/** * Copyright (c) 2013-2014 Tomas Dzetkulic * Copyright (c) 2013-2014 Pavol Rusnak * Copyright (c) 2016 Alex Beregszaszi * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES * OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. */ #ifndef __BIGNUM_H__ #define __BIGNUM_H__ #include #include #include #include "options.h" // bignum256 are 256 bits stored as 8*30 bit + 1*16 bit // val[0] are lowest 30 bits, val[8] highest 16 bits typedef struct { uint32_t val[9]; } bignum256; // read 4 big endian bytes into uint32 uint32_t read_be(const uint8_t *data); // write 4 big endian bytes void write_be(uint8_t *data, uint32_t x); // read 4 little endian bytes into uint32 uint32_t read_le(const uint8_t *data); // write 4 little endian bytes void write_le(uint8_t *data, uint32_t x); void bn_read_be(const uint8_t *in_number, bignum256 *out_number); void bn_write_be(const bignum256 *in_number, uint8_t *out_number); void bn_read_le(const uint8_t *in_number, bignum256 *out_number); void bn_write_le(const bignum256 *in_number, uint8_t *out_number); void bn_read_uint32(uint32_t in_number, bignum256 *out_number); void bn_read_uint64(uint64_t in_number, bignum256 *out_number); static inline uint32_t bn_write_uint32(const bignum256 *in_number) { return in_number->val[0] | (in_number->val[1] << 30); } static inline uint64_t bn_write_uint64(const bignum256 *in_number) { uint64_t tmp; tmp = in_number->val[2]; tmp <<= 30; tmp |= in_number->val[1]; tmp <<= 30; tmp |= in_number->val[0]; return tmp; } // copies number a to b static inline void bn_copy(const bignum256 *a, bignum256 *b) { *b = *a; } int bn_bitcount(const bignum256 *a); static inline int bn_digitcount(const bignum256 *a) { int bitcount = bn_bitcount(a); if (bitcount == 256) { return 78; } else { return bitcount * 78 / 256 + 1; } } void bn_zero(bignum256 *a); int bn_is_zero(const bignum256 *a); void bn_one(bignum256 *a); static inline int bn_is_even(const bignum256 *a) { return (a->val[0] & 1) == 0; } static inline int bn_is_odd(const bignum256 *a) { return (a->val[0] & 1) == 1; } int bn_is_less(const bignum256 *a, const bignum256 *b); int bn_is_equal(const bignum256 *a, const bignum256 *b); void bn_cmov(bignum256 *res, int cond, const bignum256 *truecase, const bignum256 *falsecase); void bn_lshift(bignum256 *a); void bn_rshift(bignum256 *a); void bn_setbit(bignum256 *a, uint8_t bit); void bn_clearbit(bignum256 *a, uint8_t bit); uint32_t bn_testbit(bignum256 *a, uint8_t bit); void bn_xor(bignum256 *a, const bignum256 *b, const bignum256 *c); void bn_mult_half(bignum256 *x, const bignum256 *prime); void bn_mult_k(bignum256 *x, uint8_t k, const bignum256 *prime); void bn_mod(bignum256 *x, const bignum256 *prime); void bn_multiply(const bignum256 *k, bignum256 *x, const bignum256 *prime); void bn_fast_mod(bignum256 *x, const bignum256 *prime); void bn_sqrt(bignum256 *x, const bignum256 *prime); void bn_inverse(bignum256 *x, const bignum256 *prime); void bn_normalize(bignum256 *a); void bn_add(bignum256 *a, const bignum256 *b); void bn_addmod(bignum256 *a, const bignum256 *b, const bignum256 *prime); void bn_addi(bignum256 *a, uint32_t b); void bn_subi(bignum256 *a, uint32_t b, const bignum256 *prime); void bn_subtractmod(const bignum256 *a, const bignum256 *b, bignum256 *res, const bignum256 *prime); void bn_subtract(const bignum256 *a, const bignum256 *b, bignum256 *res); void bn_divmod58(bignum256 *a, uint32_t *r); void bn_divmod1000(bignum256 *a, uint32_t *r); size_t bn_format(const bignum256 *amnt, const char *prefix, const char *suffix, unsigned int decimals, int exponent, bool trailing, char *out, size_t outlen); static inline size_t bn_format_uint64(uint64_t amount, const char *prefix, const char *suffix, unsigned int decimals, int exponent, bool trailing, char *out, size_t outlen) { bignum256 amnt; bn_read_uint64(amount, &amnt); return bn_format(&amnt, prefix, suffix, decimals, exponent, trailing, out, outlen); } #if USE_BN_PRINT void bn_print(const bignum256 *a); void bn_print_raw(const bignum256 *a); #endif #endif