlInfo powertune = {0, 0, 0, 0, 0}; if ((ADL_rc = hm_ADL_Overdrive_PowerControlInfo_Get (data.hm_adl, data.hm_device[device_id].adl, &powertune)) != ADL_OK) { log_error ("ERROR: Failed to get current ADL PowerControl settings"); return -1; } if ((ADL_rc = hm_ADL_Overdrive_PowerControl_Set (data.hm_adl, data.hm_device[device_id].adl, powertune.iMaxValue)) != ADL_OK) { log_error ("ERROR: Failed to set new ADL PowerControl values"); return -1; } } } } if (opencl_ctx->devices_param[device_id].device_vendor_id == VENDOR_ID_NV) { // first backup current value, we will restore it later unsigned int limit; int powertune_supported = 0; if (hm_NVML_nvmlDeviceGetPowerManagementLimit (data.hm_nvml, 0, data.hm_device[device_id].nvml, &limit) == NVML_SUCCESS) { powertune_supported = 1; } // if backup worked, activate the maximum allowed if (powertune_supported != 0) { unsigned int minLimit; unsigned int maxLimit; if (hm_NVML_nvmlDeviceGetPowerManagementLimitConstraints (data.hm_nvml, 0, data.hm_device[device_id].nvml, &minLimit, &maxLimit) == NVML_SUCCESS) { if (maxLimit > 0) { if (hm_NVML_nvmlDeviceSetPowerManagementLimit (data.hm_nvml, 0, data.hm_device[device_id].nvml, maxLimit) == NVML_SUCCESS) { // now we can be sure we need to reset later nvml_power_limit[device_id] = limit; } } } } } } hc_thread_mutex_unlock (mux_hwmon); } #if defined (DEBUG) if (user_options->benchmark == true) log_info ("Hashmode: %d", hashconfig->hash_mode); #endif if (user_options->quiet == false) log_info_nn ("Initializing device kernels and memory..."); session_ctx_t *session_ctx = (session_ctx_t *) mymalloc (sizeof (session_ctx_t)); data.session_ctx = session_ctx; session_ctx_init (session_ctx, kernel_rules_cnt, kernel_rules_buf, bitmap_size, bitmap_mask, bitmap_shift1, bitmap_shift2, bitmap_s1_a, bitmap_s1_b, bitmap_s1_c, bitmap_s1_d, bitmap_s2_a, bitmap_s2_b, bitmap_s2_c, bitmap_s2_d); opencl_session_begin (opencl_ctx, hashconfig, hashes, session_ctx, user_options, user_options_extra, folder_config); if (user_options->quiet == false) log_info_nn (""); /** * Store initial fanspeed if gpu_temp_retain is enabled */ if (user_options->gpu_temp_disable == false) { if (user_options->gpu_temp_retain) { for (uint device_id = 0; device_id < opencl_ctx->devices_cnt; device_id++) { hc_device_param_t *device_param = &opencl_ctx->devices_param[device_id]; if (device_param->skipped) continue; hc_thread_mutex_lock (mux_hwmon); if (data.hm_device[device_id].fan_get_supported == 1) { const int fanspeed = hm_get_fanspeed_with_device_id (opencl_ctx, device_id); const int fanpolicy = hm_get_fanpolicy_with_device_id (opencl_ctx, device_id); // we also set it to tell the OS we take control over the fan and it's automatic controller // if it was set to automatic. we do not control user-defined fanspeeds. if (fanpolicy == 1) { data.hm_device[device_id].fan_set_supported = 1; int rc = -1; if (device_param->device_vendor_id == VENDOR_ID_AMD) { rc = hm_set_fanspeed_with_device_id_adl (device_id, fanspeed, 1); } else if (device_param->device_vendor_id == VENDOR_ID_NV) { #if defined (__linux__) rc = set_fan_control (data.hm_xnvctrl, data.hm_device[device_id].xnvctrl, NV_CTRL_GPU_COOLER_MANUAL_CONTROL_TRUE); #endif #if defined (_WIN) rc = hm_set_fanspeed_with_device_id_nvapi (device_id, fanspeed, 1); #endif } if (rc == 0) { data.hm_device[device_id].fan_set_supported = 1; } else { log_info ("WARNING: Failed to set initial fan speed for device #%u", device_id + 1); data.hm_device[device_id].fan_set_supported = 0; } } else { data.hm_device[device_id].fan_set_supported = 0; } } hc_thread_mutex_unlock (mux_hwmon); } } } /** * In benchmark-mode, inform user which algorithm is checked */ if (user_options->benchmark == true) { if (user_options->machine_readable == false) { //quiet = 0; //user_options->quiet = quiet; char *hash_type = strhashtype (hashconfig->hash_mode); // not a bug log_info ("Hashtype: %s", hash_type); log_info (""); } } /** * keep track of the progress */ data.words_progress_done = (u64 *) mycalloc (hashes->salts_cnt, sizeof (u64)); data.words_progress_rejected = (u64 *) mycalloc (hashes->salts_cnt, sizeof (u64)); data.words_progress_restored = (u64 *) mycalloc (hashes->salts_cnt, sizeof (u64)); /** * open filehandles */ #if defined (_WIN) if (_setmode (_fileno (stdin), _O_BINARY) == -1) { log_error ("ERROR: %s: %s", "stdin", strerror (errno)); return -1; } if (_setmode (_fileno (stdout), _O_BINARY) == -1) { log_error ("ERROR: %s: %s", "stdout", strerror (errno)); return -1; } if (_setmode (_fileno (stderr), _O_BINARY) == -1) { log_error ("ERROR: %s: %s", "stderr", strerror (errno)); return -1; } #endif /** * dictionary pad */ wl_data_t *wl_data = (wl_data_t *) mymalloc (sizeof (wl_data_t)); wl_data_init (wl_data, user_options, hashconfig); cs_t *css_buf = NULL; uint css_cnt = 0; uint dictcnt = 0; uint maskcnt = 1; char **masks = NULL; char **dictfiles = NULL; uint mask_from_file = 0; if (user_options->attack_mode == ATTACK_MODE_STRAIGHT) { if (user_options_extra->wordlist_mode == WL_MODE_FILE) { int wls_left = myargc - (user_options_extra->optind + 1); for (int i = 0; i < wls_left; i++) { char *l0_filename = myargv[user_options_extra->optind + 1 + i]; struct stat l0_stat; if (stat (l0_filename, &l0_stat) == -1) { log_error ("ERROR: %s: %s", l0_filename, strerror (errno)); return -1; } uint is_dir = S_ISDIR (l0_stat.st_mode); if (is_dir == 0) { dictfiles = (char **) myrealloc (dictfiles, dictcnt * sizeof (char *), sizeof (char *)); dictcnt++; dictfiles[dictcnt - 1] = l0_filename; } else { // do not allow --keyspace w/ a directory if (user_options->keyspace == true) { log_error ("ERROR: Keyspace parameter is not allowed together with a directory"); return -1; } char **dictionary_files = NULL; dictionary_files = scan_directory (l0_filename); if (dictionary_files != NULL) { qsort (dictionary_files, count_dictionaries (dictionary_files), sizeof (char *), sort_by_stringptr); for (int d = 0; dictionary_files[d] != NULL; d++) { char *l1_filename = dictionary_files[d]; struct stat l1_stat; if (stat (l1_filename, &l1_stat) == -1) { log_error ("ERROR: %s: %s", l1_filename, strerror (errno)); return -1; } if (S_ISREG (l1_stat.st_mode)) { dictfiles = (char **) myrealloc (dictfiles, dictcnt * sizeof (char *), sizeof (char *)); dictcnt++; dictfiles[dictcnt - 1] = mystrdup (l1_filename); } } } local_free (dictionary_files); } } if (dictcnt < 1) { log_error ("ERROR: No usable dictionary file found."); return -1; } } else if (user_options_extra->wordlist_mode == WL_MODE_STDIN) { dictcnt = 1; } } else if (user_options->attack_mode == ATTACK_MODE_COMBI) { // display char *dictfile1 = myargv[user_options_extra->optind + 1 + 0]; char *dictfile2 = myargv[user_options_extra->optind + 1 + 1]; // find the bigger dictionary and use as base FILE *fp1 = NULL; FILE *fp2 = NULL; struct stat tmp_stat; if ((fp1 = fopen (dictfile1, "rb")) == NULL) { log_error ("ERROR: %s: %s", dictfile1, strerror (errno)); return -1; } if (stat (dictfile1, &tmp_stat) == -1) { log_error ("ERROR: %s: %s", dictfile1, strerror (errno)); fclose (fp1); return -1; } if (S_ISDIR (tmp_stat.st_mode)) { log_error ("ERROR: %s must be a regular file", dictfile1, strerror (errno)); fclose (fp1); return -1; } if ((fp2 = fopen (dictfile2, "rb")) == NULL) { log_error ("ERROR: %s: %s", dictfile2, strerror (errno)); fclose (fp1); return -1; } if (stat (dictfile2, &tmp_stat) == -1) { log_error ("ERROR: %s: %s", dictfile2, strerror (errno)); fclose (fp1); fclose (fp2); return -1; } if (S_ISDIR (tmp_stat.st_mode)) { log_error ("ERROR: %s must be a regular file", dictfile2, strerror (errno)); fclose (fp1); fclose (fp2); return -1; } data.combs_cnt = 1; //user_options->quiet = 1; const u64 words1_cnt = count_words (wl_data, user_options, user_options_extra, fp1, dictfile1, dictstat_ctx); //user_options->quiet = quiet; if (words1_cnt == 0) { log_error ("ERROR: %s: empty file", dictfile1); fclose (fp1); fclose (fp2); return -1; } data.combs_cnt = 1; //user_options->quiet = 1; const u64 words2_cnt = count_words (wl_data, user_options, user_options_extra, fp2, dictfile2, dictstat_ctx); //user_options->quiet = quiet; if (words2_cnt == 0) { log_error ("ERROR: %s: empty file", dictfile2); fclose (fp1); fclose (fp2); return -1; } fclose (fp1); fclose (fp2); data.dictfile = dictfile1; data.dictfile2 = dictfile2; if (words1_cnt >= words2_cnt) { data.combs_cnt = words2_cnt; data.combs_mode = COMBINATOR_MODE_BASE_LEFT; dictfiles = &data.dictfile; dictcnt = 1; } else { data.combs_cnt = words1_cnt; data.combs_mode = COMBINATOR_MODE_BASE_RIGHT; dictfiles = &data.dictfile2; dictcnt = 1; // we also have to switch wordlist related rules! char *tmpc = user_options->rule_buf_l; user_options->rule_buf_l = user_options->rule_buf_r; user_options->rule_buf_r = tmpc; int tmpi = user_options_extra->rule_len_l; user_options_extra->rule_len_l = user_options_extra->rule_len_r; user_options_extra->rule_len_r = tmpi; } } else if (user_options->attack_mode == ATTACK_MODE_BF) { char *mask = NULL; maskcnt = 0; if (user_options->benchmark == false) { mask = myargv[user_options_extra->optind + 1]; masks = (char **) mymalloc (INCR_MASKS * sizeof (char *)); if ((user_options_extra->optind + 2) <= myargc) { struct stat file_stat; if (stat (mask, &file_stat) == -1) { maskcnt = 1; masks[maskcnt - 1] = mystrdup (mask); } else { int wls_left = myargc - (user_options_extra->optind + 1); uint masks_avail = INCR_MASKS; for (int i = 0; i < wls_left; i++) { if (i != 0) { mask = myargv[user_options_extra->optind + 1 + i]; if (stat (mask, &file_stat) == -1) { log_error ("ERROR: %s: %s", mask, strerror (errno)); return -1; } } uint is_file = S_ISREG (file_stat.st_mode); if (is_file == 1) { FILE *mask_fp; if ((mask_fp = fopen (mask, "r")) == NULL) { log_error ("ERROR: %s: %s", mask, strerror (errno)); return -1; } char *line_buf = (char *) mymalloc (HCBUFSIZ_LARGE); while (!feof (mask_fp)) { memset (line_buf, 0, HCBUFSIZ_LARGE); int line_len = fgetl (mask_fp, line_buf); if (line_len == 0) continue; if (line_buf[0] == '#') continue; if (masks_avail == maskcnt) { masks = (char **) myrealloc (masks, masks_avail * sizeof (char *), INCR_MASKS * sizeof (char *)); masks_avail += INCR_MASKS; } masks[maskcnt] = mystrdup (line_buf); maskcnt++; } myfree (line_buf); fclose (mask_fp); } else { log_error ("ERROR: %s: unsupported file-type", mask); return -1; } } mask_from_file = 1; } } else { user_options->custom_charset_1 = (char *) "?l?d?u"; user_options->custom_charset_2 = (char *) "?l?d"; user_options->custom_charset_3 = (char *) "?l?d*!$@_"; mp_setup_usr (mp_sys, mp_usr, user_options->custom_charset_1, 0, hashconfig); mp_setup_usr (mp_sys, mp_usr, user_options->custom_charset_2, 1, hashconfig); mp_setup_usr (mp_sys, mp_usr, user_options->custom_charset_3, 2, hashconfig); maskcnt = 1; masks[maskcnt - 1] = mystrdup ("?1?2?2?2?2?2?2?3?3?3?3?d?d?d?d"); user_options->increment = true; } } else { /** * generate full masks and charsets */ mask = hashconfig_benchmark_mask (hashconfig); pw_min = mp_get_length (mask); pw_max = pw_min; masks = (char **) mymalloc (sizeof (char *)); maskcnt = 1; masks[maskcnt - 1] = mystrdup (mask); user_options->increment = true; } dictfiles = (char **) mycalloc (pw_max, sizeof (char *)); if (user_options->increment == true) { if (user_options->increment_min > pw_min) pw_min = user_options->increment_min; if (user_options->increment_max < pw_max) pw_max = user_options->increment_max; } } else if (user_options->attack_mode == ATTACK_MODE_HYBRID1) { data.combs_mode = COMBINATOR_MODE_BASE_LEFT; // display char *mask = myargv[myargc - 1]; maskcnt = 0; masks = (char **) mymalloc (1 * sizeof (char *)); // mod struct stat file_stat; if (stat (mask, &file_stat) == -1) { maskcnt = 1; masks[maskcnt - 1] = mystrdup (mask); } else { uint is_file = S_ISREG (file_stat.st_mode); if (is_file == 1) { FILE *mask_fp; if ((mask_fp = fopen (mask, "r")) == NULL) { log_error ("ERROR: %s: %s", mask, strerror (errno)); return -1; } char *line_buf = (char *) mymalloc (HCBUFSIZ_LARGE); uint masks_avail = 1; while (!feof (mask_fp)) { memset (line_buf, 0, HCBUFSIZ_LARGE); int line_len = fgetl (mask_fp, line_buf); if (line_len == 0) continue; if (line_buf[0] == '#') continue; if (masks_avail == maskcnt) { masks = (char **) myrealloc (masks, masks_avail * sizeof (char *), INCR_MASKS * sizeof (char *)); masks_avail += INCR_MASKS; } masks[maskcnt] = mystrdup (line_buf); maskcnt++; } myfree (line_buf); fclose (mask_fp); mask_from_file = 1; } else { maskcnt = 1; masks[maskcnt - 1] = mystrdup (mask); } } // base int wls_left = myargc - (user_options_extra->optind + 2); for (int i = 0; i < wls_left; i++) { char *filename = myargv[user_options_extra->optind + 1 + i]; struct stat file_stat; if (stat (filename, &file_stat) == -1) { log_error ("ERROR: %s: %s", filename, strerror (errno)); return -1; } uint is_dir = S_ISDIR (file_stat.st_mode); if (is_dir == 0) { dictfiles = (char **) myrealloc (dictfiles, dictcnt * sizeof (char *), sizeof (char *)); dictcnt++; dictfiles[dictcnt - 1] = filename; } else { // do not allow --keyspace w/ a directory if (user_options->keyspace == true) { log_error ("ERROR: Keyspace parameter is not allowed together with a directory"); return -1; } char **dictionary_files = NULL; dictionary_files = scan_directory (filename); if (dictionary_files != NULL) { qsort (dictionary_files, count_dictionaries (dictionary_files), sizeof (char *), sort_by_stringptr); for (int d = 0; dictionary_files[d] != NULL; d++) { char *l1_filename = dictionary_files[d]; struct stat l1_stat; if (stat (l1_filename, &l1_stat) == -1) { log_error ("ERROR: %s: %s", l1_filename, strerror (errno)); return -1; } if (S_ISREG (l1_stat.st_mode)) { dictfiles = (char **) myrealloc (dictfiles, dictcnt * sizeof (char *), sizeof (char *)); dictcnt++; dictfiles[dictcnt - 1] = mystrdup (l1_filename); } } } local_free (dictionary_files); } } if (dictcnt < 1) { log_error ("ERROR: No usable dictionary file found."); return -1; } if (user_options->increment == true) { maskcnt = 0; uint mask_min = user_options->increment_min; // we can't reject smaller masks here uint mask_max = (user_options->increment_max < pw_max) ? user_options->increment_max : pw_max; for (uint mask_cur = mask_min; mask_cur <= mask_max; mask_cur++) { char *cur_mask = mp_get_truncated_mask (mask, strlen (mask), mask_cur); if (cur_mask == NULL) break; masks[maskcnt] = cur_mask; maskcnt++; masks = (char **) myrealloc (masks, maskcnt * sizeof (char *), sizeof (char *)); } } } else if (user_options->attack_mode == ATTACK_MODE_HYBRID2) { data.combs_mode = COMBINATOR_MODE_BASE_RIGHT; // display char *mask = myargv[user_options_extra->optind + 1 + 0]; maskcnt = 0; masks = (char **) mymalloc (1 * sizeof (char *)); // mod struct stat file_stat; if (stat (mask, &file_stat) == -1) { maskcnt = 1; masks[maskcnt - 1] = mystrdup (mask); } else { uint is_file = S_ISREG (file_stat.st_mode); if (is_file == 1) { FILE *mask_fp; if ((mask_fp = fopen (mask, "r")) == NULL) { log_error ("ERROR: %s: %s", mask, strerror (errno)); return -1; } char *line_buf = (char *) mymalloc (HCBUFSIZ_LARGE); uint masks_avail = 1; while (!feof (mask_fp)) { memset (line_buf, 0, HCBUFSIZ_LARGE); int line_len = fgetl (mask_fp, line_buf); if (line_len == 0) continue; if (line_buf[0] == '#') continue; if (masks_avail == maskcnt) { masks = (char **) myrealloc (masks, masks_avail * sizeof (char *), INCR_MASKS * sizeof (char *)); masks_avail += INCR_MASKS; } masks[maskcnt] = mystrdup (line_buf); maskcnt++; } myfree (line_buf); fclose (mask_fp); mask_from_file = 1; } else { maskcnt = 1; masks[maskcnt - 1] = mystrdup (mask); } } // base int wls_left = myargc - (user_options_extra->optind + 2); for (int i = 0; i < wls_left; i++) { char *filename = myargv[user_options_extra->optind + 2 + i]; struct stat file_stat; if (stat (filename, &file_stat) == -1) { log_error ("ERROR: %s: %s", filename, strerror (errno)); return -1; } uint is_dir = S_ISDIR (file_stat.st_mode); if (is_dir == 0) { dictfiles = (char **) myrealloc (dictfiles, dictcnt * sizeof (char *), sizeof (char *)); dictcnt++; dictfiles[dictcnt - 1] = filename; } else { // do not allow --keyspace w/ a directory if (user_options->keyspace == true) { log_error ("ERROR: Keyspace parameter is not allowed together with a directory"); return -1; } char **dictionary_files = NULL; dictionary_files = scan_directory (filename); if (dictionary_files != NULL) { qsort (dictionary_files, count_dictionaries (dictionary_files), sizeof (char *), sort_by_stringptr); for (int d = 0; dictionary_files[d] != NULL; d++) { char *l1_filename = dictionary_files[d]; struct stat l1_stat; if (stat (l1_filename, &l1_stat) == -1) { log_error ("ERROR: %s: %s", l1_filename, strerror (errno)); return -1; } if (S_ISREG (l1_stat.st_mode)) { dictfiles = (char **) myrealloc (dictfiles, dictcnt * sizeof (char *), sizeof (char *)); dictcnt++; dictfiles[dictcnt - 1] = mystrdup (l1_filename); } } } local_free (dictionary_files); } } if (dictcnt < 1) { log_error ("ERROR: No usable dictionary file found."); return -1; } if (user_options->increment == true) { maskcnt = 0; uint mask_min = user_options->increment_min; // we can't reject smaller masks here uint mask_max = (user_options->increment_max < pw_max) ? user_options->increment_max : pw_max; for (uint mask_cur = mask_min; mask_cur <= mask_max; mask_cur++) { char *cur_mask = mp_get_truncated_mask (mask, strlen (mask), mask_cur); if (cur_mask == NULL) break; masks[maskcnt] = cur_mask; maskcnt++; masks = (char **) myrealloc (masks, maskcnt * sizeof (char *), sizeof (char *)); } } } data.pw_min = pw_min; data.pw_max = pw_max; /** * weak hash check */ potfile_write_open (potfile_ctx); /** * weak hash check */ if (user_options->weak_hash_threshold >= hashes->salts_cnt) { hc_device_param_t *device_param = NULL; for (uint device_id = 0; device_id < opencl_ctx->devices_cnt; device_id++) { device_param = &opencl_ctx->devices_param[device_id]; if (device_param->skipped) continue; break; } if (user_options->quiet == false) log_info_nn ("Checking for weak hashes..."); for (uint salt_pos = 0; salt_pos < hashes->salts_cnt; salt_pos++) { weak_hash_check (opencl_ctx, device_param, hashconfig, hashes, salt_pos); } // Display hack, guarantee that there is at least one \r before real start //if (user_options->quiet == false) log_info (""); } /** * status and monitor threads */ uint inner_threads_cnt = 0; hc_thread_t *inner_threads = (hc_thread_t *) mycalloc (10, sizeof (hc_thread_t)); data.shutdown_inner = 0; /** * Outfile remove */ if (user_options->keyspace == false && user_options->benchmark == false && user_options->stdout_flag == false) { hc_thread_create (inner_threads[inner_threads_cnt], thread_monitor, NULL); inner_threads_cnt++; if (user_options->outfile_check_timer != 0) { if (data.outfile_check_directory != NULL) { if ((hashconfig->hash_mode != 5200) && !((hashconfig->hash_mode >= 6200) && (hashconfig->hash_mode <= 6299)) && !((hashconfig->hash_mode >= 13700) && (hashconfig->hash_mode <= 13799)) && (hashconfig->hash_mode != 9000)) { hc_thread_create (inner_threads[inner_threads_cnt], thread_outfile_remove, NULL); inner_threads_cnt++; } else { user_options->outfile_check_timer = 0; } } else { user_options->outfile_check_timer = 0; } } } data.outfile_check_timer = user_options->outfile_check_timer; /** * main loop */ if (user_options->quiet == false) { if (potfile_remove_cracks > 0) { if (potfile_remove_cracks == 1) log_info ("INFO: Removed 1 hash found in potfile\n"); else log_info ("INFO: Removed %d hashes found in potfile\n", potfile_remove_cracks); } } char **induction_dictionaries = NULL; int induction_dictionaries_cnt = 0; hcstat_table_t *root_table_buf = NULL; hcstat_table_t *markov_table_buf = NULL; uint initial_restore_done = 0; data.maskcnt = maskcnt; for (uint maskpos = rd->maskpos; maskpos < maskcnt; maskpos++) { //opencl_ctx->run_main_level1 = true; //opencl_ctx->run_main_level2 = true; opencl_ctx->run_main_level3 = true; opencl_ctx->run_thread_level1 = true; opencl_ctx->run_thread_level2 = true; if (maskpos > rd->maskpos) { rd->dictpos = 0; } rd->maskpos = maskpos; data.maskpos = maskpos; if (user_options->attack_mode == ATTACK_MODE_HYBRID1 || user_options->attack_mode == ATTACK_MODE_HYBRID2 || user_options->attack_mode == ATTACK_MODE_BF) { char *mask = masks[maskpos]; if (mask_from_file == 1) { if (mask[0] == '\\' && mask[1] == '#') mask++; // escaped comment sign (sharp) "\#" char *str_ptr; uint str_pos; uint mask_offset = 0; uint separator_cnt; for (separator_cnt = 0; separator_cnt < 4; separator_cnt++) { str_ptr = strstr (mask + mask_offset, ","); if (str_ptr == NULL) break; str_pos = str_ptr - mask; // escaped separator, i.e. "\," if (str_pos > 0) { if (mask[str_pos - 1] == '\\') { separator_cnt --; mask_offset = str_pos + 1; continue; } } // reset the offset mask_offset = 0; mask[str_pos] = '\0'; switch (separator_cnt) { case 0: mp_reset_usr (mp_usr, 0); user_options->custom_charset_1 = mask; mp_setup_usr (mp_sys, mp_usr, user_options->custom_charset_1, 0, hashconfig); break; case 1: mp_reset_usr (mp_usr, 1); user_options->custom_charset_2 = mask; mp_setup_usr (mp_sys, mp_usr, user_options->custom_charset_2, 1, hashconfig); break; case 2: mp_reset_usr (mp_usr, 2); user_options->custom_charset_3 = mask; mp_setup_usr (mp_sys, mp_usr, user_options->custom_charset_3, 2, hashconfig); break; case 3: mp_reset_usr (mp_usr, 3); user_options->custom_charset_4 = mask; mp_setup_usr (mp_sys, mp_usr, user_options->custom_charset_4, 3, hashconfig); break; } mask = mask + str_pos + 1; } /** * What follows is a very special case where "\," is within the mask field of a line in a .hcmask file only because otherwise (without the "\") * it would be interpreted as a custom charset definition. * * We need to replace all "\," with just "," within the mask (but allow the special case "\\," which means "\" followed by ",") * Note: "\\" is not needed to replace all "\" within the mask! The meaning of "\\" within a line containing the string "\\," is just to allow "\" followed by "," */ uint mask_len_cur = strlen (mask); uint mask_out_pos = 0; char mask_prev = 0; for (uint mask_iter = 0; mask_iter < mask_len_cur; mask_iter++, mask_out_pos++) { if (mask[mask_iter] == ',') { if (mask_prev == '\\') { mask_out_pos -= 1; // this means: skip the previous "\" } } mask_prev = mask[mask_iter]; mask[mask_out_pos] = mask[mask_iter]; } mask[mask_out_pos] = '\0'; } if ((user_options->attack_mode == ATTACK_MODE_HYBRID1) || (user_options->attack_mode == ATTACK_MODE_HYBRID2)) { if (maskpos > 0) { local_free (css_buf); local_free (data.root_css_buf); local_free (data.markov_css_buf); local_free (masks[maskpos - 1]); } css_buf = mp_gen_css (mask, strlen (mask), mp_sys, mp_usr, &css_cnt, hashconfig); data.mask = mask; data.css_cnt = css_cnt; data.css_buf = css_buf; uint uniq_tbls[SP_PW_MAX][CHARSIZ] = { { 0 } }; mp_css_to_uniq_tbl (css_cnt, css_buf, uniq_tbls); if (root_table_buf == NULL) root_table_buf = (hcstat_table_t *) mycalloc (SP_ROOT_CNT, sizeof (hcstat_table_t)); if (markov_table_buf == NULL) markov_table_buf = (hcstat_table_t *) mycalloc (SP_MARKOV_CNT, sizeof (hcstat_table_t)); sp_setup_tbl (folder_config->shared_dir, user_options->markov_hcstat, user_options->markov_disable, user_options->markov_classic, root_table_buf, markov_table_buf); cs_t *root_css_buf = (cs_t *) mycalloc (SP_PW_MAX, sizeof (cs_t)); cs_t *markov_css_buf = (cs_t *) mycalloc (SP_PW_MAX * CHARSIZ, sizeof (cs_t)); data.root_css_buf = root_css_buf; data.markov_css_buf = markov_css_buf; sp_tbl_to_css (root_table_buf, markov_table_buf, root_css_buf, markov_css_buf, user_options->markov_threshold, uniq_tbls); data.combs_cnt = sp_get_sum (0, css_cnt, root_css_buf); local_free (root_table_buf); local_free (markov_table_buf); // args for (uint device_id = 0; device_id < opencl_ctx->devices_cnt; device_id++) { hc_device_param_t *device_param = &opencl_ctx->devices_param[device_id]; if (device_param->skipped) continue; device_param->kernel_params_mp[0] = &device_param->d_combs; device_param->kernel_params_mp[1] = &device_param->d_root_css_buf; device_param->kernel_params_mp[2] = &device_param->d_markov_css_buf; device_param->kernel_params_mp_buf64[3] = 0; device_param->kernel_params_mp_buf32[4] = css_cnt; device_param->kernel_params_mp_buf32[5] = 0; device_param->kernel_params_mp_buf32[6] = 0; device_param->kernel_params_mp_buf32[7] = 0; if (user_options->attack_mode == ATTACK_MODE_HYBRID1) { if (hashconfig->opts_type & OPTS_TYPE_PT_ADD01) device_param->kernel_params_mp_buf32[5] = full01; if (hashconfig->opts_type & OPTS_TYPE_PT_ADD80) device_param->kernel_params_mp_buf32[5] = full80; if (hashconfig->opts_type & OPTS_TYPE_PT_ADDBITS14) device_param->kernel_params_mp_buf32[6] = 1; if (hashconfig->opts_type & OPTS_TYPE_PT_ADDBITS15) device_param->kernel_params_mp_buf32[7] = 1; } else if (user_options->attack_mode == ATTACK_MODE_HYBRID2) { device_param->kernel_params_mp_buf32[5] = 0; device_param->kernel_params_mp_buf32[6] = 0; device_param->kernel_params_mp_buf32[7] = 0; } cl_int CL_err = CL_SUCCESS; for (uint i = 0; i < 3; i++) CL_err |= hc_clSetKernelArg (opencl_ctx->ocl, device_param->kernel_mp, i, sizeof (cl_mem), (void *) device_param->kernel_params_mp[i]); for (uint i = 3; i < 4; i++) CL_err |= hc_clSetKernelArg (opencl_ctx->ocl, device_param->kernel_mp, i, sizeof (cl_ulong), (void *) device_param->kernel_params_mp[i]); for (uint i = 4; i < 8; i++) CL_err |= hc_clSetKernelArg (opencl_ctx->ocl, device_param->kernel_mp, i, sizeof (cl_uint), (void *) device_param->kernel_params_mp[i]); if (CL_err != CL_SUCCESS) { log_error ("ERROR: clSetKernelArg(): %s\n", val2cstr_cl (CL_err)); return -1; } CL_err |= hc_clEnqueueWriteBuffer (opencl_ctx->ocl, device_param->command_queue, device_param->d_root_css_buf, CL_TRUE, 0, device_param->size_root_css, root_css_buf, 0, NULL, NULL); CL_err |= hc_clEnqueueWriteBuffer (opencl_ctx->ocl, device_param->command_queue, device_param->d_markov_css_buf, CL_TRUE, 0, device_param->size_markov_css, markov_css_buf, 0, NULL, NULL); if (CL_err != CL_SUCCESS) { log_error ("ERROR: clEnqueueWriteBuffer(): %s\n", val2cstr_cl (CL_err)); return -1; } } } else if (user_options->attack_mode == ATTACK_MODE_BF) { dictcnt = 0; // number of "sub-masks", i.e. when using incremental mode if (user_options->increment == true) { for (uint i = 0; i < dictcnt; i++) { local_free (dictfiles[i]); } for (uint pw_len = MAX (1, pw_min); pw_len <= pw_max; pw_len++) { char *l1_filename = mp_get_truncated_mask (mask, strlen (mask), pw_len); if (l1_filename == NULL) break; dictcnt++; dictfiles[dictcnt - 1] = l1_filename; } } else { dictcnt++; dictfiles[dictcnt - 1] = mask; } if (dictcnt == 0) { log_error ("ERROR: Mask is too small"); return -1; } } } free (induction_dictionaries); // induction_dictionaries_cnt = 0; // implied if (user_options->attack_mode != ATTACK_MODE_BF) { if ((user_options->keyspace == false) && (user_options->benchmark == false) && (user_options->opencl_info == false)) { induction_dictionaries = scan_directory (induction_directory); induction_dictionaries_cnt = count_dictionaries (induction_dictionaries); } } if (induction_dictionaries_cnt) { qsort (induction_dictionaries, induction_dictionaries_cnt, sizeof (char *), sort_by_mtime); } /** * prevent the user from using --skip/--limit together w/ maskfile and or dictfile */ if (user_options->skip != 0 || user_options->limit != 0) { if ((maskcnt > 1) || (dictcnt > 1)) { log_error ("ERROR: --skip/--limit are not supported with --increment or mask files"); return -1; } } /** * prevent the user from using --keyspace together w/ maskfile and or dictfile */ if (user_options->keyspace == true) { if ((maskcnt > 1) || (dictcnt > 1)) { log_error ("ERROR: --keyspace is not supported with --increment or mask files"); return -1; } } for (uint dictpos = rd->dictpos; dictpos < dictcnt; dictpos++) { if (opencl_ctx->run_main_level3 == false) break; //opencl_ctx->run_main_level1 = true; //opencl_ctx->run_main_level2 = true; //opencl_ctx->run_main_level3 = true; opencl_ctx->run_thread_level1 = true; opencl_ctx->run_thread_level2 = true; rd->dictpos = dictpos; char *subid = logfile_generate_subid (); data.subid = subid; logfile_sub_msg ("START"); memset (data.words_progress_done, 0, hashes->salts_cnt * sizeof (u64)); memset (data.words_progress_rejected, 0, hashes->salts_cnt * sizeof (u64)); memset (data.words_progress_restored, 0, hashes->salts_cnt * sizeof (u64)); memset (data.cpt_buf, 0, CPT_BUF * sizeof (cpt_t)); data.cpt_pos = 0; data.cpt_start = time (NULL); data.cpt_total = 0; if (user_options->restore == false) { rd->words_cur = user_options->skip; user_options->skip = 0; } data.ms_paused = 0; data.kernel_power_final = 0; data.words_cur = rd->words_cur; for (uint device_id = 0; device_id < opencl_ctx->devices_cnt; device_id++) { hc_device_param_t *device_param = &opencl_ctx->devices_param[device_id]; if (device_param->skipped) continue; device_param->speed_pos = 0; memset (device_param->speed_cnt, 0, SPEED_CACHE * sizeof (u64)); memset (device_param->speed_ms, 0, SPEED_CACHE * sizeof (double)); device_param->exec_pos = 0; memset (device_param->exec_ms, 0, EXEC_CACHE * sizeof (double)); device_param->outerloop_pos = 0; device_param->outerloop_left = 0; device_param->innerloop_pos = 0; device_param->innerloop_left = 0; // some more resets: if (device_param->pws_buf) memset (device_param->pws_buf, 0, device_param->size_pws); device_param->pws_cnt = 0; device_param->words_off = 0; device_param->words_done = 0; } // figure out some workload if (user_options->attack_mode == ATTACK_MODE_STRAIGHT) { if (user_options_extra->wordlist_mode == WL_MODE_FILE) { char *dictfile = NULL; if (induction_dictionaries_cnt) { dictfile = induction_dictionaries[0]; } else { dictfile = dictfiles[dictpos]; } data.dictfile = dictfile; logfile_sub_string (dictfile); for (uint i = 0; i < user_options->rp_files_cnt; i++) { logfile_sub_var_string ("rulefile", user_options->rp_files[i]); } FILE *fd2 = fopen (dictfile, "rb"); if (fd2 == NULL) { log_error ("ERROR: %s: %s", dictfile, strerror (errno)); return -1; } data.words_cnt = count_words (wl_data, user_options, user_options_extra, fd2, dictfile, dictstat_ctx); fclose (fd2); if (data.words_cnt == 0) { logfile_sub_msg ("STOP"); continue; } } } else if (user_options->attack_mode == ATTACK_MODE_COMBI) { char *dictfile = data.dictfile; char *dictfile2 = data.dictfile2; logfile_sub_string (dictfile); logfile_sub_string (dictfile2); if (data.combs_mode == COMBINATOR_MODE_BASE_LEFT) { FILE *fd2 = fopen (dictfile, "rb"); if (fd2 == NULL) { log_error ("ERROR: %s: %s", dictfile, strerror (errno)); return -1; } data.words_cnt = count_words (wl_data, user_options, user_options_extra, fd2, dictfile, dictstat_ctx); fclose (fd2); } else if (data.combs_mode == COMBINATOR_MODE_BASE_RIGHT) { FILE *fd2 = fopen (dictfile2, "rb"); if (fd2 == NULL) { log_error ("ERROR: %s: %s", dictfile2, strerror (errno)); return -1; } data.words_cnt = count_words (wl_data, user_options, user_options_extra, fd2, dictfile2, dictstat_ctx); fclose (fd2); } if (data.words_cnt == 0) { logfile_sub_msg ("STOP"); continue; } } else if ((user_options->attack_mode == ATTACK_MODE_HYBRID1) || (user_options->attack_mode == ATTACK_MODE_HYBRID2)) { char *dictfile = NULL; if (induction_dictionaries_cnt) { dictfile = induction_dictionaries[0]; } else { dictfile = dictfiles[dictpos]; } data.dictfile = dictfile; char *mask = data.mask; logfile_sub_string (dictfile); logfile_sub_string (mask); FILE *fd2 = fopen (dictfile, "rb"); if (fd2 == NULL) { log_error ("ERROR: %s: %s", dictfile, strerror (errno)); return -1; } data.words_cnt = count_words (wl_data, user_options, user_options_extra, fd2, dictfile, dictstat_ctx); fclose (fd2); if (data.words_cnt == 0) { logfile_sub_msg ("STOP"); continue; } } else if (user_options->attack_mode == ATTACK_MODE_BF) { local_free (css_buf); local_free (data.root_css_buf); local_free (data.markov_css_buf); char *mask = dictfiles[dictpos]; logfile_sub_string (mask); // base css_buf = mp_gen_css (mask, strlen (mask), mp_sys, mp_usr, &css_cnt, hashconfig); if (hashconfig->opts_type & OPTS_TYPE_PT_UNICODE) { uint css_cnt_unicode = css_cnt * 2; cs_t *css_buf_unicode = (cs_t *) mycalloc (css_cnt_unicode, sizeof (cs_t)); for (uint i = 0, j = 0; i < css_cnt; i += 1, j += 2) { memcpy (&css_buf_unicode[j + 0], &css_buf[i], sizeof (cs_t)); css_buf_unicode[j + 1].cs_buf[0] = 0; css_buf_unicode[j + 1].cs_len = 1; } free (css_buf); css_buf = css_buf_unicode; css_cnt = css_cnt_unicode; } // check if mask is not too large or too small for pw_min/pw_max (*2 if unicode) uint mask_min = pw_min; uint mask_max = pw_max; if (hashconfig->opts_type & OPTS_TYPE_PT_UNICODE) { mask_min *= 2; mask_max *= 2; } if ((css_cnt < mask_min) || (css_cnt > mask_max)) { if (css_cnt < mask_min) { log_info ("WARNING: Skipping mask '%s' because it is smaller than the minimum password length", mask); } if (css_cnt > mask_max) { log_info ("WARNING: Skipping mask '%s' because it is larger than the maximum password length", mask); } // skip to next mask logfile_sub_msg ("STOP"); continue; } uint save_css_cnt = css_cnt; if (hashconfig->opti_type & OPTI_TYPE_SINGLE_HASH) { if (hashconfig->opti_type & OPTI_TYPE_APPENDED_SALT) { uint salt_len = (uint) hashes->salts_buf[0].salt_len; char *salt_buf = (char *) hashes->salts_buf[0].salt_buf; uint css_cnt_salt = css_cnt + salt_len; cs_t *css_buf_salt = (cs_t *) mycalloc (css_cnt_salt, sizeof (cs_t)); memcpy (css_buf_salt, css_buf, css_cnt * sizeof (cs_t)); for (uint i = 0, j = css_cnt; i < salt_len; i++, j++) { css_buf_salt[j].cs_buf[0] = salt_buf[i]; css_buf_salt[j].cs_len = 1; } free (css_buf); css_buf = css_buf_salt; css_cnt = css_cnt_salt; } } data.mask = mask; data.css_cnt = css_cnt; data.css_buf = css_buf; if (maskpos > 0 && dictpos == 0) free (masks[maskpos - 1]); uint uniq_tbls[SP_PW_MAX][CHARSIZ] = { { 0 } }; mp_css_to_uniq_tbl (css_cnt, css_buf, uniq_tbls); if (root_table_buf == NULL) root_table_buf = (hcstat_table_t *) mycalloc (SP_ROOT_CNT, sizeof (hcstat_table_t)); if (markov_table_buf == NULL) markov_table_buf = (hcstat_table_t *) mycalloc (SP_MARKOV_CNT, sizeof (hcstat_table_t)); sp_setup_tbl (folder_config->shared_dir, user_options->markov_hcstat, user_options->markov_disable, user_options->markov_classic, root_table_buf, markov_table_buf); cs_t *root_css_buf = (cs_t *) mycalloc (SP_PW_MAX, sizeof (cs_t)); cs_t *markov_css_buf = (cs_t *) mycalloc (SP_PW_MAX * CHARSIZ, sizeof (cs_t)); data.root_css_buf = root_css_buf; data.markov_css_buf = markov_css_buf; sp_tbl_to_css (root_table_buf, markov_table_buf, root_css_buf, markov_css_buf, user_options->markov_threshold, uniq_tbls); data.words_cnt = sp_get_sum (0, css_cnt, root_css_buf); local_free (root_table_buf); local_free (markov_table_buf); // copy + args uint css_cnt_l = css_cnt; uint css_cnt_r; if (hashconfig->attack_exec == ATTACK_EXEC_INSIDE_KERNEL) { if (save_css_cnt < 6) { css_cnt_r = 1; } else if (save_css_cnt == 6) { css_cnt_r = 2; } else { if (hashconfig->opts_type & OPTS_TYPE_PT_UNICODE) { if (save_css_cnt == 8 || save_css_cnt == 10) { css_cnt_r = 2; } else { css_cnt_r = 4; } } else { if ((css_buf[0].cs_len * css_buf[1].cs_len * css_buf[2].cs_len) > 256) { css_cnt_r = 3; } else { css_cnt_r = 4; } } } } else { css_cnt_r = 1; /* unfinished code? int sum = css_buf[css_cnt_r - 1].cs_len; for (uint i = 1; i < 4 && i < css_cnt; i++) { if (sum > 1) break; // we really don't need alot of amplifier them for slow hashes css_cnt_r++; sum *= css_buf[css_cnt_r - 1].cs_len; } */ } css_cnt_l -= css_cnt_r; data.bfs_cnt = sp_get_sum (0, css_cnt_r, root_css_buf); for (uint device_id = 0; device_id < opencl_ctx->devices_cnt; device_id++) { hc_device_param_t *device_param = &opencl_ctx->devices_param[device_id]; if (device_param->skipped) continue; device_param->kernel_params_mp_l[0] = &device_param->d_pws_buf; device_param->kernel_params_mp_l[1] = &device_param->d_root_css_buf; device_param->kernel_params_mp_l[2] = &device_param->d_markov_css_buf; device_param->kernel_params_mp_l_buf64[3] = 0; device_param->kernel_params_mp_l_buf32[4] = css_cnt_l; device_param->kernel_params_mp_l_buf32[5] = css_cnt_r; device_param->kernel_params_mp_l_buf32[6] = 0; device_param->kernel_params_mp_l_buf32[7] = 0; device_param->kernel_params_mp_l_buf32[8] = 0; if (hashconfig->opts_type & OPTS_TYPE_PT_ADD01) device_param->kernel_params_mp_l_buf32[6] = full01; if (hashconfig->opts_type & OPTS_TYPE_PT_ADD80) device_param->kernel_params_mp_l_buf32[6] = full80; if (hashconfig->opts_type & OPTS_TYPE_PT_ADDBITS14) device_param->kernel_params_mp_l_buf32[7] = 1; if (hashconfig->opts_type & OPTS_TYPE_PT_ADDBITS15) device_param->kernel_params_mp_l_buf32[8] = 1; device_param->kernel_params_mp_r[0] = &device_param->d_bfs; device_param->kernel_params_mp_r[1] = &device_param->d_root_css_buf; device_param->kernel_params_mp_r[2] = &device_param->d_markov_css_buf; device_param->kernel_params_mp_r_buf64[3] = 0; device_param->kernel_params_mp_r_buf32[4] = css_cnt_r; device_param->kernel_params_mp_r_buf32[5] = 0; device_param->kernel_params_mp_r_buf32[6] = 0; device_param->kernel_params_mp_r_buf32[7] = 0; cl_int CL_err = CL_SUCCESS; for (uint i = 0; i < 3; i++) CL_err |= hc_clSetKernelArg (opencl_ctx->ocl, device_param->kernel_mp_l, i, sizeof (cl_mem), (void *) device_param->kernel_params_mp_l[i]); for (uint i = 3; i < 4; i++) CL_err |= hc_clSetKernelArg (opencl_ctx->ocl, device_param->kernel_mp_l, i, sizeof (cl_ulong), (void *) device_param->kernel_params_mp_l[i]); for (uint i = 4; i < 9; i++) CL_err |= hc_clSetKernelArg (opencl_ctx->ocl, device_param->kernel_mp_l, i, sizeof (cl_uint), (void *) device_param->kernel_params_mp_l[i]); for (uint i = 0; i < 3; i++) CL_err |= hc_clSetKernelArg (opencl_ctx->ocl, device_param->kernel_mp_r, i, sizeof (cl_mem), (void *) device_param->kernel_params_mp_r[i]); for (uint i = 3; i < 4; i++) CL_err |= hc_clSetKernelArg (opencl_ctx->ocl, device_param->kernel_mp_r, i, sizeof (cl_ulong), (void *) device_param->kernel_params_mp_r[i]); for (uint i = 4; i < 8; i++) CL_err |= hc_clSetKernelArg (opencl_ctx->ocl, device_param->kernel_mp_r, i, sizeof (cl_uint), (void *) device_param->kernel_params_mp_r[i]); if (CL_err != CL_SUCCESS) { log_error ("ERROR: clSetKernelArg(): %s\n", val2cstr_cl (CL_err)); return -1; } CL_err |= hc_clEnqueueWriteBuffer (opencl_ctx->ocl, device_param->command_queue, device_param->d_root_css_buf, CL_TRUE, 0, device_param->size_root_css, root_css_buf, 0, NULL, NULL); CL_err |= hc_clEnqueueWriteBuffer (opencl_ctx->ocl, device_param->command_queue, device_param->d_markov_css_buf, CL_TRUE, 0, device_param->size_markov_css, markov_css_buf, 0, NULL, NULL); if (CL_err != CL_SUCCESS) { log_error ("ERROR: clEnqueueWriteBuffer(): %s\n", val2cstr_cl (CL_err)); return -1; } } } u64 words_base = data.words_cnt; if (user_options_extra->attack_kern == ATTACK_KERN_STRAIGHT) { if (data.kernel_rules_cnt) { words_base /= data.kernel_rules_cnt; } } else if (user_options_extra->attack_kern == ATTACK_KERN_COMBI) { if (data.combs_cnt) { words_base /= data.combs_cnt; } } else if (user_options_extra->attack_kern == ATTACK_KERN_BF) { if (data.bfs_cnt) { words_base /= data.bfs_cnt; } } data.words_base = words_base; if (user_options->keyspace == true) { log_info ("%" PRIu64 "", words_base); return 0; } if (data.words_cur > data.words_base) { log_error ("ERROR: Restore value greater keyspace"); return -1; } if (data.words_cur) { if (user_options_extra->attack_kern == ATTACK_KERN_STRAIGHT) { for (uint i = 0; i < hashes->salts_cnt; i++) { data.words_progress_restored[i] = data.words_cur * data.kernel_rules_cnt; } } else if (user_options_extra->attack_kern == ATTACK_KERN_COMBI) { for (uint i = 0; i < hashes->salts_cnt; i++) { data.words_progress_restored[i] = data.words_cur * data.combs_cnt; } } else if (user_options_extra->attack_kern == ATTACK_KERN_BF) { for (uint i = 0; i < hashes->salts_cnt; i++) { data.words_progress_restored[i] = data.words_cur * data.bfs_cnt; } } } /* * Update dictionary statistic */ if (user_options->keyspace == false) { dictstat_write (dictstat_ctx); } /** * Update loopback file */ if (user_options->loopback == true) { loopback_write_open (loopback_ctx, induction_directory); } /** * some algorithms have a maximum kernel-loops count */ for (uint device_id = 0; device_id < opencl_ctx->devices_cnt; device_id++) { hc_device_param_t *device_param = &opencl_ctx->devices_param[device_id]; if (device_param->skipped) continue; if (device_param->kernel_loops_min < device_param->kernel_loops_max) { u32 innerloop_cnt = 0; if (hashconfig->attack_exec == ATTACK_EXEC_INSIDE_KERNEL) { if (user_options_extra->attack_kern == ATTACK_KERN_STRAIGHT) innerloop_cnt = data.kernel_rules_cnt; else if (user_options_extra->attack_kern == ATTACK_KERN_COMBI) innerloop_cnt = data.combs_cnt; else if (user_options_extra->attack_kern == ATTACK_KERN_BF) innerloop_cnt = data.bfs_cnt; } else { innerloop_cnt = hashes->salts_buf[0].salt_iter; } if ((innerloop_cnt >= device_param->kernel_loops_min) && (innerloop_cnt <= device_param->kernel_loops_max)) { device_param->kernel_loops_max = innerloop_cnt; } } } /** * create autotune threads */ hc_thread_t *c_threads = (hc_thread_t *) mycalloc (opencl_ctx->devices_cnt, sizeof (hc_thread_t)); opencl_ctx->devices_status = STATUS_AUTOTUNE; for (uint device_id = 0; device_id < opencl_ctx->devices_cnt; device_id++) { hc_device_param_t *device_param = &opencl_ctx->devices_param[device_id]; hc_thread_create (c_threads[device_id], thread_autotune, device_param); } hc_thread_wait (opencl_ctx->devices_cnt, c_threads); /* * Inform user about possible slow speeds */ uint hardware_power_all = 0; uint kernel_power_all = 0; for (uint device_id = 0; device_id < opencl_ctx->devices_cnt; device_id++) { hc_device_param_t *device_param = &opencl_ctx->devices_param[device_id]; hardware_power_all += device_param->hardware_power; kernel_power_all += device_param->kernel_power; } data.hardware_power_all = hardware_power_all; // hardware_power_all is the same as kernel_power_all but without the influence of kernel_accel on the devices data.kernel_power_all = kernel_power_all; if ((user_options_extra->wordlist_mode == WL_MODE_FILE) || (user_options_extra->wordlist_mode == WL_MODE_MASK)) { if (data.words_base < kernel_power_all) { if (user_options->quiet == false) { clear_prompt (); log_info ("ATTENTION!"); log_info (" The wordlist or mask you are using is too small."); log_info (" Therefore, hashcat is unable to utilize the full parallelization power of your device(s)."); log_info (" The cracking speed will drop."); log_info (" Workaround: https://hashcat.net/wiki/doku.php?id=frequently_asked_questions#how_to_create_more_work_for_full_speed"); log_info (""); } } } /** * create cracker threads */ opencl_ctx->devices_status = STATUS_RUNNING; if (initial_restore_done == 0) { if (user_options->restore_disable == false) cycle_restore (opencl_ctx); initial_restore_done = 1; } hc_timer_set (&data.timer_running); if ((user_options_extra->wordlist_mode == WL_MODE_FILE) || (user_options_extra->wordlist_mode == WL_MODE_MASK)) { if ((user_options->quiet == false) && (user_options->status == false) && (user_options->benchmark == false)) { if (user_options->quiet == false) send_prompt (); } } else if (user_options_extra->wordlist_mode == WL_MODE_STDIN) { if (user_options->quiet == false) log_info ("Starting attack in stdin mode..."); if (user_options->quiet == false) log_info (""); } time_t runtime_start; time (&runtime_start); data.runtime_start = runtime_start; data.prepare_time += runtime_start - prepare_start; for (uint device_id = 0; device_id < opencl_ctx->devices_cnt; device_id++) { hc_device_param_t *device_param = &opencl_ctx->devices_param[device_id]; if (user_options_extra->wordlist_mode == WL_MODE_STDIN) { hc_thread_create (c_threads[device_id], thread_calc_stdin, device_param); } else { hc_thread_create (c_threads[device_id], thread_calc, device_param); } } hc_thread_wait (opencl_ctx->devices_cnt, c_threads); local_free (c_threads); if ((opencl_ctx->devices_status != STATUS_CRACKED) && (opencl_ctx->devices_status != STATUS_ABORTED) && (opencl_ctx->devices_status != STATUS_QUIT) && (opencl_ctx->devices_status != STATUS_BYPASS)) { opencl_ctx->devices_status = STATUS_EXHAUSTED; } logfile_sub_var_uint ("status-after-work", opencl_ctx->devices_status); user_options->restore = false; if (induction_dictionaries_cnt) { unlink (induction_dictionaries[0]); } free (induction_dictionaries); if (user_options->attack_mode != ATTACK_MODE_BF) { if ((user_options->keyspace == false) && (user_options->benchmark == false) && (user_options->opencl_info == false)) { induction_dictionaries = scan_directory (induction_directory); induction_dictionaries_cnt = count_dictionaries (induction_dictionaries); } } if (user_options->benchmark == true) { status_benchmark (opencl_ctx, hashconfig, user_options); if (user_options->machine_readable == false) { log_info (""); } } else { if (user_options->quiet == false) { clear_prompt (); log_info (""); status_display (opencl_ctx, hashconfig, hashes, user_options, user_options_extra); log_info (""); } else { if (user_options->status == true) { status_display (opencl_ctx, hashconfig, hashes, user_options, user_options_extra); } } } if (induction_dictionaries_cnt) { qsort (induction_dictionaries, induction_dictionaries_cnt, sizeof (char *), sort_by_mtime); // yeah, this next statement is a little hack to make sure that --loopback runs correctly (because with it we guarantee that the loop iterates one more time) dictpos--; } /** * Update loopback file */ if (user_options->loopback == true) { loopback_write_close (loopback_ctx); } time_t runtime_stop; time (&runtime_stop); data.runtime_stop = runtime_stop; logfile_sub_uint (runtime_start); logfile_sub_uint (runtime_stop); time (&prepare_start); logfile_sub_msg ("STOP"); global_free (subid); // finalize task if (opencl_ctx->run_main_level3 == false) break; } if (opencl_ctx->run_main_level2 == false) break; } // problems could occur if already at startup everything was cracked (because of .pot file reading etc), we must set some variables here to avoid NULL pointers if (user_options->attack_mode == ATTACK_MODE_STRAIGHT) { if (user_options_extra->wordlist_mode == WL_MODE_FILE) { if (data.dictfile == NULL) { if (dictfiles != NULL) { data.dictfile = dictfiles[0]; hc_timer_set (&data.timer_running); } } } } // NOTE: combi is okay because it is already set beforehand else if (user_options->attack_mode == ATTACK_MODE_HYBRID1 || user_options->attack_mode == ATTACK_MODE_HYBRID2) { if (data.dictfile == NULL) { if (dictfiles != NULL) { hc_timer_set (&data.timer_running); data.dictfile = dictfiles[0]; } } } else if (user_options->attack_mode == ATTACK_MODE_BF) { if (data.mask == NULL) { hc_timer_set (&data.timer_running); data.mask = masks[0]; } } // if cracked / aborted remove last induction dictionary for (int file_pos = 0; file_pos < induction_dictionaries_cnt; file_pos++) { struct stat induct_stat; if (stat (induction_dictionaries[file_pos], &induct_stat) == 0) { unlink (induction_dictionaries[file_pos]); } } // wait for inner threads data.shutdown_inner = 1; for (uint thread_idx = 0; thread_idx < inner_threads_cnt; thread_idx++) { hc_thread_wait (1, &inner_threads[thread_idx]); } local_free (inner_threads); // we dont need restore file anymore if (user_options->restore_disable == false) { if ((opencl_ctx->devices_status == STATUS_EXHAUSTED) || (opencl_ctx->devices_status == STATUS_CRACKED)) { unlink (eff_restore_file); unlink (new_restore_file); } else { cycle_restore (opencl_ctx); } } // finally save left hashes if ((hashes->hashlist_mode == HL_MODE_FILE) && (user_options->remove == 1) && (hashes->digests_saved != hashes->digests_done)) { save_hash (user_options, hashconfig, hashes); } /** * Clean up */ // reset default fan speed if (user_options->gpu_temp_disable == false) { if (user_options->gpu_temp_retain) { hc_thread_mutex_lock (mux_hwmon); for (uint device_id = 0; device_id < opencl_ctx->devices_cnt; device_id++) { hc_device_param_t *device_param = &opencl_ctx->devices_param[device_id]; if (device_param->skipped) continue; if (data.hm_device[device_id].fan_set_supported == 1) { int rc = -1; if (device_param->device_vendor_id == VENDOR_ID_AMD) { rc = hm_set_fanspeed_with_device_id_adl (device_id, 100, 0); } else if (device_param->device_vendor_id == VENDOR_ID_NV) { #if defined (__linux__) rc = set_fan_control (data.hm_xnvctrl, data.hm_device[device_id].xnvctrl, NV_CTRL_GPU_COOLER_MANUAL_CONTROL_FALSE); #endif #if defined (_WIN) rc = hm_set_fanspeed_with_device_id_nvapi (device_id, 100, 0); #endif } if (rc == -1) log_info ("WARNING: Failed to restore default fan speed and policy for device #%", device_id + 1); } } hc_thread_mutex_unlock (mux_hwmon); } } // reset power tuning if (user_options->powertune_enable == true) { hc_thread_mutex_lock (mux_hwmon); for (uint device_id = 0; device_id < opencl_ctx->devices_cnt; device_id++) { hc_device_param_t *device_param = &opencl_ctx->devices_param[device_id]; if (device_param->skipped) continue; if (opencl_ctx->devices_param[device_id].device_vendor_id == VENDOR_ID_AMD) { if (data.hm_device[device_id].od_version == 6) { // check powertune capabilities first, if not available then skip device int powertune_supported = 0; if ((hm_ADL_Overdrive6_PowerControl_Caps (data.hm_adl, data.hm_device[device_id].adl, &powertune_supported)) != ADL_OK) { log_error ("ERROR: Failed to get ADL PowerControl Capabilities"); return -1; } if (powertune_supported != 0) { // powercontrol settings if ((hm_ADL_Overdrive_PowerControl_Set (data.hm_adl, data.hm_device[device_id].adl, od_power_control_status[device_id])) != ADL_OK) { log_info ("ERROR: Failed to restore the ADL PowerControl values"); return -1; } // clocks ADLOD6StateInfo *performance_state = (ADLOD6StateInfo*) mycalloc (1, sizeof (ADLOD6StateInfo) + sizeof (ADLOD6PerformanceLevel)); performance_state->iNumberOfPerformanceLevels = 2; performance_state->aLevels[0].iEngineClock = od_clock_mem_status[device_id].state.aLevels[0].iEngineClock; performance_state->aLevels[1].iEngineClock = od_clock_mem_status[device_id].state.aLevels[1].iEngineClock; performance_state->aLevels[0].iMemoryClock = od_clock_mem_status[device_id].state.aLevels[0].iMemoryClock; performance_state->aLevels[1].iMemoryClock = od_clock_mem_status[device_id].state.aLevels[1].iMemoryClock; if ((hm_ADL_Overdrive_State_Set (data.hm_adl, data.hm_device[device_id].adl, ADL_OD6_SETSTATE_PERFORMANCE, performance_state)) != ADL_OK) { log_info ("ERROR: Failed to restore ADL performance state"); return -1; } local_free (performance_state); } } } if (opencl_ctx->devices_param[device_id].device_vendor_id == VENDOR_ID_NV) { unsigned int power_limit = nvml_power_limit[device_id]; if (power_limit > 0) { hm_NVML_nvmlDeviceSetPowerManagementLimit (data.hm_nvml, 0, data.hm_device[device_id].nvml, power_limit); } } } hc_thread_mutex_unlock (mux_hwmon); } if (user_options->gpu_temp_disable == false) { if (data.hm_nvml) { hm_NVML_nvmlShutdown (data.hm_nvml); nvml_close (data.hm_nvml); data.hm_nvml = NULL; } if (data.hm_nvapi) { hm_NvAPI_Unload (data.hm_nvapi); nvapi_close (data.hm_nvapi); data.hm_nvapi = NULL; } if (data.hm_xnvctrl) { hm_XNVCTRL_XCloseDisplay (data.hm_xnvctrl); xnvctrl_close (data.hm_xnvctrl); data.hm_xnvctrl = NULL; } if (data.hm_adl) { hm_ADL_Main_Control_Destroy (data.hm_adl); adl_close (data.hm_adl); data.hm_adl = NULL; } } if (opencl_ctx->run_main_level1 == false) break; // free memory opencl_session_destroy (opencl_ctx); opencl_ctx_devices_destroy (opencl_ctx); local_free (masks); debugfile_destroy (debugfile_ctx); outfile_destroy (outfile_ctx); potfile_write_close (potfile_ctx); potfile_destroy (potfile_ctx); dictstat_destroy (dictstat_ctx); loopback_destroy (loopback_ctx); wl_data_destroy (wl_data); local_free (all_kernel_rules_cnt); local_free (all_kernel_rules_buf); local_free (bitmap_s1_a); local_free (bitmap_s1_b); local_free (bitmap_s1_c); local_free (bitmap_s1_d); local_free (bitmap_s2_a); local_free (bitmap_s2_b); local_free (bitmap_s2_c); local_free (bitmap_s2_d); local_free (od_clock_mem_status); local_free (od_power_control_status); local_free (nvml_power_limit); global_free (kernel_rules_buf); global_free (root_css_buf); global_free (markov_css_buf); hashes_destroy (hashes); global_free (words_progress_done); global_free (words_progress_rejected); global_free (words_progress_restored); } // wait for outer threads data.shutdown_outer = 1; for (uint thread_idx = 0; thread_idx < outer_threads_cnt; thread_idx++) { hc_thread_wait (1, &outer_threads[thread_idx]); } local_free (outer_threads); // destroy others mutex hc_thread_mutex_delete (mux_display); hc_thread_mutex_delete (mux_hwmon); // free memory local_free (hashconfig); local_free (eff_restore_file); local_free (new_restore_file); local_free (rd); // tuning db tuning_db_destroy (tuning_db); // induction directory if (induction_directory != NULL) { if (rmdir (induction_directory) == -1) { if (errno == ENOENT) { // good, we can ignore } else if (errno == ENOTEMPTY) { // good, we can ignore } else { log_error ("ERROR: %s: %s", induction_directory, strerror (errno)); return -1; } } local_free (induction_directory); } // outfile-check directory if (outfile_check_directory != NULL) { if (rmdir (outfile_check_directory) == -1) { if (errno == ENOENT) { // good, we can ignore } else if (errno == ENOTEMPTY) { // good, we can ignore } else { log_error ("ERROR: %s: %s", outfile_check_directory, strerror (errno)); return -1; } } local_free (outfile_check_directory); } time_t proc_stop; time (&proc_stop); logfile_top_uint (proc_start); logfile_top_uint (proc_stop); logfile_top_msg ("STOP"); if (user_options->quiet == false) log_info_nn ("Started: %s", ctime (&proc_start)); if (user_options->quiet == false) log_info_nn ("Stopped: %s", ctime (&proc_stop)); u32 rc_final = -1; if (opencl_ctx->devices_status == STATUS_ABORTED) rc_final = 2; if (opencl_ctx->devices_status == STATUS_QUIT) rc_final = 2; if (opencl_ctx->devices_status == STATUS_EXHAUSTED) rc_final = 1; if (opencl_ctx->devices_status == STATUS_CRACKED) rc_final = 0; opencl_ctx_destroy (opencl_ctx); folder_config_destroy (folder_config); return rc_final; }