mirror of
https://github.com/hashcat/hashcat.git
synced 2024-12-23 15:18:16 +00:00
611 lines
15 KiB
Common Lisp
611 lines
15 KiB
Common Lisp
/**
|
|
* Author......: See docs/credits.txt
|
|
* License.....: MIT
|
|
*/
|
|
|
|
#ifdef KERNEL_STATIC
|
|
#include "inc_vendor.h"
|
|
#include "inc_types.h"
|
|
#include "inc_platform.cl"
|
|
#include "inc_common.cl"
|
|
#include "inc_hash_sha256.cl"
|
|
#include "inc_cipher_aes.cl"
|
|
#include "inc_cipher_aes-gcm.cl"
|
|
#endif
|
|
|
|
#define COMPARE_S "inc_comp_single.cl"
|
|
#define COMPARE_M "inc_comp_multi.cl"
|
|
|
|
typedef struct exodus_tmp
|
|
{
|
|
#ifndef SCRYPT_TMP_ELEM
|
|
#define SCRYPT_TMP_ELEM 1
|
|
#endif
|
|
|
|
uint4 P[SCRYPT_TMP_ELEM];
|
|
|
|
} exodus_tmp_t;
|
|
|
|
typedef struct exodus
|
|
{
|
|
u32 iv[4];
|
|
u32 data[8];
|
|
u32 tag[4];
|
|
|
|
} exodus_t;
|
|
|
|
#ifdef IS_CUDA
|
|
|
|
inline __device__ uint4 operator & (const uint4 a, const u32 b) { return make_uint4 ((a.x & b ), (a.y & b ), (a.z & b ), (a.w & b )); }
|
|
inline __device__ uint4 operator << (const uint4 a, const u32 b) { return make_uint4 ((a.x << b ), (a.y << b ), (a.z << b ), (a.w << b )); }
|
|
inline __device__ uint4 operator >> (const uint4 a, const u32 b) { return make_uint4 ((a.x >> b ), (a.y >> b ), (a.z >> b ), (a.w >> b )); }
|
|
inline __device__ uint4 operator + (const uint4 a, const uint4 b) { return make_uint4 ((a.x + b.x), (a.y + b.y), (a.z + b.z), (a.w + b.w)); }
|
|
inline __device__ uint4 operator ^ (const uint4 a, const uint4 b) { return make_uint4 ((a.x ^ b.x), (a.y ^ b.y), (a.z ^ b.z), (a.w ^ b.w)); }
|
|
inline __device__ uint4 operator | (const uint4 a, const uint4 b) { return make_uint4 ((a.x | b.x), (a.y | b.y), (a.z | b.z), (a.w | b.w)); }
|
|
inline __device__ void operator ^= ( uint4 &a, const uint4 b) { a.x ^= b.x; a.y ^= b.y; a.z ^= b.z; a.w ^= b.w; }
|
|
|
|
inline __device__ uint4 rotate (const uint4 a, const int n)
|
|
{
|
|
return ((a << n) | ((a >> (32 - n))));
|
|
}
|
|
|
|
#endif
|
|
|
|
DECLSPEC uint4 hc_swap32_4 (uint4 v)
|
|
{
|
|
return (rotate ((v & 0x00FF00FF), 24u) | rotate ((v & 0xFF00FF00), 8u));
|
|
}
|
|
|
|
#define GET_SCRYPT_CNT(r,p) (2 * (r) * 16 * (p))
|
|
#define GET_SMIX_CNT(r,N) (2 * (r) * 16 * (N))
|
|
#define GET_STATE_CNT(r) (2 * (r) * 16)
|
|
|
|
#define SCRYPT_CNT GET_SCRYPT_CNT (SCRYPT_R, SCRYPT_P)
|
|
#define SCRYPT_CNT4 (SCRYPT_CNT / 4)
|
|
#define STATE_CNT GET_STATE_CNT (SCRYPT_R)
|
|
#define STATE_CNT4 (STATE_CNT / 4)
|
|
|
|
#define ADD_ROTATE_XOR(r,i1,i2,s) (r) ^= rotate ((i1) + (i2), (s));
|
|
|
|
#ifdef IS_CUDA
|
|
|
|
#define SALSA20_2R() \
|
|
{ \
|
|
ADD_ROTATE_XOR (X1, X0, X3, 7); \
|
|
ADD_ROTATE_XOR (X2, X1, X0, 9); \
|
|
ADD_ROTATE_XOR (X3, X2, X1, 13); \
|
|
ADD_ROTATE_XOR (X0, X3, X2, 18); \
|
|
\
|
|
X1 = make_uint4 (X1.w, X1.x, X1.y, X1.z); \
|
|
X2 = make_uint4 (X2.z, X2.w, X2.x, X2.y); \
|
|
X3 = make_uint4 (X3.y, X3.z, X3.w, X3.x); \
|
|
\
|
|
ADD_ROTATE_XOR (X3, X0, X1, 7); \
|
|
ADD_ROTATE_XOR (X2, X3, X0, 9); \
|
|
ADD_ROTATE_XOR (X1, X2, X3, 13); \
|
|
ADD_ROTATE_XOR (X0, X1, X2, 18); \
|
|
\
|
|
X1 = make_uint4 (X1.y, X1.z, X1.w, X1.x); \
|
|
X2 = make_uint4 (X2.z, X2.w, X2.x, X2.y); \
|
|
X3 = make_uint4 (X3.w, X3.x, X3.y, X3.z); \
|
|
}
|
|
#else
|
|
#define SALSA20_2R() \
|
|
{ \
|
|
ADD_ROTATE_XOR (X1, X0, X3, 7); \
|
|
ADD_ROTATE_XOR (X2, X1, X0, 9); \
|
|
ADD_ROTATE_XOR (X3, X2, X1, 13); \
|
|
ADD_ROTATE_XOR (X0, X3, X2, 18); \
|
|
\
|
|
X1 = X1.s3012; \
|
|
X2 = X2.s2301; \
|
|
X3 = X3.s1230; \
|
|
\
|
|
ADD_ROTATE_XOR (X3, X0, X1, 7); \
|
|
ADD_ROTATE_XOR (X2, X3, X0, 9); \
|
|
ADD_ROTATE_XOR (X1, X2, X3, 13); \
|
|
ADD_ROTATE_XOR (X0, X1, X2, 18); \
|
|
\
|
|
X1 = X1.s1230; \
|
|
X2 = X2.s2301; \
|
|
X3 = X3.s3012; \
|
|
}
|
|
#endif
|
|
|
|
#define Coord(xd4,y,z) (((xd4) * ySIZE * zSIZE) + ((y) * zSIZE) + (z))
|
|
#define CO Coord(xd4,y,z)
|
|
|
|
DECLSPEC void salsa_r (uint4 *TI)
|
|
{
|
|
uint4 R0 = TI[STATE_CNT4 - 4];
|
|
uint4 R1 = TI[STATE_CNT4 - 3];
|
|
uint4 R2 = TI[STATE_CNT4 - 2];
|
|
uint4 R3 = TI[STATE_CNT4 - 1];
|
|
|
|
for (int i = 0; i < STATE_CNT4; i += 4)
|
|
{
|
|
uint4 Y0 = TI[i + 0];
|
|
uint4 Y1 = TI[i + 1];
|
|
uint4 Y2 = TI[i + 2];
|
|
uint4 Y3 = TI[i + 3];
|
|
|
|
R0 = R0 ^ Y0;
|
|
R1 = R1 ^ Y1;
|
|
R2 = R2 ^ Y2;
|
|
R3 = R3 ^ Y3;
|
|
|
|
uint4 X0 = R0;
|
|
uint4 X1 = R1;
|
|
uint4 X2 = R2;
|
|
uint4 X3 = R3;
|
|
|
|
SALSA20_2R ();
|
|
SALSA20_2R ();
|
|
SALSA20_2R ();
|
|
SALSA20_2R ();
|
|
|
|
R0 = R0 + X0;
|
|
R1 = R1 + X1;
|
|
R2 = R2 + X2;
|
|
R3 = R3 + X3;
|
|
|
|
TI[i + 0] = R0;
|
|
TI[i + 1] = R1;
|
|
TI[i + 2] = R2;
|
|
TI[i + 3] = R3;
|
|
}
|
|
|
|
#if SCRYPT_R > 1
|
|
|
|
uint4 TT[STATE_CNT4 / 2];
|
|
|
|
for (int dst_off = 0, src_off = 4; src_off < STATE_CNT4; dst_off += 4, src_off += 8)
|
|
{
|
|
TT[dst_off + 0] = TI[src_off + 0];
|
|
TT[dst_off + 1] = TI[src_off + 1];
|
|
TT[dst_off + 2] = TI[src_off + 2];
|
|
TT[dst_off + 3] = TI[src_off + 3];
|
|
}
|
|
|
|
for (int dst_off = 4, src_off = 8; src_off < STATE_CNT4; dst_off += 4, src_off += 8)
|
|
{
|
|
TI[dst_off + 0] = TI[src_off + 0];
|
|
TI[dst_off + 1] = TI[src_off + 1];
|
|
TI[dst_off + 2] = TI[src_off + 2];
|
|
TI[dst_off + 3] = TI[src_off + 3];
|
|
}
|
|
|
|
for (int dst_off = STATE_CNT4 / 2, src_off = 0; dst_off < STATE_CNT4; dst_off += 4, src_off += 4)
|
|
{
|
|
TI[dst_off + 0] = TT[src_off + 0];
|
|
TI[dst_off + 1] = TT[src_off + 1];
|
|
TI[dst_off + 2] = TT[src_off + 2];
|
|
TI[dst_off + 3] = TT[src_off + 3];
|
|
}
|
|
|
|
#endif
|
|
}
|
|
|
|
DECLSPEC void scrypt_smix_init (uint4 *X, GLOBAL_AS uint4 *V0, GLOBAL_AS uint4 *V1, GLOBAL_AS uint4 *V2, GLOBAL_AS uint4 *V3)
|
|
{
|
|
const u32 ySIZE = SCRYPT_N / SCRYPT_TMTO;
|
|
const u32 zSIZE = STATE_CNT4;
|
|
|
|
const u32 x = get_global_id (0);
|
|
|
|
const u32 xd4 = x / 4;
|
|
const u32 xm4 = x & 3;
|
|
|
|
GLOBAL_AS uint4 *V;
|
|
|
|
switch (xm4)
|
|
{
|
|
case 0: V = V0; break;
|
|
case 1: V = V1; break;
|
|
case 2: V = V2; break;
|
|
case 3: V = V3; break;
|
|
}
|
|
|
|
for (u32 y = 0; y < ySIZE; y++)
|
|
{
|
|
for (u32 z = 0; z < zSIZE; z++) V[CO] = X[z];
|
|
|
|
for (u32 i = 0; i < SCRYPT_TMTO; i++) salsa_r (X);
|
|
}
|
|
}
|
|
|
|
DECLSPEC void scrypt_smix_loop (uint4 *X, GLOBAL_AS uint4 *V0, GLOBAL_AS uint4 *V1, GLOBAL_AS uint4 *V2, GLOBAL_AS uint4 *V3)
|
|
{
|
|
const u32 ySIZE = SCRYPT_N / SCRYPT_TMTO;
|
|
const u32 zSIZE = STATE_CNT4;
|
|
|
|
const u32 x = get_global_id (0);
|
|
|
|
const u32 xd4 = x / 4;
|
|
const u32 xm4 = x & 3;
|
|
|
|
GLOBAL_AS uint4 *V;
|
|
|
|
switch (xm4)
|
|
{
|
|
case 0: V = V0; break;
|
|
case 1: V = V1; break;
|
|
case 2: V = V2; break;
|
|
case 3: V = V3; break;
|
|
}
|
|
|
|
// note: fixed 1024 iterations = forced -u 1024
|
|
|
|
for (u32 N_pos = 0; N_pos < 1024; N_pos++)
|
|
{
|
|
const u32 k = X[zSIZE - 4].x & (SCRYPT_N - 1);
|
|
|
|
const u32 y = k / SCRYPT_TMTO;
|
|
|
|
const u32 km = k - (y * SCRYPT_TMTO);
|
|
|
|
uint4 T[STATE_CNT4];
|
|
|
|
for (u32 z = 0; z < zSIZE; z++) T[z] = V[CO];
|
|
|
|
for (u32 i = 0; i < km; i++) salsa_r (T);
|
|
|
|
for (u32 z = 0; z < zSIZE; z++) X[z] ^= T[z];
|
|
|
|
salsa_r (X);
|
|
}
|
|
}
|
|
|
|
KERNEL_FQ void m28200_init (KERN_ATTR_TMPS_ESALT (exodus_tmp_t, exodus_t))
|
|
{
|
|
/**
|
|
* base
|
|
*/
|
|
|
|
const u64 gid = get_global_id (0);
|
|
|
|
if (gid >= gid_max) return;
|
|
|
|
sha256_hmac_ctx_t sha256_hmac_ctx;
|
|
|
|
sha256_hmac_init_global_swap (&sha256_hmac_ctx, pws[gid].i, pws[gid].pw_len);
|
|
|
|
sha256_hmac_update_global_swap (&sha256_hmac_ctx, salt_bufs[SALT_POS].salt_buf, salt_bufs[SALT_POS].salt_len);
|
|
|
|
for (u32 i = 0, j = 1, k = 0; i < SCRYPT_CNT; i += 8, j += 1, k += 2)
|
|
{
|
|
sha256_hmac_ctx_t sha256_hmac_ctx2 = sha256_hmac_ctx;
|
|
|
|
u32 w0[4];
|
|
u32 w1[4];
|
|
u32 w2[4];
|
|
u32 w3[4];
|
|
|
|
w0[0] = j;
|
|
w0[1] = 0;
|
|
w0[2] = 0;
|
|
w0[3] = 0;
|
|
w1[0] = 0;
|
|
w1[1] = 0;
|
|
w1[2] = 0;
|
|
w1[3] = 0;
|
|
w2[0] = 0;
|
|
w2[1] = 0;
|
|
w2[2] = 0;
|
|
w2[3] = 0;
|
|
w3[0] = 0;
|
|
w3[1] = 0;
|
|
w3[2] = 0;
|
|
w3[3] = 0;
|
|
|
|
sha256_hmac_update_64 (&sha256_hmac_ctx2, w0, w1, w2, w3, 4);
|
|
|
|
sha256_hmac_final (&sha256_hmac_ctx2);
|
|
|
|
u32 digest[8];
|
|
|
|
digest[0] = sha256_hmac_ctx2.opad.h[0];
|
|
digest[1] = sha256_hmac_ctx2.opad.h[1];
|
|
digest[2] = sha256_hmac_ctx2.opad.h[2];
|
|
digest[3] = sha256_hmac_ctx2.opad.h[3];
|
|
digest[4] = sha256_hmac_ctx2.opad.h[4];
|
|
digest[5] = sha256_hmac_ctx2.opad.h[5];
|
|
digest[6] = sha256_hmac_ctx2.opad.h[6];
|
|
digest[7] = sha256_hmac_ctx2.opad.h[7];
|
|
|
|
#ifdef IS_CUDA
|
|
const uint4 tmp0 = make_uint4 (digest[0], digest[1], digest[2], digest[3]);
|
|
const uint4 tmp1 = make_uint4 (digest[4], digest[5], digest[6], digest[7]);
|
|
#else
|
|
const uint4 tmp0 = (uint4) (digest[0], digest[1], digest[2], digest[3]);
|
|
const uint4 tmp1 = (uint4) (digest[4], digest[5], digest[6], digest[7]);
|
|
#endif
|
|
|
|
tmps[gid].P[k + 0] = tmp0;
|
|
tmps[gid].P[k + 1] = tmp1;
|
|
}
|
|
|
|
for (u32 l = 0; l < SCRYPT_CNT4; l += 4)
|
|
{
|
|
uint4 T[4];
|
|
|
|
T[0] = tmps[gid].P[l + 0];
|
|
T[1] = tmps[gid].P[l + 1];
|
|
T[2] = tmps[gid].P[l + 2];
|
|
T[3] = tmps[gid].P[l + 3];
|
|
|
|
T[0] = hc_swap32_4 (T[0]);
|
|
T[1] = hc_swap32_4 (T[1]);
|
|
T[2] = hc_swap32_4 (T[2]);
|
|
T[3] = hc_swap32_4 (T[3]);
|
|
|
|
uint4 X[4];
|
|
|
|
#ifdef IS_CUDA
|
|
X[0] = make_uint4 (T[0].x, T[1].y, T[2].z, T[3].w);
|
|
X[1] = make_uint4 (T[1].x, T[2].y, T[3].z, T[0].w);
|
|
X[2] = make_uint4 (T[2].x, T[3].y, T[0].z, T[1].w);
|
|
X[3] = make_uint4 (T[3].x, T[0].y, T[1].z, T[2].w);
|
|
#else
|
|
X[0] = (uint4) (T[0].x, T[1].y, T[2].z, T[3].w);
|
|
X[1] = (uint4) (T[1].x, T[2].y, T[3].z, T[0].w);
|
|
X[2] = (uint4) (T[2].x, T[3].y, T[0].z, T[1].w);
|
|
X[3] = (uint4) (T[3].x, T[0].y, T[1].z, T[2].w);
|
|
#endif
|
|
|
|
tmps[gid].P[l + 0] = X[0];
|
|
tmps[gid].P[l + 1] = X[1];
|
|
tmps[gid].P[l + 2] = X[2];
|
|
tmps[gid].P[l + 3] = X[3];
|
|
}
|
|
}
|
|
|
|
KERNEL_FQ void m28200_loop_prepare (KERN_ATTR_TMPS_ESALT (exodus_tmp_t, exodus_t))
|
|
{
|
|
/**
|
|
* base
|
|
*/
|
|
|
|
const u64 gid = get_global_id (0);
|
|
const u64 lid = get_local_id (0);
|
|
|
|
if (gid >= gid_max) return;
|
|
|
|
// SCRYPT part, init V
|
|
|
|
GLOBAL_AS uint4 *d_scrypt0_buf = (GLOBAL_AS uint4 *) d_extra0_buf;
|
|
GLOBAL_AS uint4 *d_scrypt1_buf = (GLOBAL_AS uint4 *) d_extra1_buf;
|
|
GLOBAL_AS uint4 *d_scrypt2_buf = (GLOBAL_AS uint4 *) d_extra2_buf;
|
|
GLOBAL_AS uint4 *d_scrypt3_buf = (GLOBAL_AS uint4 *) d_extra3_buf;
|
|
|
|
uint4 X[STATE_CNT4];
|
|
|
|
const u32 P_offset = salt_repeat * STATE_CNT4;
|
|
|
|
GLOBAL_AS uint4 *P = tmps[gid].P + P_offset;
|
|
|
|
for (int z = 0; z < STATE_CNT4; z++) X[z] = P[z];
|
|
|
|
scrypt_smix_init (X, d_scrypt0_buf, d_scrypt1_buf, d_scrypt2_buf, d_scrypt3_buf);
|
|
|
|
for (int z = 0; z < STATE_CNT4; z++) P[z] = X[z];
|
|
}
|
|
|
|
KERNEL_FQ void m28200_loop (KERN_ATTR_TMPS_ESALT (exodus_tmp_t, exodus_t))
|
|
{
|
|
const u64 gid = get_global_id (0);
|
|
const u64 lid = get_local_id (0);
|
|
|
|
if (gid >= gid_max) return;
|
|
|
|
GLOBAL_AS uint4 *d_scrypt0_buf = (GLOBAL_AS uint4 *) d_extra0_buf;
|
|
GLOBAL_AS uint4 *d_scrypt1_buf = (GLOBAL_AS uint4 *) d_extra1_buf;
|
|
GLOBAL_AS uint4 *d_scrypt2_buf = (GLOBAL_AS uint4 *) d_extra2_buf;
|
|
GLOBAL_AS uint4 *d_scrypt3_buf = (GLOBAL_AS uint4 *) d_extra3_buf;
|
|
|
|
uint4 X[STATE_CNT4];
|
|
|
|
const u32 P_offset = salt_repeat * STATE_CNT4;
|
|
|
|
GLOBAL_AS uint4 *P = tmps[gid].P + P_offset;
|
|
|
|
for (int z = 0; z < STATE_CNT4; z++) X[z] = P[z];
|
|
|
|
scrypt_smix_loop (X, d_scrypt0_buf, d_scrypt1_buf, d_scrypt2_buf, d_scrypt3_buf);
|
|
|
|
for (int z = 0; z < STATE_CNT4; z++) P[z] = X[z];
|
|
}
|
|
|
|
KERNEL_FQ void m28200_comp (KERN_ATTR_TMPS_ESALT (exodus_tmp_t, exodus_t))
|
|
{
|
|
const u64 gid = get_global_id (0);
|
|
const u64 lid = get_local_id (0);
|
|
const u64 lsz = get_local_size (0);
|
|
|
|
/**
|
|
* aes shared
|
|
*/
|
|
|
|
#ifdef REAL_SHM
|
|
|
|
LOCAL_VK u32 s_td0[256];
|
|
LOCAL_VK u32 s_td1[256];
|
|
LOCAL_VK u32 s_td2[256];
|
|
LOCAL_VK u32 s_td3[256];
|
|
LOCAL_VK u32 s_td4[256];
|
|
|
|
LOCAL_VK u32 s_te0[256];
|
|
LOCAL_VK u32 s_te1[256];
|
|
LOCAL_VK u32 s_te2[256];
|
|
LOCAL_VK u32 s_te3[256];
|
|
LOCAL_VK u32 s_te4[256];
|
|
|
|
for (u32 i = lid; i < 256; i += lsz)
|
|
{
|
|
s_td0[i] = td0[i];
|
|
s_td1[i] = td1[i];
|
|
s_td2[i] = td2[i];
|
|
s_td3[i] = td3[i];
|
|
s_td4[i] = td4[i];
|
|
|
|
s_te0[i] = te0[i];
|
|
s_te1[i] = te1[i];
|
|
s_te2[i] = te2[i];
|
|
s_te3[i] = te3[i];
|
|
s_te4[i] = te4[i];
|
|
}
|
|
|
|
SYNC_THREADS ();
|
|
|
|
#else
|
|
|
|
CONSTANT_AS u32a *s_td0 = td0;
|
|
CONSTANT_AS u32a *s_td1 = td1;
|
|
CONSTANT_AS u32a *s_td2 = td2;
|
|
CONSTANT_AS u32a *s_td3 = td3;
|
|
CONSTANT_AS u32a *s_td4 = td4;
|
|
|
|
CONSTANT_AS u32a *s_te0 = te0;
|
|
CONSTANT_AS u32a *s_te1 = te1;
|
|
CONSTANT_AS u32a *s_te2 = te2;
|
|
CONSTANT_AS u32a *s_te3 = te3;
|
|
CONSTANT_AS u32a *s_te4 = te4;
|
|
|
|
#endif
|
|
|
|
if (gid >= gid_max) return;
|
|
|
|
/**
|
|
* 2nd pbkdf2, creates B
|
|
*/
|
|
|
|
u32 w0[4];
|
|
u32 w1[4];
|
|
u32 w2[4];
|
|
u32 w3[4];
|
|
|
|
sha256_hmac_ctx_t ctx;
|
|
|
|
sha256_hmac_init_global_swap (&ctx, pws[gid].i, pws[gid].pw_len);
|
|
|
|
for (u32 l = 0; l < SCRYPT_CNT4; l += 4)
|
|
{
|
|
uint4 X[4];
|
|
|
|
X[0] = tmps[gid].P[l + 0];
|
|
X[1] = tmps[gid].P[l + 1];
|
|
X[2] = tmps[gid].P[l + 2];
|
|
X[3] = tmps[gid].P[l + 3];
|
|
|
|
uint4 T[4];
|
|
|
|
#ifdef IS_CUDA
|
|
T[0] = make_uint4 (X[0].x, X[3].y, X[2].z, X[1].w);
|
|
T[1] = make_uint4 (X[1].x, X[0].y, X[3].z, X[2].w);
|
|
T[2] = make_uint4 (X[2].x, X[1].y, X[0].z, X[3].w);
|
|
T[3] = make_uint4 (X[3].x, X[2].y, X[1].z, X[0].w);
|
|
#else
|
|
T[0] = (uint4) (X[0].x, X[3].y, X[2].z, X[1].w);
|
|
T[1] = (uint4) (X[1].x, X[0].y, X[3].z, X[2].w);
|
|
T[2] = (uint4) (X[2].x, X[1].y, X[0].z, X[3].w);
|
|
T[3] = (uint4) (X[3].x, X[2].y, X[1].z, X[0].w);
|
|
#endif
|
|
|
|
T[0] = hc_swap32_4 (T[0]);
|
|
T[1] = hc_swap32_4 (T[1]);
|
|
T[2] = hc_swap32_4 (T[2]);
|
|
T[3] = hc_swap32_4 (T[3]);
|
|
|
|
w0[0] = T[0].x;
|
|
w0[1] = T[0].y;
|
|
w0[2] = T[0].z;
|
|
w0[3] = T[0].w;
|
|
w1[0] = T[1].x;
|
|
w1[1] = T[1].y;
|
|
w1[2] = T[1].z;
|
|
w1[3] = T[1].w;
|
|
w2[0] = T[2].x;
|
|
w2[1] = T[2].y;
|
|
w2[2] = T[2].z;
|
|
w2[3] = T[2].w;
|
|
w3[0] = T[3].x;
|
|
w3[1] = T[3].y;
|
|
w3[2] = T[3].z;
|
|
w3[3] = T[3].w;
|
|
|
|
sha256_hmac_update_64 (&ctx, w0, w1, w2, w3, 64);
|
|
}
|
|
|
|
w0[0] = 1;
|
|
w0[1] = 0;
|
|
w0[2] = 0;
|
|
w0[3] = 0;
|
|
w1[0] = 0;
|
|
w1[1] = 0;
|
|
w1[2] = 0;
|
|
w1[3] = 0;
|
|
w2[0] = 0;
|
|
w2[1] = 0;
|
|
w2[2] = 0;
|
|
w2[3] = 0;
|
|
w3[0] = 0;
|
|
w3[1] = 0;
|
|
w3[2] = 0;
|
|
w3[3] = 0;
|
|
|
|
sha256_hmac_update_64 (&ctx, w0, w1, w2, w3, 4);
|
|
|
|
sha256_hmac_final (&ctx);
|
|
|
|
// GCM stuff
|
|
|
|
u32 ukey[8];
|
|
|
|
ukey[0] = ctx.opad.h[0];
|
|
ukey[1] = ctx.opad.h[1];
|
|
ukey[2] = ctx.opad.h[2];
|
|
ukey[3] = ctx.opad.h[3];
|
|
ukey[4] = ctx.opad.h[4];
|
|
ukey[5] = ctx.opad.h[5];
|
|
ukey[6] = ctx.opad.h[6];
|
|
ukey[7] = ctx.opad.h[7];
|
|
|
|
u32 key[60] = { 0 };
|
|
u32 subKey[4] = { 0 };
|
|
|
|
AES_GCM_Init (ukey, 256, key, subKey, s_te0, s_te1, s_te2, s_te3, s_te4);
|
|
|
|
u32 iv[4];
|
|
|
|
iv[0] = esalt_bufs[DIGESTS_OFFSET].iv[0];
|
|
iv[1] = esalt_bufs[DIGESTS_OFFSET].iv[1];
|
|
iv[2] = esalt_bufs[DIGESTS_OFFSET].iv[2];
|
|
iv[3] = 0;
|
|
|
|
u32 J0[4] = { 0 };
|
|
|
|
AES_GCM_Prepare_J0 (iv, 12, subKey, J0);
|
|
|
|
u32 T[4] = { 0 };
|
|
u32 S[4] = { 0 };
|
|
|
|
u32 S_len = 16;
|
|
u32 aad_buf[4] = { 0 };
|
|
u32 aad_len = 0;
|
|
|
|
AES_GCM_GHASH_GLOBAL (subKey, aad_buf, aad_len, esalt_bufs[DIGESTS_OFFSET].data, 32, S);
|
|
|
|
AES_GCM_GCTR (key, J0, S, S_len, T, s_te0, s_te1, s_te2, s_te3, s_te4);
|
|
|
|
const u32 r0 = T[0];
|
|
const u32 r1 = T[1];
|
|
const u32 r2 = T[2];
|
|
const u32 r3 = T[3];
|
|
|
|
#define il_pos 0
|
|
|
|
#ifdef KERNEL_STATIC
|
|
#include COMPARE_M
|
|
#endif
|
|
}
|