1
0
mirror of https://github.com/trezor/trezor-firmware.git synced 2024-11-30 03:18:20 +00:00
trezor-firmware/extmod/modtrezorui/display-stmhal.h
2016-09-27 17:25:51 +02:00

212 lines
8.2 KiB
C

/*
* Copyright (c) Pavol Rusnak, SatoshiLabs
*
* Licensed under TREZOR License
* see LICENSE file for details
*/
#include STM32_HAL_H
#define LED_PWM_TIM_PERIOD (10000)
extern uint32_t timer_get_source_freq(uint32_t tim_id);
#define CMD(X) (*((__IO uint8_t *)((uint32_t)(0x60000000))) = (X))
#define DATA(X) (*((__IO uint8_t *)((uint32_t)(0x60000000 | 0x10000))) = (X))
void DATAS(const void *bytes, int len);
static TIM_HandleTypeDef TIM1_Handle;
void display_sram_init(void) {
__GPIOE_CLK_ENABLE();
__TIM1_CLK_ENABLE();
__FSMC_CLK_ENABLE();
/*
// LCD_RST/PA3
GPIO_InitStructure.Pin = GPIO_PIN_3;
GPIO_InitStructure.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStructure.Pull = GPIO_PULLUP;
GPIO_InitStructure.Speed = GPIO_SPEED_HIGH;
HAL_GPIO_Init(GPIOA, &GPIO_InitStructure);
HAL_GPIO_WritePin(GPIOA, GPIO_PIN_3, GPIO_PIN_SET);
*/
GPIO_InitTypeDef GPIO_InitStructure;
GPIO_InitStructure.Mode = GPIO_MODE_AF_PP;
GPIO_InitStructure.Pull = GPIO_NOPULL;
GPIO_InitStructure.Speed = GPIO_SPEED_HIGH;
GPIO_InitStructure.Alternate = GPIO_AF1_TIM1;
// LCD_PWM/PB13
GPIO_InitStructure.Pin = GPIO_PIN_13;
HAL_GPIO_Init(GPIOB, &GPIO_InitStructure);
GPIO_InitStructure.Alternate = GPIO_AF12_FSMC;
// LCD_CS/PD7 LCD_RS/PD11 LCD_RD/PD4 LCD_WR/PD5
GPIO_InitStructure.Pin = GPIO_PIN_7 | GPIO_PIN_11 | GPIO_PIN_4 | GPIO_PIN_5;
HAL_GPIO_Init(GPIOD, &GPIO_InitStructure);
// LCD_D0/PD14 LCD_D1/PD15 LCD_D2/PD0 LCD_D3/PD1
GPIO_InitStructure.Pin = GPIO_PIN_14 | GPIO_PIN_15 | GPIO_PIN_0 | GPIO_PIN_1;
HAL_GPIO_Init(GPIOD, &GPIO_InitStructure);
// LCD_D4/PE7 LCD_D5/PE8 LCD_D6/PE9 LCD_D7/PE10
GPIO_InitStructure.Pin = GPIO_PIN_7 | GPIO_PIN_8 | GPIO_PIN_9 | GPIO_PIN_10;
HAL_GPIO_Init(GPIOE, &GPIO_InitStructure);
// enable PWM timer
TIM1_Handle.Instance = TIM1;
TIM1_Handle.Init.Period = LED_PWM_TIM_PERIOD - 1;
TIM1_Handle.Init.Prescaler = timer_get_source_freq(1) / 1000000 - 1; // TIM runs at 1MHz
TIM1_Handle.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
TIM1_Handle.Init.CounterMode = TIM_COUNTERMODE_UP;
TIM1_Handle.Init.RepetitionCounter = 0;
HAL_TIM_PWM_Init(&TIM1_Handle);
TIM_OC_InitTypeDef TIM_OC_InitStructure;
TIM_OC_InitStructure.Pulse = 0;
TIM_OC_InitStructure.OCMode = TIM_OCMODE_PWM2;
TIM_OC_InitStructure.OCPolarity = TIM_OCPOLARITY_HIGH;
TIM_OC_InitStructure.OCFastMode = TIM_OCFAST_DISABLE;
TIM_OC_InitStructure.OCNPolarity = TIM_OCNPOLARITY_HIGH;
TIM_OC_InitStructure.OCIdleState = TIM_OCIDLESTATE_SET;
TIM_OC_InitStructure.OCNIdleState = TIM_OCNIDLESTATE_SET;
HAL_TIM_PWM_ConfigChannel(&TIM1_Handle, &TIM_OC_InitStructure, TIM_CHANNEL_1);
HAL_TIM_PWM_Start(&TIM1_Handle, TIM_CHANNEL_1);
HAL_TIMEx_PWMN_Start(&TIM1_Handle, TIM_CHANNEL_1);
// timing values from:
// http://ele-tech.com/html/it-is-developed-that-embedded-stm32-fsmc-interface-drives-tft-lcd-to-be-designed.html
FSMC_NORSRAM_InitTypeDef FSMC_NORSRAMInitStructure;
FSMC_NORSRAM_TimingTypeDef FSMC_NORSRAMTimingStructure;
FSMC_NORSRAMTimingStructure.AddressSetupTime = 2;
FSMC_NORSRAMTimingStructure.AddressHoldTime = 0;
FSMC_NORSRAMTimingStructure.DataSetupTime = 5;
FSMC_NORSRAMTimingStructure.BusTurnAroundDuration = 0;
FSMC_NORSRAMTimingStructure.CLKDivision = 0;
FSMC_NORSRAMTimingStructure.DataLatency = 0;
FSMC_NORSRAMTimingStructure.AccessMode = FSMC_ACCESS_MODE_B;
FSMC_NORSRAMInitStructure.NSBank = FSMC_NORSRAM_BANK1;
FSMC_NORSRAMInitStructure.DataAddressMux = FSMC_DATA_ADDRESS_MUX_DISABLE;
FSMC_NORSRAMInitStructure.MemoryType = FSMC_MEMORY_TYPE_NOR;
FSMC_NORSRAMInitStructure.MemoryDataWidth = FSMC_NORSRAM_MEM_BUS_WIDTH_8;
FSMC_NORSRAMInitStructure.BurstAccessMode = FSMC_BURST_ACCESS_MODE_DISABLE;
FSMC_NORSRAMInitStructure.WaitSignalPolarity = FSMC_WAIT_SIGNAL_POLARITY_LOW;
FSMC_NORSRAMInitStructure.WrapMode = FSMC_WRAP_MODE_DISABLE;
FSMC_NORSRAMInitStructure.WaitSignalActive = FSMC_WAIT_TIMING_BEFORE_WS;
FSMC_NORSRAMInitStructure.WriteOperation = FSMC_WRITE_OPERATION_ENABLE;
FSMC_NORSRAMInitStructure.WaitSignal = FSMC_WAIT_SIGNAL_DISABLE;
FSMC_NORSRAMInitStructure.ExtendedMode = FSMC_EXTENDED_MODE_DISABLE;
FSMC_NORSRAMInitStructure.AsynchronousWait = FSMC_ASYNCHRONOUS_WAIT_DISABLE;
FSMC_NORSRAMInitStructure.WriteBurst = FSMC_WRITE_BURST_DISABLE;
FSMC_NORSRAMInitStructure.PageSize = FSMC_PAGE_SIZE_NONE;
FSMC_NORSRAM_Init(FSMC_NORSRAM_DEVICE, &FSMC_NORSRAMInitStructure);
FSMC_NORSRAM_Timing_Init(FSMC_NORSRAM_DEVICE, &FSMC_NORSRAMTimingStructure, FSMC_NORSRAMInitStructure.NSBank);
// FSMC_NORSRAM_Extended_Timing_Init(FSMC_NORSRAM_EXTENDED_DEVICE, &FSMC_NORSRAMTimingStructure, FSMC_NORSRAMInitStructure.NSBank, FSMC_NORSRAMInitStructure.ExtendedMode);
__FSMC_NORSRAM_ENABLE(FSMC_NORSRAM_DEVICE, FSMC_NORSRAMInitStructure.NSBank);
}
/*
static void display_sleep(void) {
CMD(0x28); // display off
HAL_Delay(20);
CMD(0x10); // enter sleep
}
*/
static void display_unsleep(void) {
CMD(0x11); // exit sleep
HAL_Delay(20);
CMD(0x29); // display
}
static uint8_t WINDOW_OFFSET_X = 0, WINDOW_OFFSET_Y = 0;
int display_orientation(int degrees)
{
if (degrees != ORIENTATION) {
// memory access control
switch (degrees) {
case 0:
CMD(0x36); DATA(0x08 | (1<<6) | (1<<7));
WINDOW_OFFSET_X = 0;
WINDOW_OFFSET_Y = 80;
ORIENTATION = 0;
break;
case 90:
CMD(0x36); DATA(0x08 | (1<<5) | (1<<6));
WINDOW_OFFSET_X = 0;
WINDOW_OFFSET_Y = 0;
ORIENTATION = 90;
break;
case 180:
CMD(0x36); DATA(0x08);
WINDOW_OFFSET_X = 0;
WINDOW_OFFSET_Y = 0;
ORIENTATION = 180;
break;
case 270:
CMD(0x36); DATA(0x08 | (1<<5) | (1<<7));
WINDOW_OFFSET_X = 80;
WINDOW_OFFSET_Y = 0;
ORIENTATION = 270;
break;
}
}
return ORIENTATION;
}
void display_init(void) {
display_sram_init();
CMD(0x01); // software reset
HAL_Delay(20);
CMD(0x28); // display off
CMD(0xCF); DATAS("\x00\xC1\x30", 3);
CMD(0xED); DATAS("\x64\x03\x12\x81", 4);
CMD(0xE8); DATAS("\x85\x10\x7A", 3);
CMD(0xCB); DATAS("\x39\x2C\x00\x34\x02", 5);
CMD(0xF7); DATA(0x20);
CMD(0xEA); DATAS("\x00\x00", 2);
CMD(0xC0); DATA(0x23); // power control VRH[5:0]
CMD(0xC1); DATA(0x12); // power control SAP[2:0] BT[3:0]
CMD(0xC5); DATAS("\x60\x44", 2); // vcm control 1
CMD(0xC7); DATA(0x8A); // vcm control 2
display_orientation(0);
CMD(0x3A); DATA(0x55); // memory access control (16-bit 565)
CMD(0xB1); DATAS("\x00\x18", 2); // framerate
CMD(0xB6); DATAS("\x0A\xA2", 2); // display function control
CMD(0xF6); DATAS("\x01\x30\x00", 3); // interface control
CMD(0xF2); DATA(0x00); // 3 gamma func disable
CMD(0x26); DATA(0x01); // gamma func enable
CMD(0xE0); DATAS("\x0F\x2F\x2C\x0B\x0F\x09\x56\xD9\x4A\x0B\x14\x05\x0C\x06\x00", 15); // gamma curve 1
CMD(0xE1); DATAS("\x00\x10\x13\x04\x10\x06\x25\x26\x3B\x04\x0B\x0A\x33\x39\x0F", 15); // gamma curve 2
CMD(0x21); // invert colors
display_unsleep();
}
void display_set_window(uint16_t x, uint16_t y, uint16_t w, uint16_t h) {
x += WINDOW_OFFSET_X;
y += WINDOW_OFFSET_Y;
uint16_t x1 = x + w - 1;
uint16_t y1 = y + h - 1;
CMD(0x2A); DATA(x >> 8); DATA(x & 0xFF); DATA(x1 >> 8); DATA(x1 & 0xFF); // column addr set
CMD(0x2B); DATA(y >> 8); DATA(y & 0xFF); DATA(y1 >> 8); DATA(y1 & 0xFF); // row addr set
CMD(0x2C);
}
void display_update(void) {
}
int display_backlight(int val)
{
if (BACKLIGHT != val && val >= 0 && val <= 255) {
BACKLIGHT = val;
__HAL_TIM_SetCompare(&TIM1_Handle, TIM_CHANNEL_1, LED_PWM_TIM_PERIOD * BACKLIGHT / 255);
}
return BACKLIGHT;
}