1
0
mirror of https://github.com/hashcat/hashcat.git synced 2025-01-08 23:01:14 +00:00

Added hash-mode: Exodus Desktop Wallet (scrypt)

This commit is contained in:
Jens Steube 2021-12-14 13:46:20 +01:00
parent e88122019b
commit bf865d8bff
6 changed files with 1391 additions and 0 deletions

610
OpenCL/m28200-pure.cl Normal file
View File

@ -0,0 +1,610 @@
/**
* Author......: See docs/credits.txt
* License.....: MIT
*/
#ifdef KERNEL_STATIC
#include "inc_vendor.h"
#include "inc_types.h"
#include "inc_platform.cl"
#include "inc_common.cl"
#include "inc_hash_sha256.cl"
#include "inc_cipher_aes.cl"
#include "inc_cipher_aes-gcm.cl"
#endif
#define COMPARE_S "inc_comp_single.cl"
#define COMPARE_M "inc_comp_multi.cl"
typedef struct exodus_tmp
{
#ifndef SCRYPT_TMP_ELEM
#define SCRYPT_TMP_ELEM 1
#endif
uint4 P[SCRYPT_TMP_ELEM];
} exodus_tmp_t;
typedef struct exodus
{
u32 iv[4];
u32 data[8];
u32 tag[4];
} exodus_t;
#ifdef IS_CUDA
inline __device__ uint4 operator & (const uint4 a, const u32 b) { return make_uint4 ((a.x & b ), (a.y & b ), (a.z & b ), (a.w & b )); }
inline __device__ uint4 operator << (const uint4 a, const u32 b) { return make_uint4 ((a.x << b ), (a.y << b ), (a.z << b ), (a.w << b )); }
inline __device__ uint4 operator >> (const uint4 a, const u32 b) { return make_uint4 ((a.x >> b ), (a.y >> b ), (a.z >> b ), (a.w >> b )); }
inline __device__ uint4 operator + (const uint4 a, const uint4 b) { return make_uint4 ((a.x + b.x), (a.y + b.y), (a.z + b.z), (a.w + b.w)); }
inline __device__ uint4 operator ^ (const uint4 a, const uint4 b) { return make_uint4 ((a.x ^ b.x), (a.y ^ b.y), (a.z ^ b.z), (a.w ^ b.w)); }
inline __device__ uint4 operator | (const uint4 a, const uint4 b) { return make_uint4 ((a.x | b.x), (a.y | b.y), (a.z | b.z), (a.w | b.w)); }
inline __device__ void operator ^= ( uint4 &a, const uint4 b) { a.x ^= b.x; a.y ^= b.y; a.z ^= b.z; a.w ^= b.w; }
inline __device__ uint4 rotate (const uint4 a, const int n)
{
return ((a << n) | ((a >> (32 - n))));
}
#endif
DECLSPEC uint4 hc_swap32_4 (uint4 v)
{
return (rotate ((v & 0x00FF00FF), 24u) | rotate ((v & 0xFF00FF00), 8u));
}
#define GET_SCRYPT_CNT(r,p) (2 * (r) * 16 * (p))
#define GET_SMIX_CNT(r,N) (2 * (r) * 16 * (N))
#define GET_STATE_CNT(r) (2 * (r) * 16)
#define SCRYPT_CNT GET_SCRYPT_CNT (SCRYPT_R, SCRYPT_P)
#define SCRYPT_CNT4 (SCRYPT_CNT / 4)
#define STATE_CNT GET_STATE_CNT (SCRYPT_R)
#define STATE_CNT4 (STATE_CNT / 4)
#define ADD_ROTATE_XOR(r,i1,i2,s) (r) ^= rotate ((i1) + (i2), (s));
#ifdef IS_CUDA
#define SALSA20_2R() \
{ \
ADD_ROTATE_XOR (X1, X0, X3, 7); \
ADD_ROTATE_XOR (X2, X1, X0, 9); \
ADD_ROTATE_XOR (X3, X2, X1, 13); \
ADD_ROTATE_XOR (X0, X3, X2, 18); \
\
X1 = make_uint4 (X1.w, X1.x, X1.y, X1.z); \
X2 = make_uint4 (X2.z, X2.w, X2.x, X2.y); \
X3 = make_uint4 (X3.y, X3.z, X3.w, X3.x); \
\
ADD_ROTATE_XOR (X3, X0, X1, 7); \
ADD_ROTATE_XOR (X2, X3, X0, 9); \
ADD_ROTATE_XOR (X1, X2, X3, 13); \
ADD_ROTATE_XOR (X0, X1, X2, 18); \
\
X1 = make_uint4 (X1.y, X1.z, X1.w, X1.x); \
X2 = make_uint4 (X2.z, X2.w, X2.x, X2.y); \
X3 = make_uint4 (X3.w, X3.x, X3.y, X3.z); \
}
#else
#define SALSA20_2R() \
{ \
ADD_ROTATE_XOR (X1, X0, X3, 7); \
ADD_ROTATE_XOR (X2, X1, X0, 9); \
ADD_ROTATE_XOR (X3, X2, X1, 13); \
ADD_ROTATE_XOR (X0, X3, X2, 18); \
\
X1 = X1.s3012; \
X2 = X2.s2301; \
X3 = X3.s1230; \
\
ADD_ROTATE_XOR (X3, X0, X1, 7); \
ADD_ROTATE_XOR (X2, X3, X0, 9); \
ADD_ROTATE_XOR (X1, X2, X3, 13); \
ADD_ROTATE_XOR (X0, X1, X2, 18); \
\
X1 = X1.s1230; \
X2 = X2.s2301; \
X3 = X3.s3012; \
}
#endif
#define Coord(xd4,y,z) (((xd4) * ySIZE * zSIZE) + ((y) * zSIZE) + (z))
#define CO Coord(xd4,y,z)
DECLSPEC void salsa_r (uint4 *TI)
{
uint4 R0 = TI[STATE_CNT4 - 4];
uint4 R1 = TI[STATE_CNT4 - 3];
uint4 R2 = TI[STATE_CNT4 - 2];
uint4 R3 = TI[STATE_CNT4 - 1];
for (int i = 0; i < STATE_CNT4; i += 4)
{
uint4 Y0 = TI[i + 0];
uint4 Y1 = TI[i + 1];
uint4 Y2 = TI[i + 2];
uint4 Y3 = TI[i + 3];
R0 = R0 ^ Y0;
R1 = R1 ^ Y1;
R2 = R2 ^ Y2;
R3 = R3 ^ Y3;
uint4 X0 = R0;
uint4 X1 = R1;
uint4 X2 = R2;
uint4 X3 = R3;
SALSA20_2R ();
SALSA20_2R ();
SALSA20_2R ();
SALSA20_2R ();
R0 = R0 + X0;
R1 = R1 + X1;
R2 = R2 + X2;
R3 = R3 + X3;
TI[i + 0] = R0;
TI[i + 1] = R1;
TI[i + 2] = R2;
TI[i + 3] = R3;
}
#if SCRYPT_R > 1
uint4 TT[STATE_CNT4 / 2];
for (int dst_off = 0, src_off = 4; src_off < STATE_CNT4; dst_off += 4, src_off += 8)
{
TT[dst_off + 0] = TI[src_off + 0];
TT[dst_off + 1] = TI[src_off + 1];
TT[dst_off + 2] = TI[src_off + 2];
TT[dst_off + 3] = TI[src_off + 3];
}
for (int dst_off = 4, src_off = 8; src_off < STATE_CNT4; dst_off += 4, src_off += 8)
{
TI[dst_off + 0] = TI[src_off + 0];
TI[dst_off + 1] = TI[src_off + 1];
TI[dst_off + 2] = TI[src_off + 2];
TI[dst_off + 3] = TI[src_off + 3];
}
for (int dst_off = STATE_CNT4 / 2, src_off = 0; dst_off < STATE_CNT4; dst_off += 4, src_off += 4)
{
TI[dst_off + 0] = TT[src_off + 0];
TI[dst_off + 1] = TT[src_off + 1];
TI[dst_off + 2] = TT[src_off + 2];
TI[dst_off + 3] = TT[src_off + 3];
}
#endif
}
DECLSPEC void scrypt_smix_init (uint4 *X, GLOBAL_AS uint4 *V0, GLOBAL_AS uint4 *V1, GLOBAL_AS uint4 *V2, GLOBAL_AS uint4 *V3)
{
const u32 ySIZE = SCRYPT_N / SCRYPT_TMTO;
const u32 zSIZE = STATE_CNT4;
const u32 x = get_global_id (0);
const u32 xd4 = x / 4;
const u32 xm4 = x & 3;
GLOBAL_AS uint4 *V;
switch (xm4)
{
case 0: V = V0; break;
case 1: V = V1; break;
case 2: V = V2; break;
case 3: V = V3; break;
}
for (u32 y = 0; y < ySIZE; y++)
{
for (u32 z = 0; z < zSIZE; z++) V[CO] = X[z];
for (u32 i = 0; i < SCRYPT_TMTO; i++) salsa_r (X);
}
}
DECLSPEC void scrypt_smix_loop (uint4 *X, GLOBAL_AS uint4 *V0, GLOBAL_AS uint4 *V1, GLOBAL_AS uint4 *V2, GLOBAL_AS uint4 *V3)
{
const u32 ySIZE = SCRYPT_N / SCRYPT_TMTO;
const u32 zSIZE = STATE_CNT4;
const u32 x = get_global_id (0);
const u32 xd4 = x / 4;
const u32 xm4 = x & 3;
GLOBAL_AS uint4 *V;
switch (xm4)
{
case 0: V = V0; break;
case 1: V = V1; break;
case 2: V = V2; break;
case 3: V = V3; break;
}
// note: fixed 1024 iterations = forced -u 1024
for (u32 N_pos = 0; N_pos < 1024; N_pos++)
{
const u32 k = X[zSIZE - 4].x & (SCRYPT_N - 1);
const u32 y = k / SCRYPT_TMTO;
const u32 km = k - (y * SCRYPT_TMTO);
uint4 T[STATE_CNT4];
for (u32 z = 0; z < zSIZE; z++) T[z] = V[CO];
for (u32 i = 0; i < km; i++) salsa_r (T);
for (u32 z = 0; z < zSIZE; z++) X[z] ^= T[z];
salsa_r (X);
}
}
KERNEL_FQ void m28200_init (KERN_ATTR_TMPS_ESALT (exodus_tmp_t, exodus_t))
{
/**
* base
*/
const u64 gid = get_global_id (0);
if (gid >= gid_max) return;
sha256_hmac_ctx_t sha256_hmac_ctx;
sha256_hmac_init_global_swap (&sha256_hmac_ctx, pws[gid].i, pws[gid].pw_len);
sha256_hmac_update_global_swap (&sha256_hmac_ctx, salt_bufs[SALT_POS].salt_buf, salt_bufs[SALT_POS].salt_len);
for (u32 i = 0, j = 1, k = 0; i < SCRYPT_CNT; i += 8, j += 1, k += 2)
{
sha256_hmac_ctx_t sha256_hmac_ctx2 = sha256_hmac_ctx;
u32 w0[4];
u32 w1[4];
u32 w2[4];
u32 w3[4];
w0[0] = j;
w0[1] = 0;
w0[2] = 0;
w0[3] = 0;
w1[0] = 0;
w1[1] = 0;
w1[2] = 0;
w1[3] = 0;
w2[0] = 0;
w2[1] = 0;
w2[2] = 0;
w2[3] = 0;
w3[0] = 0;
w3[1] = 0;
w3[2] = 0;
w3[3] = 0;
sha256_hmac_update_64 (&sha256_hmac_ctx2, w0, w1, w2, w3, 4);
sha256_hmac_final (&sha256_hmac_ctx2);
u32 digest[8];
digest[0] = sha256_hmac_ctx2.opad.h[0];
digest[1] = sha256_hmac_ctx2.opad.h[1];
digest[2] = sha256_hmac_ctx2.opad.h[2];
digest[3] = sha256_hmac_ctx2.opad.h[3];
digest[4] = sha256_hmac_ctx2.opad.h[4];
digest[5] = sha256_hmac_ctx2.opad.h[5];
digest[6] = sha256_hmac_ctx2.opad.h[6];
digest[7] = sha256_hmac_ctx2.opad.h[7];
#ifdef IS_CUDA
const uint4 tmp0 = make_uint4 (digest[0], digest[1], digest[2], digest[3]);
const uint4 tmp1 = make_uint4 (digest[4], digest[5], digest[6], digest[7]);
#else
const uint4 tmp0 = (uint4) (digest[0], digest[1], digest[2], digest[3]);
const uint4 tmp1 = (uint4) (digest[4], digest[5], digest[6], digest[7]);
#endif
tmps[gid].P[k + 0] = tmp0;
tmps[gid].P[k + 1] = tmp1;
}
for (u32 l = 0; l < SCRYPT_CNT4; l += 4)
{
uint4 T[4];
T[0] = tmps[gid].P[l + 0];
T[1] = tmps[gid].P[l + 1];
T[2] = tmps[gid].P[l + 2];
T[3] = tmps[gid].P[l + 3];
T[0] = hc_swap32_4 (T[0]);
T[1] = hc_swap32_4 (T[1]);
T[2] = hc_swap32_4 (T[2]);
T[3] = hc_swap32_4 (T[3]);
uint4 X[4];
#ifdef IS_CUDA
X[0] = make_uint4 (T[0].x, T[1].y, T[2].z, T[3].w);
X[1] = make_uint4 (T[1].x, T[2].y, T[3].z, T[0].w);
X[2] = make_uint4 (T[2].x, T[3].y, T[0].z, T[1].w);
X[3] = make_uint4 (T[3].x, T[0].y, T[1].z, T[2].w);
#else
X[0] = (uint4) (T[0].x, T[1].y, T[2].z, T[3].w);
X[1] = (uint4) (T[1].x, T[2].y, T[3].z, T[0].w);
X[2] = (uint4) (T[2].x, T[3].y, T[0].z, T[1].w);
X[3] = (uint4) (T[3].x, T[0].y, T[1].z, T[2].w);
#endif
tmps[gid].P[l + 0] = X[0];
tmps[gid].P[l + 1] = X[1];
tmps[gid].P[l + 2] = X[2];
tmps[gid].P[l + 3] = X[3];
}
}
KERNEL_FQ void m28200_loop_prepare (KERN_ATTR_TMPS_ESALT (exodus_tmp_t, exodus_t))
{
/**
* base
*/
const u64 gid = get_global_id (0);
const u64 lid = get_local_id (0);
if (gid >= gid_max) return;
// SCRYPT part, init V
GLOBAL_AS uint4 *d_scrypt0_buf = (GLOBAL_AS uint4 *) d_extra0_buf;
GLOBAL_AS uint4 *d_scrypt1_buf = (GLOBAL_AS uint4 *) d_extra1_buf;
GLOBAL_AS uint4 *d_scrypt2_buf = (GLOBAL_AS uint4 *) d_extra2_buf;
GLOBAL_AS uint4 *d_scrypt3_buf = (GLOBAL_AS uint4 *) d_extra3_buf;
uint4 X[STATE_CNT4];
const u32 P_offset = salt_repeat * STATE_CNT4;
GLOBAL_AS uint4 *P = tmps[gid].P + P_offset;
for (int z = 0; z < STATE_CNT4; z++) X[z] = P[z];
scrypt_smix_init (X, d_scrypt0_buf, d_scrypt1_buf, d_scrypt2_buf, d_scrypt3_buf);
for (int z = 0; z < STATE_CNT4; z++) P[z] = X[z];
}
KERNEL_FQ void m28200_loop (KERN_ATTR_TMPS_ESALT (exodus_tmp_t, exodus_t))
{
const u64 gid = get_global_id (0);
const u64 lid = get_local_id (0);
if (gid >= gid_max) return;
GLOBAL_AS uint4 *d_scrypt0_buf = (GLOBAL_AS uint4 *) d_extra0_buf;
GLOBAL_AS uint4 *d_scrypt1_buf = (GLOBAL_AS uint4 *) d_extra1_buf;
GLOBAL_AS uint4 *d_scrypt2_buf = (GLOBAL_AS uint4 *) d_extra2_buf;
GLOBAL_AS uint4 *d_scrypt3_buf = (GLOBAL_AS uint4 *) d_extra3_buf;
uint4 X[STATE_CNT4];
const u32 P_offset = salt_repeat * STATE_CNT4;
GLOBAL_AS uint4 *P = tmps[gid].P + P_offset;
for (int z = 0; z < STATE_CNT4; z++) X[z] = P[z];
scrypt_smix_loop (X, d_scrypt0_buf, d_scrypt1_buf, d_scrypt2_buf, d_scrypt3_buf);
for (int z = 0; z < STATE_CNT4; z++) P[z] = X[z];
}
KERNEL_FQ void m28200_comp (KERN_ATTR_TMPS_ESALT (exodus_tmp_t, exodus_t))
{
const u64 gid = get_global_id (0);
const u64 lid = get_local_id (0);
const u64 lsz = get_local_size (0);
/**
* aes shared
*/
#ifdef REAL_SHM
LOCAL_VK u32 s_td0[256];
LOCAL_VK u32 s_td1[256];
LOCAL_VK u32 s_td2[256];
LOCAL_VK u32 s_td3[256];
LOCAL_VK u32 s_td4[256];
LOCAL_VK u32 s_te0[256];
LOCAL_VK u32 s_te1[256];
LOCAL_VK u32 s_te2[256];
LOCAL_VK u32 s_te3[256];
LOCAL_VK u32 s_te4[256];
for (u32 i = lid; i < 256; i += lsz)
{
s_td0[i] = td0[i];
s_td1[i] = td1[i];
s_td2[i] = td2[i];
s_td3[i] = td3[i];
s_td4[i] = td4[i];
s_te0[i] = te0[i];
s_te1[i] = te1[i];
s_te2[i] = te2[i];
s_te3[i] = te3[i];
s_te4[i] = te4[i];
}
SYNC_THREADS ();
#else
CONSTANT_AS u32a *s_td0 = td0;
CONSTANT_AS u32a *s_td1 = td1;
CONSTANT_AS u32a *s_td2 = td2;
CONSTANT_AS u32a *s_td3 = td3;
CONSTANT_AS u32a *s_td4 = td4;
CONSTANT_AS u32a *s_te0 = te0;
CONSTANT_AS u32a *s_te1 = te1;
CONSTANT_AS u32a *s_te2 = te2;
CONSTANT_AS u32a *s_te3 = te3;
CONSTANT_AS u32a *s_te4 = te4;
#endif
if (gid >= gid_max) return;
/**
* 2nd pbkdf2, creates B
*/
u32 w0[4];
u32 w1[4];
u32 w2[4];
u32 w3[4];
sha256_hmac_ctx_t ctx;
sha256_hmac_init_global_swap (&ctx, pws[gid].i, pws[gid].pw_len);
for (u32 l = 0; l < SCRYPT_CNT4; l += 4)
{
uint4 X[4];
X[0] = tmps[gid].P[l + 0];
X[1] = tmps[gid].P[l + 1];
X[2] = tmps[gid].P[l + 2];
X[3] = tmps[gid].P[l + 3];
uint4 T[4];
#ifdef IS_CUDA
T[0] = make_uint4 (X[0].x, X[3].y, X[2].z, X[1].w);
T[1] = make_uint4 (X[1].x, X[0].y, X[3].z, X[2].w);
T[2] = make_uint4 (X[2].x, X[1].y, X[0].z, X[3].w);
T[3] = make_uint4 (X[3].x, X[2].y, X[1].z, X[0].w);
#else
T[0] = (uint4) (X[0].x, X[3].y, X[2].z, X[1].w);
T[1] = (uint4) (X[1].x, X[0].y, X[3].z, X[2].w);
T[2] = (uint4) (X[2].x, X[1].y, X[0].z, X[3].w);
T[3] = (uint4) (X[3].x, X[2].y, X[1].z, X[0].w);
#endif
T[0] = hc_swap32_4 (T[0]);
T[1] = hc_swap32_4 (T[1]);
T[2] = hc_swap32_4 (T[2]);
T[3] = hc_swap32_4 (T[3]);
w0[0] = T[0].x;
w0[1] = T[0].y;
w0[2] = T[0].z;
w0[3] = T[0].w;
w1[0] = T[1].x;
w1[1] = T[1].y;
w1[2] = T[1].z;
w1[3] = T[1].w;
w2[0] = T[2].x;
w2[1] = T[2].y;
w2[2] = T[2].z;
w2[3] = T[2].w;
w3[0] = T[3].x;
w3[1] = T[3].y;
w3[2] = T[3].z;
w3[3] = T[3].w;
sha256_hmac_update_64 (&ctx, w0, w1, w2, w3, 64);
}
w0[0] = 1;
w0[1] = 0;
w0[2] = 0;
w0[3] = 0;
w1[0] = 0;
w1[1] = 0;
w1[2] = 0;
w1[3] = 0;
w2[0] = 0;
w2[1] = 0;
w2[2] = 0;
w2[3] = 0;
w3[0] = 0;
w3[1] = 0;
w3[2] = 0;
w3[3] = 0;
sha256_hmac_update_64 (&ctx, w0, w1, w2, w3, 4);
sha256_hmac_final (&ctx);
// GCM stuff
u32 ukey[8];
ukey[0] = ctx.opad.h[0];
ukey[1] = ctx.opad.h[1];
ukey[2] = ctx.opad.h[2];
ukey[3] = ctx.opad.h[3];
ukey[4] = ctx.opad.h[4];
ukey[5] = ctx.opad.h[5];
ukey[6] = ctx.opad.h[6];
ukey[7] = ctx.opad.h[7];
u32 key[60] = { 0 };
u32 subKey[4] = { 0 };
AES_GCM_Init (ukey, 256, key, subKey, s_te0, s_te1, s_te2, s_te3, s_te4);
u32 iv[4];
iv[0] = esalt_bufs[DIGESTS_OFFSET].iv[0];
iv[1] = esalt_bufs[DIGESTS_OFFSET].iv[1];
iv[2] = esalt_bufs[DIGESTS_OFFSET].iv[2];
iv[3] = 0;
u32 J0[4] = { 0 };
AES_GCM_Prepare_J0 (iv, 12, subKey, J0);
u32 T[4] = { 0 };
u32 S[4] = { 0 };
u32 S_len = 16;
u32 aad_buf[4] = { 0 };
u32 aad_len = 0;
AES_GCM_GHASH_GLOBAL (subKey, aad_buf, aad_len, esalt_bufs[DIGESTS_OFFSET].data, 32, S);
AES_GCM_GCTR (key, J0, S, S_len, T, s_te0, s_te1, s_te2, s_te3, s_te4);
const u32 r0 = T[0];
const u32 r1 = T[1];
const u32 r2 = T[2];
const u32 r3 = T[3];
#define il_pos 0
#ifdef KERNEL_STATIC
#include COMPARE_M
#endif
}

View File

@ -1,5 +1,11 @@
* changes v6.2.5 -> v6.2.x
##
## Algorithms
##
- Added hash-mode: Exodus Desktop Wallet (scrypt)
##
## Features
##

View File

@ -406,6 +406,7 @@ NVIDIA GPUs require "NVIDIA Driver" (440.64 or later) and "CUDA Toolkit" (9.0 or
- MultiBit Classic .key (MD5)
- MultiBit Classic .wallet (scrypt)
- MultiBit HD (scrypt)
- Exodus Desktop Wallet (scrypt)
##
## Attack-Modes

594
src/modules/module_28200.c Normal file
View File

@ -0,0 +1,594 @@
/**
* Author......: See docs/credits.txt
* License.....: MIT
*/
#include <inttypes.h>
#include "common.h"
#include "types.h"
#include "modules.h"
#include "bitops.h"
#include "convert.h"
#include "shared.h"
static const u32 ATTACK_EXEC = ATTACK_EXEC_OUTSIDE_KERNEL;
static const u32 DGST_POS0 = 0;
static const u32 DGST_POS1 = 1;
static const u32 DGST_POS2 = 2;
static const u32 DGST_POS3 = 3;
static const u32 DGST_SIZE = DGST_SIZE_4_4;
static const u32 HASH_CATEGORY = HASH_CATEGORY_CRYPTOCURRENCY_WALLET;
static const char *HASH_NAME = "Exodus Desktop Wallet (scrypt)";
static const u64 KERN_TYPE = 28200;
static const u32 OPTI_TYPE = OPTI_TYPE_ZERO_BYTE;
static const u64 OPTS_TYPE = OPTS_TYPE_PT_GENERATE_LE
| OPTS_TYPE_MP_MULTI_DISABLE
| OPTS_TYPE_NATIVE_THREADS
| OPTS_TYPE_LOOP_PREPARE;
static const u32 SALT_TYPE = SALT_TYPE_EMBEDDED;
static const char *ST_PASS = "hashcat";
static const char *ST_HASH = "EXODUS:16384:8:1:IYkXZgFETRmFp4wQXyP8XMe3LtuOw8wMdLcBVQ+9YWE=:lq0W9ekN5sC0O7Xw:UD4a6mUUhkTbQtGWitXHZUg0pQ4RHI6W/KUyYE95m3k=:ZuNQckXOtr4r21x+DT1zpQ==";
u32 module_attack_exec (MAYBE_UNUSED const hashconfig_t *hashconfig, MAYBE_UNUSED const user_options_t *user_options, MAYBE_UNUSED const user_options_extra_t *user_options_extra) { return ATTACK_EXEC; }
u32 module_dgst_pos0 (MAYBE_UNUSED const hashconfig_t *hashconfig, MAYBE_UNUSED const user_options_t *user_options, MAYBE_UNUSED const user_options_extra_t *user_options_extra) { return DGST_POS0; }
u32 module_dgst_pos1 (MAYBE_UNUSED const hashconfig_t *hashconfig, MAYBE_UNUSED const user_options_t *user_options, MAYBE_UNUSED const user_options_extra_t *user_options_extra) { return DGST_POS1; }
u32 module_dgst_pos2 (MAYBE_UNUSED const hashconfig_t *hashconfig, MAYBE_UNUSED const user_options_t *user_options, MAYBE_UNUSED const user_options_extra_t *user_options_extra) { return DGST_POS2; }
u32 module_dgst_pos3 (MAYBE_UNUSED const hashconfig_t *hashconfig, MAYBE_UNUSED const user_options_t *user_options, MAYBE_UNUSED const user_options_extra_t *user_options_extra) { return DGST_POS3; }
u32 module_dgst_size (MAYBE_UNUSED const hashconfig_t *hashconfig, MAYBE_UNUSED const user_options_t *user_options, MAYBE_UNUSED const user_options_extra_t *user_options_extra) { return DGST_SIZE; }
u32 module_hash_category (MAYBE_UNUSED const hashconfig_t *hashconfig, MAYBE_UNUSED const user_options_t *user_options, MAYBE_UNUSED const user_options_extra_t *user_options_extra) { return HASH_CATEGORY; }
const char *module_hash_name (MAYBE_UNUSED const hashconfig_t *hashconfig, MAYBE_UNUSED const user_options_t *user_options, MAYBE_UNUSED const user_options_extra_t *user_options_extra) { return HASH_NAME; }
u64 module_kern_type (MAYBE_UNUSED const hashconfig_t *hashconfig, MAYBE_UNUSED const user_options_t *user_options, MAYBE_UNUSED const user_options_extra_t *user_options_extra) { return KERN_TYPE; }
u32 module_opti_type (MAYBE_UNUSED const hashconfig_t *hashconfig, MAYBE_UNUSED const user_options_t *user_options, MAYBE_UNUSED const user_options_extra_t *user_options_extra) { return OPTI_TYPE; }
u64 module_opts_type (MAYBE_UNUSED const hashconfig_t *hashconfig, MAYBE_UNUSED const user_options_t *user_options, MAYBE_UNUSED const user_options_extra_t *user_options_extra) { return OPTS_TYPE; }
u32 module_salt_type (MAYBE_UNUSED const hashconfig_t *hashconfig, MAYBE_UNUSED const user_options_t *user_options, MAYBE_UNUSED const user_options_extra_t *user_options_extra) { return SALT_TYPE; }
const char *module_st_hash (MAYBE_UNUSED const hashconfig_t *hashconfig, MAYBE_UNUSED const user_options_t *user_options, MAYBE_UNUSED const user_options_extra_t *user_options_extra) { return ST_HASH; }
const char *module_st_pass (MAYBE_UNUSED const hashconfig_t *hashconfig, MAYBE_UNUSED const user_options_t *user_options, MAYBE_UNUSED const user_options_extra_t *user_options_extra) { return ST_PASS; }
typedef struct exodus
{
u32 iv[4];
u32 data[8];
u32 tag[4];
} exodus_t;
static const char *SIGNATURE_EXODUS = "EXODUS";
static const u64 SCRYPT_N = 16384;
static const u64 SCRYPT_R = 8;
static const u64 SCRYPT_P = 1;
u32 module_kernel_loops_min (MAYBE_UNUSED const hashconfig_t *hashconfig, MAYBE_UNUSED const user_options_t *user_options, MAYBE_UNUSED const user_options_extra_t *user_options_extra)
{
const u32 kernel_loops_min = 1024;
return kernel_loops_min;
}
u32 module_kernel_loops_max (MAYBE_UNUSED const hashconfig_t *hashconfig, MAYBE_UNUSED const user_options_t *user_options, MAYBE_UNUSED const user_options_extra_t *user_options_extra)
{
const u32 kernel_loops_max = 1024;
return kernel_loops_max;
}
u32 module_pw_min (MAYBE_UNUSED const hashconfig_t *hashconfig, MAYBE_UNUSED const user_options_t *user_options, MAYBE_UNUSED const user_options_extra_t *user_options_extra)
{
const u32 pw_min = 4;
return pw_min;
}
u64 module_esalt_size (MAYBE_UNUSED const hashconfig_t *hashconfig, MAYBE_UNUSED const user_options_t *user_options, MAYBE_UNUSED const user_options_extra_t *user_options_extra)
{
const u64 esalt_size = (const u64) sizeof (exodus_t);
return esalt_size;
}
u64 module_extra_buffer_size (MAYBE_UNUSED const hashconfig_t *hashconfig, MAYBE_UNUSED const user_options_t *user_options, MAYBE_UNUSED const user_options_extra_t *user_options_extra, MAYBE_UNUSED const hashes_t *hashes, MAYBE_UNUSED const hc_device_param_t *device_param)
{
// we need to set the self-test hash settings to pass the self-test
// the decoder for the self-test is called after this function
const u64 scrypt_N = (hashes->salts_buf[0].scrypt_N) ? hashes->salts_buf[0].scrypt_N : SCRYPT_N;
const u64 scrypt_r = (hashes->salts_buf[0].scrypt_r) ? hashes->salts_buf[0].scrypt_r : SCRYPT_R;
const u64 kernel_power_max = ((OPTS_TYPE & OPTS_TYPE_MP_MULTI_DISABLE) ? 1 : device_param->device_processors) * device_param->kernel_threads_max * device_param->kernel_accel_max;
u64 tmto_start = 0;
u64 tmto_stop = 4;
if (user_options->scrypt_tmto_chgd == true)
{
tmto_start = user_options->scrypt_tmto;
tmto_stop = user_options->scrypt_tmto;
}
// size_pws
const u64 size_pws = kernel_power_max * sizeof (pw_t);
const u64 size_pws_amp = size_pws;
// size_pws_comp
const u64 size_pws_comp = kernel_power_max * (sizeof (u32) * 64);
// size_pws_idx
const u64 size_pws_idx = (kernel_power_max + 1) * sizeof (pw_idx_t);
// size_tmps
const u64 size_tmps = kernel_power_max * hashconfig->tmp_size;
// size_hooks
const u64 size_hooks = kernel_power_max * hashconfig->hook_size;
u64 size_pws_pre = 4;
u64 size_pws_base = 4;
if (user_options->slow_candidates == true)
{
// size_pws_pre
size_pws_pre = kernel_power_max * sizeof (pw_pre_t);
// size_pws_base
size_pws_base = kernel_power_max * sizeof (pw_pre_t);
}
// sometimes device_available_mem and device_maxmem_alloc reported back from the opencl runtime are a bit inaccurate.
// let's add some extra space just to be sure.
// now depends on the kernel-accel value (where scrypt and similar benefits), but also hard minimum 64mb and maximum 1024mb limit
u64 EXTRA_SPACE = (1024ULL * 1024ULL) * device_param->kernel_accel_max;
EXTRA_SPACE = MAX (EXTRA_SPACE, ( 64ULL * 1024ULL * 1024ULL));
EXTRA_SPACE = MIN (EXTRA_SPACE, (1024ULL * 1024ULL * 1024ULL));
const u64 scrypt_extra_space
= device_param->size_bfs
+ device_param->size_combs
+ device_param->size_digests
+ device_param->size_esalts
+ device_param->size_markov_css
+ device_param->size_plains
+ device_param->size_results
+ device_param->size_root_css
+ device_param->size_rules
+ device_param->size_rules_c
+ device_param->size_salts
+ device_param->size_shown
+ device_param->size_tm
+ device_param->size_st_digests
+ device_param->size_st_salts
+ device_param->size_st_esalts
+ size_pws
+ size_pws_amp
+ size_pws_comp
+ size_pws_idx
+ size_tmps
+ size_hooks
+ size_pws_pre
+ size_pws_base
+ EXTRA_SPACE;
bool not_enough_memory = true;
u64 size_scrypt = 0;
u64 tmto;
for (tmto = tmto_start; tmto <= tmto_stop; tmto++)
{
size_scrypt = (128ULL * scrypt_r) * scrypt_N;
size_scrypt /= 1ull << tmto;
size_scrypt *= kernel_power_max;
if ((size_scrypt / 4) > device_param->device_maxmem_alloc) continue;
if ((size_scrypt + scrypt_extra_space) > device_param->device_available_mem) continue;
not_enough_memory = false;
break;
}
if (not_enough_memory == true) return -1;
return size_scrypt;
}
u64 module_tmp_size (MAYBE_UNUSED const hashconfig_t *hashconfig, MAYBE_UNUSED const user_options_t *user_options, MAYBE_UNUSED const user_options_extra_t *user_options_extra)
{
const u64 tmp_size = 0; // we'll add some later
return tmp_size;
}
u64 module_extra_tmp_size (MAYBE_UNUSED const hashconfig_t *hashconfig, MAYBE_UNUSED const user_options_t *user_options, MAYBE_UNUSED const user_options_extra_t *user_options_extra, MAYBE_UNUSED const hashes_t *hashes)
{
const u64 scrypt_N = (hashes->salts_buf[0].scrypt_N) ? hashes->salts_buf[0].scrypt_N : SCRYPT_N;
const u64 scrypt_r = (hashes->salts_buf[0].scrypt_r) ? hashes->salts_buf[0].scrypt_r : SCRYPT_R;
const u64 scrypt_p = (hashes->salts_buf[0].scrypt_p) ? hashes->salts_buf[0].scrypt_p : SCRYPT_P;
// we need to check that all hashes have the same scrypt settings
for (u32 i = 1; i < hashes->salts_cnt; i++)
{
if ((hashes->salts_buf[i].scrypt_N != scrypt_N)
|| (hashes->salts_buf[i].scrypt_r != scrypt_r)
|| (hashes->salts_buf[i].scrypt_p != scrypt_p))
{
return -1;
}
}
const u64 tmp_size = 128ULL * scrypt_r * scrypt_p;
return tmp_size;
}
bool module_warmup_disable (MAYBE_UNUSED const hashconfig_t *hashconfig, MAYBE_UNUSED const user_options_t *user_options, MAYBE_UNUSED const user_options_extra_t *user_options_extra)
{
return true;
}
char *module_jit_build_options (MAYBE_UNUSED const hashconfig_t *hashconfig, MAYBE_UNUSED const user_options_t *user_options, MAYBE_UNUSED const user_options_extra_t *user_options_extra, MAYBE_UNUSED const hashes_t *hashes, MAYBE_UNUSED const hc_device_param_t *device_param)
{
const u64 scrypt_N = (hashes->salts_buf[0].scrypt_N) ? hashes->salts_buf[0].scrypt_N : SCRYPT_N;
const u64 scrypt_r = (hashes->salts_buf[0].scrypt_r) ? hashes->salts_buf[0].scrypt_r : SCRYPT_R;
const u64 scrypt_p = (hashes->salts_buf[0].scrypt_p) ? hashes->salts_buf[0].scrypt_p : SCRYPT_P;
const u64 extra_buffer_size = device_param->extra_buffer_size;
const u64 kernel_power_max = ((OPTS_TYPE & OPTS_TYPE_MP_MULTI_DISABLE) ? 1 : device_param->device_processors) * device_param->kernel_threads_max * device_param->kernel_accel_max;
const u64 size_scrypt = 128ULL * scrypt_r * scrypt_N;
const u64 scrypt_tmto_final = (kernel_power_max * size_scrypt) / extra_buffer_size;
const u64 tmp_size = 128ULL * scrypt_r * scrypt_p;
char *jit_build_options = NULL;
hc_asprintf (&jit_build_options, "-DSCRYPT_N=%u -DSCRYPT_R=%u -DSCRYPT_P=%u -DSCRYPT_TMTO=%" PRIu64 " -DSCRYPT_TMP_ELEM=%" PRIu64,
hashes->salts_buf[0].scrypt_N,
hashes->salts_buf[0].scrypt_r,
hashes->salts_buf[0].scrypt_p,
scrypt_tmto_final,
tmp_size / 16);
return jit_build_options;
}
int module_hash_decode (MAYBE_UNUSED const hashconfig_t *hashconfig, MAYBE_UNUSED void *digest_buf, MAYBE_UNUSED salt_t *salt, MAYBE_UNUSED void *esalt_buf, MAYBE_UNUSED void *hook_salt_buf, MAYBE_UNUSED hashinfo_t *hash_info, const char *line_buf, MAYBE_UNUSED const int line_len)
{
u32 *digest = (u32 *) digest_buf;
exodus_t *exodus = (exodus_t *) esalt_buf;
token_t token;
token.token_cnt = 8;
token.signatures_cnt = 1;
token.signatures_buf[0] = SIGNATURE_EXODUS;
token.len_min[0] = 6;
token.len_max[0] = 6;
token.sep[0] = ':';
token.attr[0] = TOKEN_ATTR_VERIFY_LENGTH
| TOKEN_ATTR_VERIFY_SIGNATURE;
token.len_min[1] = 1;
token.len_max[1] = 6;
token.sep[1] = ':';
token.attr[1] = TOKEN_ATTR_VERIFY_LENGTH
| TOKEN_ATTR_VERIFY_DIGIT;
token.len_min[2] = 1;
token.len_max[2] = 6;
token.sep[2] = ':';
token.attr[2] = TOKEN_ATTR_VERIFY_LENGTH
| TOKEN_ATTR_VERIFY_DIGIT;
token.len_min[3] = 1;
token.len_max[3] = 6;
token.sep[3] = ':';
token.attr[3] = TOKEN_ATTR_VERIFY_LENGTH
| TOKEN_ATTR_VERIFY_DIGIT;
token.len_min[4] = 44;
token.len_max[4] = 44;
token.sep[4] = ':';
token.attr[4] = TOKEN_ATTR_VERIFY_LENGTH
| TOKEN_ATTR_VERIFY_BASE64A;
token.len_min[5] = 16;
token.len_max[5] = 16;
token.sep[5] = ':';
token.attr[5] = TOKEN_ATTR_VERIFY_LENGTH
| TOKEN_ATTR_VERIFY_BASE64A;
token.len_min[6] = 44;
token.len_max[6] = 44;
token.sep[6] = ':';
token.attr[6] = TOKEN_ATTR_VERIFY_LENGTH
| TOKEN_ATTR_VERIFY_BASE64A;
token.len_min[7] = 24;
token.len_max[7] = 24;
token.sep[7] = ':';
token.attr[7] = TOKEN_ATTR_VERIFY_LENGTH
| TOKEN_ATTR_VERIFY_BASE64A;
const int rc_tokenizer = input_tokenizer ((const u8 *) line_buf, line_len, &token);
if (rc_tokenizer != PARSER_OK) return (rc_tokenizer);
u8 tmp_buf[512];
int tmp_len;
// scrypt settings
const u8 *N_pos = token.buf[1];
const u8 *r_pos = token.buf[2];
const u8 *p_pos = token.buf[3];
salt->scrypt_N = hc_strtoul ((const char *) N_pos, NULL, 10);
salt->scrypt_r = hc_strtoul ((const char *) r_pos, NULL, 10);
salt->scrypt_p = hc_strtoul ((const char *) p_pos, NULL, 10);
salt->salt_iter = salt->scrypt_N;
salt->salt_repeats = salt->scrypt_p - 1;
// salt
const u8 *salt_pos = token.buf[4];
const int salt_len = token.len[4];
memset (tmp_buf, 0, sizeof (tmp_buf));
tmp_len = base64_decode (base64_to_int, (const u8 *) salt_pos, salt_len, tmp_buf);
memcpy (salt->salt_buf, tmp_buf, tmp_len);
salt->salt_len = tmp_len;
// iv
const u8 *iv_pos = token.buf[5];
const int iv_len = token.len[5];
memset (tmp_buf, 0, sizeof (tmp_buf));
tmp_len = base64_decode (base64_to_int, (const u8 *) iv_pos, iv_len, tmp_buf);
memcpy (exodus->iv, tmp_buf, tmp_len);
for (int i = 0; i < 4; i++) exodus->iv[i] = byte_swap_32 (exodus->iv[i]);
// data
const u8 *data_pos = token.buf[6];
const int data_len = token.len[6];
memset (tmp_buf, 0, sizeof (tmp_buf));
tmp_len = base64_decode (base64_to_int, (const u8 *) data_pos, data_len, tmp_buf);
memcpy (exodus->data, tmp_buf, tmp_len);
for (int i = 0; i < 8; i++) exodus->data[i] = byte_swap_32 (exodus->data[i]);
// tag
const u8 *tag_pos = token.buf[7];
const int tag_len = token.len[7];
memset (tmp_buf, 0, sizeof (tmp_buf));
tmp_len = base64_decode (base64_to_int, (const u8 *) tag_pos, tag_len, tmp_buf);
memcpy (exodus->tag, tmp_buf, tmp_len);
for (int i = 0; i < 4; i++) exodus->tag[i] = byte_swap_32 (exodus->tag[i]);
// digest
digest[0] = exodus->tag[0];
digest[1] = exodus->tag[1];
digest[2] = exodus->tag[2];
digest[3] = exodus->tag[3];
return (PARSER_OK);
}
int module_hash_encode (MAYBE_UNUSED const hashconfig_t *hashconfig, MAYBE_UNUSED const void *digest_buf, MAYBE_UNUSED const salt_t *salt, MAYBE_UNUSED const void *esalt_buf, MAYBE_UNUSED const void *hook_salt_buf, MAYBE_UNUSED const hashinfo_t *hash_info, char *line_buf, MAYBE_UNUSED const int line_size)
{
//const u32 *digest = (const u32 *) digest_buf;
const exodus_t *exodus = (const exodus_t *) esalt_buf;
// salt
char base64_salt[64];
int base64_salt_len = base64_encode (int_to_base64, (const u8 *) salt->salt_buf, salt->salt_len, (u8 *) base64_salt);
base64_salt[base64_salt_len] = 0;
// iv
u32 tmp_iv[4] = { 0 };
for (int i = 0; i < 4; i++) tmp_iv[i] = byte_swap_32 (exodus->iv[i]);
char base64_iv[64];
int base64_iv_len = base64_encode (int_to_base64, (const u8 *) tmp_iv, 12, (u8 *) base64_iv);
base64_iv[base64_iv_len] = 0;
// data
u32 tmp_data[8] = { 0 };
for (int i = 0; i < 8; i++) tmp_data[i] = byte_swap_32 (exodus->data[i]);
char base64_data[64];
int base64_data_len = base64_encode (int_to_base64, (const u8 *) tmp_data, 32, (u8 *) base64_data);
base64_data[base64_data_len] = 0;
// tag
u32 tmp_tag[4] = { 0 };
for (int i = 0; i < 4; i++) tmp_tag[i] = byte_swap_32 (exodus->tag[i]);
char base64_tag[64];
int base64_tag_len = base64_encode (int_to_base64, (const u8 *) tmp_tag, 16, (u8 *) base64_tag);
base64_tag[base64_tag_len] = 0;
// output
const int line_len = snprintf (line_buf, line_size, "%s:%u:%u:%u:%s:%s:%s:%s",
SIGNATURE_EXODUS,
salt->scrypt_N,
salt->scrypt_r,
salt->scrypt_p,
base64_salt,
base64_iv,
base64_data,
base64_tag);
return line_len;
}
/*
Find the right -n value for your GPU:
=====================================
1. For example, to find the value for 28200, first create a valid hash for 28200 as follows:
$ ./hashcat --example-hashes -m 28200 | grep Example.Hash | grep -v Format | cut -b 25- > tmp.hash.28200
2. Now let it iterate through all -n values to a certain point. In this case, I'm using 200, but in general it's a value that is at least twice that of the multiprocessor. If you don't mind you can just leave it as it is, it just runs a little longer.
$ export i=1; while [ $i -ne 201 ]; do echo $i; ./hashcat --quiet tmp.hash.28200 --keep-guessing --self-test-disable --markov-disable --restore-disable --outfile-autohex-disable --wordlist-autohex-disable --potfile-disable --logfile-disable --hwmon-disable --status --status-timer 1 --runtime 28 --machine-readable --optimized-kernel-enable --workload-profile 3 --hash-type 28200 --attack-mode 3 ?b?b?b?b?b?b?b --backend-devices 1 --force -n $i; i=$(($i+1)); done | tee x
3. Determine the highest measured H/s speed. But don't just use the highest value. Instead, use the number that seems most stable, usually at the beginning.
$ grep "$(printf 'STATUS\t3')" x | cut -f4 -d$'\t' | sort -n | tail
4. To match the speed you have chosen to the correct value in the 'x' file, simply search for it in it. Then go up a little on the block where you found him. The value -n is the single value that begins before the block start. If you have multiple blocks at the same speed, choose the lowest value for -n
*/
const char *module_extra_tuningdb_block (MAYBE_UNUSED const hashconfig_t *hashconfig, MAYBE_UNUSED const user_options_t *user_options, MAYBE_UNUSED const user_options_extra_t *user_options_extra)
{
const char *extra_tuningdb_block =
"DEVICE_TYPE_CPU * 28200 1 N A\n"
"DEVICE_TYPE_GPU * 28200 1 N A\n"
"GeForce_GTX_980 * 28200 1 16 A\n"
"GeForce_GTX_1080 * 28200 1 45 A\n"
"GeForce_RTX_2080_Ti * 28200 1 68 A\n"
"GeForce_RTX_3080 * 28200 1 68 A\n"
"GeForce_RTX_3090 * 28200 1 82 A\n"
"ALIAS_AMD_Vega64 * 28200 1 60 A\n"
"ALIAS_AMD_RX6900XT * 28200 1 60 A\n"
;
return extra_tuningdb_block;
}
void module_init (module_ctx_t *module_ctx)
{
module_ctx->module_context_size = MODULE_CONTEXT_SIZE_CURRENT;
module_ctx->module_interface_version = MODULE_INTERFACE_VERSION_CURRENT;
module_ctx->module_attack_exec = module_attack_exec;
module_ctx->module_benchmark_esalt = MODULE_DEFAULT;
module_ctx->module_benchmark_hook_salt = MODULE_DEFAULT;
module_ctx->module_benchmark_mask = MODULE_DEFAULT;
module_ctx->module_benchmark_salt = MODULE_DEFAULT;
module_ctx->module_build_plain_postprocess = MODULE_DEFAULT;
module_ctx->module_deep_comp_kernel = MODULE_DEFAULT;
module_ctx->module_deprecated_notice = MODULE_DEFAULT;
module_ctx->module_dgst_pos0 = module_dgst_pos0;
module_ctx->module_dgst_pos1 = module_dgst_pos1;
module_ctx->module_dgst_pos2 = module_dgst_pos2;
module_ctx->module_dgst_pos3 = module_dgst_pos3;
module_ctx->module_dgst_size = module_dgst_size;
module_ctx->module_dictstat_disable = MODULE_DEFAULT;
module_ctx->module_esalt_size = module_esalt_size;
module_ctx->module_extra_buffer_size = module_extra_buffer_size;
module_ctx->module_extra_tmp_size = module_extra_tmp_size;
module_ctx->module_extra_tuningdb_block = module_extra_tuningdb_block;
module_ctx->module_forced_outfile_format = MODULE_DEFAULT;
module_ctx->module_hash_binary_count = MODULE_DEFAULT;
module_ctx->module_hash_binary_parse = MODULE_DEFAULT;
module_ctx->module_hash_binary_save = MODULE_DEFAULT;
module_ctx->module_hash_decode_postprocess = MODULE_DEFAULT;
module_ctx->module_hash_decode_potfile = MODULE_DEFAULT;
module_ctx->module_hash_decode_zero_hash = MODULE_DEFAULT;
module_ctx->module_hash_decode = module_hash_decode;
module_ctx->module_hash_encode_status = MODULE_DEFAULT;
module_ctx->module_hash_encode_potfile = MODULE_DEFAULT;
module_ctx->module_hash_encode = module_hash_encode;
module_ctx->module_hash_init_selftest = MODULE_DEFAULT;
module_ctx->module_hash_mode = MODULE_DEFAULT;
module_ctx->module_hash_category = module_hash_category;
module_ctx->module_hash_name = module_hash_name;
module_ctx->module_hashes_count_min = MODULE_DEFAULT;
module_ctx->module_hashes_count_max = MODULE_DEFAULT;
module_ctx->module_hlfmt_disable = MODULE_DEFAULT;
module_ctx->module_hook_extra_param_size = MODULE_DEFAULT;
module_ctx->module_hook_extra_param_init = MODULE_DEFAULT;
module_ctx->module_hook_extra_param_term = MODULE_DEFAULT;
module_ctx->module_hook12 = MODULE_DEFAULT;
module_ctx->module_hook23 = MODULE_DEFAULT;
module_ctx->module_hook_salt_size = MODULE_DEFAULT;
module_ctx->module_hook_size = MODULE_DEFAULT;
module_ctx->module_jit_build_options = module_jit_build_options;
module_ctx->module_jit_cache_disable = MODULE_DEFAULT;
module_ctx->module_kernel_accel_max = MODULE_DEFAULT;
module_ctx->module_kernel_accel_min = MODULE_DEFAULT;
module_ctx->module_kernel_loops_max = module_kernel_loops_max;
module_ctx->module_kernel_loops_min = module_kernel_loops_min;
module_ctx->module_kernel_threads_max = MODULE_DEFAULT;
module_ctx->module_kernel_threads_min = MODULE_DEFAULT;
module_ctx->module_kern_type = module_kern_type;
module_ctx->module_kern_type_dynamic = MODULE_DEFAULT;
module_ctx->module_opti_type = module_opti_type;
module_ctx->module_opts_type = module_opts_type;
module_ctx->module_outfile_check_disable = MODULE_DEFAULT;
module_ctx->module_outfile_check_nocomp = MODULE_DEFAULT;
module_ctx->module_potfile_custom_check = MODULE_DEFAULT;
module_ctx->module_potfile_disable = MODULE_DEFAULT;
module_ctx->module_potfile_keep_all_hashes = MODULE_DEFAULT;
module_ctx->module_pwdump_column = MODULE_DEFAULT;
module_ctx->module_pw_max = MODULE_DEFAULT;
module_ctx->module_pw_min = module_pw_min;
module_ctx->module_salt_max = MODULE_DEFAULT;
module_ctx->module_salt_min = MODULE_DEFAULT;
module_ctx->module_salt_type = module_salt_type;
module_ctx->module_separator = MODULE_DEFAULT;
module_ctx->module_st_hash = module_st_hash;
module_ctx->module_st_pass = module_st_pass;
module_ctx->module_tmp_size = module_tmp_size;
module_ctx->module_unstable_warning = MODULE_DEFAULT;
module_ctx->module_warmup_disable = module_warmup_disable;
}

69
tools/exodus2hashcat.py Executable file
View File

@ -0,0 +1,69 @@
#!/usr/bin/env python
# Author......: See docs/credits.txt
# License.....: MIT
# Target......: Exodus wallet extractor
# Example.....: exodus2hashcat.py <path to exodus seed seco file>
import binascii
import sys
import hashlib
from Crypto.Cipher import AES
import base64
import os.path
METADATA_LEN = 256
HEADER_LEN = 224
CRC_LEN = 32
LEN_BLOB_STORED = 4
if len(sys.argv) != 2 :
print("Error, usage exodus2hashcat.py <path to exodus seed.seco file>")
sys.exit(1)
if os.path.basename(sys.argv[1])!= 'seed.seco':
print("Error, usage exodus2hashcat.py <path to exodus seed.seco file>")
sys.exit(1)
with open(sys.argv[1],'rb') as fd:
seedBuffer = fd.read()
#Basic check
if not seedBuffer[0:4].decode("utf8").startswith("SECO"):
print("Not A SECO exodus header magic")
sys.exit(1)
salt = seedBuffer[0x100:0x120]
n = int.from_bytes(seedBuffer[0x120:0x124],"big")
r = int.from_bytes(seedBuffer[0x124:0x128],"big")
p = int.from_bytes(seedBuffer[0x128:0x12c],"big")
#Basic check
if n!=16384 or r !=8 or p != 1:
print("Warning,unexpected scrypt N,r,p values")
if os.path.getsize(sys.argv[1]) != METADATA_LEN + HEADER_LEN + CRC_LEN + LEN_BLOB_STORED+ int.from_bytes(seedBuffer[0x200:0x204],"big"):
print(os.path.getsize(sys.argv[1]))
print( METADATA_LEN + HEADER_LEN + int.from_bytes(seedBuffer[0x200:0x204],"big"))
print("Error file size")
sys.argv[1]
#Check integrity
m = hashlib.sha256()
m.update(seedBuffer[HEADER_LEN+CRC_LEN:])
if m.digest() != seedBuffer[HEADER_LEN:HEADER_LEN+CRC_LEN]:
print("SECO file seems corrupted")
sys.exit(1)
#Check aes-gcm string
cipher = seedBuffer[0x12c:0x138]
if binascii.hexlify(cipher) != b"6165732d3235362d67636d00":
print("Error aes-256-gcm")
sys.exit(1)
iv = seedBuffer[0x14c:0x158]
authTag = seedBuffer[0x158:0x168]
key = seedBuffer[0x168:0x188]
print("EXODUS:"+str(n)+":"+str(r)+":"+str(p)+":"+base64.b64encode(salt).decode("utf8")+":"+base64.b64encode(iv).decode("utf8")+":"+base64.b64encode(key).decode("utf8")+":"+base64.b64encode(authTag).decode("utf8"))

View File

@ -0,0 +1,111 @@
#!/usr/bin/env perl
##
## Author......: See docs/credits.txt
## License.....: MIT
##
use strict;
use warnings;
use Crypt::ScryptKDF qw (scrypt_hash scrypt_raw);
use Crypt::CBC;
use MIME::Base64 qw (decode_base64 encode_base64);
use Digest::SHA qw (sha512);
use Crypt::AuthEnc::GCM;
sub module_constraints { [[0, 256], [64, 64], [-1, -1], [-1, -1], [-1, -1]] }
sub module_generate_hash
{
my $word = shift;
my $salt = shift;
my $scrypt_n = shift // 16384;
my $scrypt_r = shift // 8;
my $scrypt_p = shift // 1;
my $iv = shift // random_hex_string (24);
my $data = shift;
my $tag = shift;
my $salt_bin = pack ("H*", $salt);
my $key_bin = scrypt_raw ($word, $salt_bin, $scrypt_n, $scrypt_r, $scrypt_p, 32);
my $iv_bin = pack ("H*", $iv);
my $pt;
if (defined $data)
{
my $data_bin = pack ("H*", $data);
my $aes = Crypt::AuthEnc::GCM->new ("AES", $key_bin, $iv_bin);
$pt = $aes->decrypt_add ($data_bin);
my $tag_bin = pack ("H*", $tag);
my $result_tag = $aes->decrypt_done ($tag_bin);
if ($result_tag == 1)
{
## correct password
}
else
{
$pt = random_bytes (32);
}
}
else
{
$pt = random_bytes (32);
}
my $aes = Crypt::AuthEnc::GCM->new ("AES", $key_bin, $iv_bin);
my $ct_bin = $aes->encrypt_add ($pt);
my $tag_bin = $aes->encrypt_done ();
my $hash = sprintf ('EXODUS:%u:%u:%u:%s:%s:%s:%s', $scrypt_n, $scrypt_r, $scrypt_p, encode_base64 ($salt_bin, ""), encode_base64 ($iv_bin, ""), encode_base64 ($ct_bin, ""), encode_base64 ($tag_bin, ""));
return $hash;
}
sub module_verify_hash
{
my $line = shift;
my $idx = rindex ($line, ':');
return unless $idx >= 0;
my $hash = substr ($line, 0, $idx);
my $word = substr ($line, $idx + 1);
return unless substr ($hash, 0, 6) eq 'EXODUS';
my ($signature, $scrypt_n, $scrypt_r, $scrypt_p, $salt, $iv, $data, $tag) = split ':', $hash;
return unless defined $signature;
return unless defined $scrypt_n;
return unless defined $scrypt_r;
return unless defined $scrypt_p;
return unless defined $salt;
return unless defined $iv;
return unless defined $data;
return unless defined $tag;
$salt = decode_base64 ($salt);
$iv = decode_base64 ($iv);
$data = decode_base64 ($data);
$tag = decode_base64 ($tag);
my $word_packed = pack_if_HEX_notation ($word);
my $new_hash = module_generate_hash ($word_packed, unpack ("H*", $salt), $scrypt_n, $scrypt_r, $scrypt_p, unpack ("H*", $iv), unpack ("H*", $data), unpack ("H*", $tag));
return ($new_hash, $word);
}
1;