1
0
mirror of https://github.com/trezor/trezor-firmware.git synced 2024-11-30 03:18:20 +00:00
trezor-firmware/hmac.c
Jochen Hoenicke 32bda8d1d9
Faster PBKDF2 by reusing intermediate results.
The old implementation needed 6 sha transformations per iterations:

- 2 for computing sha512 of seed,
- 2 for computing digests of ipads/opads,
- 2 for computing digests of intermediate hashes.

The first 4 transformations are the same in every iteration so we cache
them.  A new function hmac_sha512_prepare computes these digests.
We made sha512_Transform visible in pbkdf2 and prevent unneccessary
big/little endian conversions back and forth.
2016-07-13 22:17:23 +02:00

170 lines
5.3 KiB
C

/**
* Copyright (c) 2013-2014 Tomas Dzetkulic
* Copyright (c) 2013-2014 Pavol Rusnak
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES
* OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*/
#include <string.h>
#include "hmac.h"
#include "macros.h"
void hmac_sha256_Init(HMAC_SHA256_CTX *hctx, const uint8_t *key, const uint32_t keylen)
{
uint8_t i_key_pad[SHA256_BLOCK_LENGTH];
memset(i_key_pad, 0, SHA256_BLOCK_LENGTH);
if (keylen > SHA256_BLOCK_LENGTH) {
sha256_Raw(key, keylen, i_key_pad);
} else {
memcpy(i_key_pad, key, keylen);
}
for (int i = 0; i < SHA256_BLOCK_LENGTH; i++) {
hctx->o_key_pad[i] = i_key_pad[i] ^ 0x5c;
i_key_pad[i] ^= 0x36;
}
sha256_Init(&(hctx->ctx));
sha256_Update(&(hctx->ctx), i_key_pad, SHA256_BLOCK_LENGTH);
MEMSET_BZERO(i_key_pad, sizeof(i_key_pad));
}
void hmac_sha256_Update(HMAC_SHA256_CTX *hctx, const uint8_t *msg, const uint32_t msglen)
{
sha256_Update(&(hctx->ctx), msg, msglen);
}
void hmac_sha256_Final(HMAC_SHA256_CTX *hctx, uint8_t *hmac)
{
uint8_t hash[SHA256_DIGEST_LENGTH];
sha256_Final(&(hctx->ctx), hash);
sha256_Init(&(hctx->ctx));
sha256_Update(&(hctx->ctx), hctx->o_key_pad, SHA256_BLOCK_LENGTH);
sha256_Update(&(hctx->ctx), hash, SHA256_DIGEST_LENGTH);
sha256_Final(&(hctx->ctx), hmac);
MEMSET_BZERO(hash, sizeof(hash));
MEMSET_BZERO(hctx, sizeof(HMAC_SHA256_CTX));
}
void hmac_sha256(const uint8_t *key, const uint32_t keylen, const uint8_t *msg, const uint32_t msglen, uint8_t *hmac)
{
HMAC_SHA256_CTX hctx;
hmac_sha256_Init(&hctx, key, keylen);
hmac_sha256_Update(&hctx, msg, msglen);
hmac_sha256_Final(&hctx, hmac);
}
void hmac_sha256_prepare(const uint8_t *key, const uint32_t keylen, uint32_t *opad_digest, uint32_t *ipad_digest)
{
int i;
uint32_t buf[SHA256_BLOCK_LENGTH/sizeof(uint32_t)];
uint32_t o_key_pad[16], i_key_pad[16];
memset(buf, 0, SHA256_BLOCK_LENGTH);
if (keylen > SHA256_BLOCK_LENGTH) {
sha256_Raw(key, keylen, (uint8_t*) buf);
} else {
memcpy(buf, key, keylen);
}
for (i = 0; i < 16; i++) {
uint32_t data;
#if BYTE_ORDER == LITTLE_ENDIAN
REVERSE32(buf[i], data);
#else
data = buf[i];
#endif
o_key_pad[i] = data ^ 0x5c5c5c5c;
i_key_pad[i] = data ^ 0x36363636;
}
sha256_Transform(sha256_initial_hash_value, o_key_pad, opad_digest);
sha256_Transform(sha256_initial_hash_value, i_key_pad, ipad_digest);
}
void hmac_sha512_Init(HMAC_SHA512_CTX *hctx, const uint8_t *key, const uint32_t keylen)
{
uint8_t i_key_pad[SHA512_BLOCK_LENGTH];
memset(i_key_pad, 0, SHA512_BLOCK_LENGTH);
if (keylen > SHA512_BLOCK_LENGTH) {
sha512_Raw(key, keylen, i_key_pad);
} else {
memcpy(i_key_pad, key, keylen);
}
for (int i = 0; i < SHA512_BLOCK_LENGTH; i++) {
hctx->o_key_pad[i] = i_key_pad[i] ^ 0x5c;
i_key_pad[i] ^= 0x36;
}
sha512_Init(&(hctx->ctx));
sha512_Update(&(hctx->ctx), i_key_pad, SHA512_BLOCK_LENGTH);
MEMSET_BZERO(i_key_pad, sizeof(i_key_pad));
}
void hmac_sha512_Update(HMAC_SHA512_CTX *hctx, const uint8_t *msg, const uint32_t msglen)
{
sha512_Update(&(hctx->ctx), msg, msglen);
}
void hmac_sha512_Final(HMAC_SHA512_CTX *hctx, uint8_t *hmac)
{
uint8_t hash[SHA512_DIGEST_LENGTH];
sha512_Final(&(hctx->ctx), hash);
sha512_Init(&(hctx->ctx));
sha512_Update(&(hctx->ctx), hctx->o_key_pad, SHA512_BLOCK_LENGTH);
sha512_Update(&(hctx->ctx), hash, SHA512_DIGEST_LENGTH);
sha512_Final(&(hctx->ctx), hmac);
MEMSET_BZERO(hash, sizeof(hash));
MEMSET_BZERO(hctx, sizeof(HMAC_SHA512_CTX));
}
void hmac_sha512(const uint8_t *key, const uint32_t keylen, const uint8_t *msg, const uint32_t msglen, uint8_t *hmac)
{
HMAC_SHA512_CTX hctx;
hmac_sha512_Init(&hctx, key, keylen);
hmac_sha512_Update(&hctx, msg, msglen);
hmac_sha512_Final(&hctx, hmac);
}
void hmac_sha512_prepare(const uint8_t *key, const uint32_t keylen, uint64_t *opad_digest, uint64_t *ipad_digest)
{
int i;
uint64_t buf[SHA512_BLOCK_LENGTH/sizeof(uint64_t)];
uint64_t o_key_pad[16], i_key_pad[16];
memset(buf, 0, SHA512_BLOCK_LENGTH);
if (keylen > SHA512_BLOCK_LENGTH) {
sha512_Raw(key, keylen, (uint8_t*)buf);
} else {
memcpy(buf, key, keylen);
}
for (i = 0; i < 16; i++) {
uint64_t data;
#if BYTE_ORDER == LITTLE_ENDIAN
REVERSE64(buf[i], data);
#else
data = buf[i];
#endif
o_key_pad[i] = data ^ 0x5c5c5c5c5c5c5c5c;
i_key_pad[i] = data ^ 0x3636363636363636;
}
sha512_Transform(sha512_initial_hash_value, o_key_pad, opad_digest);
sha512_Transform(sha512_initial_hash_value, i_key_pad, ipad_digest);
}