/** * Copyright (c) 2013-2014 Tomas Dzetkulic * Copyright (c) 2013-2014 Pavol Rusnak * Copyright (c) 2016 Alex Beregszaszi * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES * OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. */ #ifndef __BIGNUM_H__ #define __BIGNUM_H__ #include #include #include #include "options.h" #define BN_LIMBS 9 #define BN_BITS_PER_LIMB 29 #define BN_BASE (1u << BN_BITS_PER_LIMB) #define BN_LIMB_MASK ((1u << BN_BITS_PER_LIMB) - 1) #define BN_EXTRA_BITS (32 - BN_BITS_PER_LIMB) #define BN_BITS_LAST_LIMB (256 - (BN_LIMBS - 1) * BN_BITS_PER_LIMB) // Represents the number sum([val[i] * 2**(29*i) for i in range(9)) typedef struct { uint32_t val[BN_LIMBS]; } bignum256; static inline uint32_t read_be(const uint8_t *data) { return (((uint32_t)data[0]) << 24) | (((uint32_t)data[1]) << 16) | (((uint32_t)data[2]) << 8) | (((uint32_t)data[3])); } static inline void write_be(uint8_t *data, uint32_t x) { data[0] = x >> 24; data[1] = x >> 16; data[2] = x >> 8; data[3] = x; } static inline uint32_t read_le(const uint8_t *data) { return (((uint32_t)data[3]) << 24) | (((uint32_t)data[2]) << 16) | (((uint32_t)data[1]) << 8) | (((uint32_t)data[0])); } static inline void write_le(uint8_t *data, uint32_t x) { data[3] = x >> 24; data[2] = x >> 16; data[1] = x >> 8; data[0] = x; } void bn_read_be(const uint8_t *in_number, bignum256 *out_number); void bn_write_be(const bignum256 *in_number, uint8_t *out_number); void bn_read_le(const uint8_t *in_number, bignum256 *out_number); void bn_write_le(const bignum256 *in_number, uint8_t *out_number); void bn_read_uint32(uint32_t in_number, bignum256 *out_number); void bn_read_uint64(uint64_t in_number, bignum256 *out_number); int bn_bitcount(const bignum256 *x); unsigned int bn_digitcount(const bignum256 *x); void bn_zero(bignum256 *x); void bn_one(bignum256 *x); int bn_is_zero(const bignum256 *x); int bn_is_one(const bignum256 *x); int bn_is_less(const bignum256 *x, const bignum256 *y); int bn_is_equal(const bignum256 *x, const bignum256 *y); void bn_cmov(bignum256 *res, volatile uint32_t cond, const bignum256 *truecase, const bignum256 *falsecase); void bn_cnegate(volatile uint32_t cond, bignum256 *x, const bignum256 *prime); void bn_lshift(bignum256 *x); void bn_rshift(bignum256 *x); void bn_setbit(bignum256 *x, uint16_t i); void bn_clearbit(bignum256 *x, uint16_t i); uint32_t bn_testbit(const bignum256 *x, uint16_t i); void bn_xor(bignum256 *res, const bignum256 *x, const bignum256 *y); void bn_mult_half(bignum256 *x, const bignum256 *prime); void bn_mult_k(bignum256 *x, uint8_t k, const bignum256 *prime); void bn_mod(bignum256 *x, const bignum256 *prime); void bn_multiply(const bignum256 *k, bignum256 *x, const bignum256 *prime); void bn_fast_mod(bignum256 *x, const bignum256 *prime); void bn_power_mod(const bignum256 *x, const bignum256 *e, const bignum256 *prime, bignum256 *res); void bn_sqrt(bignum256 *x, const bignum256 *prime); uint32_t inverse_mod_power_two(uint32_t a, uint32_t n); void bn_divide_base(bignum256 *x, const bignum256 *prime); void bn_normalize(bignum256 *x); void bn_add(bignum256 *x, const bignum256 *y); void bn_addmod(bignum256 *x, const bignum256 *y, const bignum256 *prime); void bn_addi(bignum256 *x, uint32_t y); void bn_subi(bignum256 *x, uint32_t y, const bignum256 *prime); void bn_subtractmod(const bignum256 *x, const bignum256 *y, bignum256 *res, const bignum256 *prime); void bn_subtract(const bignum256 *x, const bignum256 *y, bignum256 *res); void bn_long_division(bignum256 *x, uint32_t d, bignum256 *q, uint32_t *r); void bn_divmod58(bignum256 *x, uint32_t *r); void bn_divmod1000(bignum256 *x, uint32_t *r); void bn_inverse(bignum256 *x, const bignum256 *prime); size_t bn_format(const bignum256 *amount, const char *prefix, const char *suffix, unsigned int decimals, int exponent, bool trailing, char thousands, char *output, size_t output_length); // Returns (uint32_t) in_number // Assumes in_number < 2**32 // Assumes in_number is normalized static inline uint32_t bn_write_uint32(const bignum256 *in_number) { return in_number->val[0] | (in_number->val[1] << BN_BITS_PER_LIMB); } // Returns (uint64_t) in_number // Assumes in_number < 2**64 // Assumes in_number is normalized static inline uint64_t bn_write_uint64(const bignum256 *in_number) { uint64_t acc; acc = in_number->val[2]; acc <<= BN_BITS_PER_LIMB; acc |= in_number->val[1]; acc <<= BN_BITS_PER_LIMB; acc |= in_number->val[0]; return acc; } // y = x static inline void bn_copy(const bignum256 *x, bignum256 *y) { *y = *x; } // Returns x % 2 == 0 static inline int bn_is_even(const bignum256 *x) { return (x->val[0] & 1) == 0; } // Returns x % 2 == 0 static inline int bn_is_odd(const bignum256 *x) { return (x->val[0] & 1) == 1; } static inline size_t bn_format_uint64(uint64_t amount, const char *prefix, const char *suffix, unsigned int decimals, int exponent, bool trailing, char thousands, char *output, size_t output_length) { bignum256 bn_amount; bn_read_uint64(amount, &bn_amount); return bn_format(&bn_amount, prefix, suffix, decimals, exponent, trailing, thousands, output, output_length); } static inline size_t bn_format_amount(uint64_t amount, const char *prefix, const char *suffix, unsigned int decimals, char *output, size_t output_length) { return bn_format_uint64(amount, prefix, suffix, decimals, 0, false, ',', output, output_length); } #if USE_BN_PRINT void bn_print(const bignum256 *x); void bn_print_raw(const bignum256 *x); #endif #endif