/** * Copyright (c) 2013 Tomas Dzetkulic * Copyright (c) 2013 Pavol Rusnak * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES * OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. */ #include #include #include "bignum.h" #include "secp256k1.h" inline uint32_t read_be(const uint8_t *data) { return (((uint32_t)data[0]) << 24) | (((uint32_t)data[1]) << 16) | (((uint32_t)data[2]) << 8) | (((uint32_t)data[3])); } inline void write_be(uint8_t *data, uint32_t x) { data[0] = x >> 24; data[1] = x >> 16; data[2] = x >> 8; data[3] = x; } void bn_read_be(const uint8_t *in_number, bignum256 *out_number) { int i; uint64_t temp = 0; for (i = 0; i < 8; i++) { temp += (((uint64_t)read_be(in_number + (7 - i) * 4)) << (2 * i)); out_number->val[i]= temp & 0x3FFFFFFF; temp >>= 30; } out_number->val[8] = temp; } void bn_write_be(const bignum256 *in_number, uint8_t *out_number) { int i, shift = 30 + 16 - 32; uint64_t temp = in_number->val[8]; for (i = 0; i < 8; i++) { temp <<= 30; temp |= in_number->val[7 - i]; write_be(out_number + i * 4, temp >> shift); shift -= 2; } } void bn_zero(bignum256 *a) { int i; for (i = 0; i < 9; i++) { a->val[i] = 0; } } int bn_is_zero(const bignum256 *a) { int i; for (i = 0; i < 9; i++) { if (a->val[i] != 0) return 0; } return 1; } int bn_is_less(const bignum256 *a, const bignum256 *b) { int i; for (i = 8; i >= 0; i--) { if (a->val[i] < b->val[i]) return 1; if (a->val[i] > b->val[i]) return 0; } return 0; } int bn_bitlen(const bignum256 *a) { int i = 8, j; while (i >= 0 && a->val[i] == 0) i--; if (i == -1) return 0; j = 29; while ((a->val[i] & (1 << j)) == 0) j--; return i * 30 + j + 1; } void bn_lshift(bignum256 *a) { int i; for (i = 8; i > 0; i--) { a->val[i] = ((a->val[i] << 1) & 0x3FFFFFFF) | ((a->val[i - 1] & 0x20000000) >> 29); } a->val[0] = (a->val[0] << 1) & 0x3FFFFFFF; } void bn_rshift(bignum256 *a) { int i; for (i = 0; i < 8; i++) { a->val[i] = (a->val[i] >> 1) | ((a->val[i + 1] & 1) << 29); } a->val[8] >>= 1; } // assumes x < 2*prime, result < prime void bn_mod(bignum256 *x, const bignum256 *prime) { int i = 8; uint32_t temp; // compare numbers while (i >= 0 && prime->val[i] == x->val[i]) i--; // if equal if (i == -1) { // set x to zero bn_zero(x); } else { // if x is greater if (x->val[i] > prime->val[i]) { // substract p from x temp = 0x40000000u; for (i = 0; i < 9; i++) { temp += x->val[i] - prime->val[i]; x->val[i] = temp & 0x3FFFFFFF; temp >>= 30; temp += 0x3FFFFFFFu; } } } } // x = k * x // both inputs and result may be bigger than prime but not bigger than 2 * prime void bn_multiply(const bignum256 *k, bignum256 *x, const bignum256 *prime) { int i, j; uint64_t temp = 0; uint32_t res[18], coef; // compute lower half of long multiplication for (i = 0; i < 9; i++) { for (j = 0; j <= i; j++) { temp += k->val[j] * (uint64_t)x->val[i - j]; } res[i] = temp & 0x3FFFFFFFu; temp >>= 30; } // compute upper half for (; i < 17; i++) { for (j = i - 8; j < 9 ; j++) { temp += k->val[j] * (uint64_t)x->val[i - j]; } res[i] = temp & 0x3FFFFFFFu; temp >>= 30; } res[17] = temp; // compute modulo p division is only estimated so this may give result greater than prime but not bigger than 2 * prime for (i = 16; i >= 8; i--) { // estimate (res / prime) coef = (res[i] >> 16) + (res[i + 1] << 14); // substract (coef * prime) from res temp = 0x1000000000000000llu + res[i - 8] - prime->val[0] * (uint64_t)coef; res[i - 8] = temp & 0x3FFFFFFF; for (j = 1; j < 9; j++) { temp >>= 30; temp += 0xFFFFFFFC0000000llu + res[i - 8 + j] - prime->val[j] * (uint64_t)coef; res[i - 8 + j] = temp & 0x3FFFFFFF; } } // store the result for (i = 0; i < 9; i++) { x->val[i] = res[i]; } } // result is smaller than 2*prime void bn_fast_mod(bignum256 *x, const bignum256 *prime) { int j; uint32_t coef; uint64_t temp; coef = x->val[8] >> 16; if (!coef) return; // substract (coef * prime) from x temp = 0x1000000000000000llu + x->val[0] - prime->val[0] * (uint64_t)coef; x->val[0] = temp & 0x3FFFFFFF; for (j = 1; j < 9; j++) { temp >>= 30; temp += 0xFFFFFFFC0000000llu + x->val[j] - prime->val[j] * (uint64_t)coef; x->val[j] = temp & 0x3FFFFFFF; } } // square root of x = x^((p+1)/4) // http://en.wikipedia.org/wiki/Quadratic_residue#Prime_or_prime_power_modulus void bn_sqrt(bignum256 *x, const bignum256 *prime) { uint32_t i, j, limb; bignum256 res, p; bn_zero(&res); res.val[0] = 1; memcpy(&p, prime, sizeof(bignum256)); p.val[0] += 1; bn_rshift(&p); bn_rshift(&p); for (i = 0; i < 9; i++) { limb = p.val[i]; for (j = 0; j < 30; j++) { if (i == 8 && limb == 0) break; if (limb & 1) { bn_multiply(x, &res, prime); } limb >>= 1; bn_multiply(x, x, prime); } } bn_mod(&res, prime); memcpy(x, &res, sizeof(bignum256)); } #if ! USE_INVERSE_FAST #if USE_PRECOMPUTED_IV #warning USE_PRECOMPUTED_IV will not be used #endif // in field G_prime, small but slow void bn_inverse(bignum256 *x, const bignum256 *prime) { uint32_t i, j, limb; bignum256 res; bn_zero(&res); res.val[0] = 1; for (i = 0; i < 9; i++) { limb = prime->val[i]; // this is not enough in general but fine for secp256k1 because prime->val[0] > 1 if (i == 0) limb -= 2; for (j = 0; j < 30; j++) { if (i == 8 && limb == 0) break; if (limb & 1) { bn_multiply(x, &res, prime); } limb >>= 1; bn_multiply(x, x, prime); } } bn_mod(&res, prime); memcpy(x, &res, sizeof(bignum256)); } #else // in field G_prime, big but fast void bn_inverse(bignum256 *x, const bignum256 *prime) { int i, j, k, len1, len2, mask; uint32_t u[9], v[9], s[10], r[10], temp, temp2; bn_fast_mod(x, prime); bn_mod(x, prime); for (i = 0; i < 9; i++) { u[i] = prime->val[i]; v[i] = x->val[i]; } len1 = 9; s[0] = 1; r[0] = 0; len2 = 1; k = 0; for (;;) { for (i = 0; i < len1; i++) { if (v[i]) break; } if (i == len1) break; for (;;) { for (i = 0; i < 30; i++) { if (u[0] & (1 << i)) break; } if (i == 0) break; mask = (1 << i) - 1; for (j = 0; j + 1 < len1; j++) { u[j] = (u[j] >> i) | ((u[j + 1] & mask) << (30 - i)); } u[j] = (u[j] >> i); mask = (1 << (30 - i)) - 1; s[len2] = s[len2 - 1] >> (30 - i); for (j = len2 - 1; j > 0; j--) { s[j] = (s[j - 1] >> (30 - i)) | ((s[j] & mask) << i); } s[0] = (s[0] & mask) << i; if (s[len2]) { r[len2] = 0; len2++; } k += i; } for (;;) { for (i = 0; i < 30; i++) { if (v[0] & (1 << i)) break; } if (i == 0) break; mask = (1 << i) - 1; for (j = 0; j + 1 < len1; j++) { v[j] = (v[j] >> i) | ((v[j + 1] & mask) << (30 - i)); } v[j] = (v[j] >> i); mask = (1 << (30 - i)) - 1; r[len2] = r[len2 - 1] >> (30 - i); for (j = len2 - 1; j > 0; j--) { r[j] = (r[j - 1] >> (30 - i)) | ((r[j] & mask) << i); } r[0] = (r[0] & mask) << i; if (r[len2]) { s[len2] = 0; len2++; } k += i; } i = len1 - 1; while (i > 0 && u[i] == v[i]) i--; if (u[i] > v[i]) { temp = 0x40000000u + u[0] - v[0]; u[0] = (temp >> 1) & 0x1FFFFFFF; temp >>= 30; for (i = 1; i < len1; i++) { temp += 0x3FFFFFFFu + u[i] - v[i]; u[i - 1] += (temp & 1) << 29; u[i] = (temp >> 1) & 0x1FFFFFFF; temp >>= 30; } temp = temp2 = 0; for (i = 0; i < len2; i++) { temp += s[i] + r[i]; temp2 += s[i] << 1; r[i] = temp & 0x3FFFFFFF; s[i] = temp2 & 0x3FFFFFFF; temp >>= 30; temp2 >>= 30; } if (temp != 0 || temp2 != 0) { r[len2] = temp; s[len2] = temp2; len2++; } } else { temp = 0x40000000u + v[0] - u[0]; v[0] = (temp >> 1) & 0x1FFFFFFF; temp >>= 30; for (i = 1; i < len1; i++) { temp += 0x3FFFFFFFu + v[i] - u[i]; v[i - 1] += (temp & 1) << 29; v[i] = (temp >> 1) & 0x1FFFFFFF; temp >>= 30; } temp = temp2 = 0; for (i = 0; i < len2; i++) { temp += s[i] + r[i]; temp2 += r[i] << 1; s[i] = temp & 0x3FFFFFFF; r[i] = temp2 & 0x3FFFFFFF; temp >>= 30; temp2 >>= 30; } if (temp != 0 || temp2 != 0) { s[len2] = temp; r[len2] = temp2; len2++; } } if (u[len1 - 1] == 0 && v[len1 - 1] == 0) len1--; k++; } i = 8; while (i > 0 && r[i] == prime->val[i]) i--; if (r[i] >= prime->val[i]) { temp = 1; for (i = 0; i < 9; i++) { temp += 0x3FFFFFFF + r[i] - prime->val[i]; r[i] = temp & 0x3FFFFFFF; temp >>= 30; } } temp = 1; for (i = 0; i < 9; i++) { temp += 0x3FFFFFFF + prime->val[i] - r[i]; r[i] = temp & 0x3FFFFFFF; temp >>= 30; } int done = 0; #if USE_PRECOMPUTED_IV if (prime == &prime256k1) { for (j = 0; j < 9; j++) { x->val[j] = r[j]; } bn_multiply(secp256k1_iv + k - 256, x, prime); bn_fast_mod(x, prime); done = 1; } #endif if (!done) { for (j = 0; j < k; j++) { if (r[0] & 1) { temp = r[0] + prime->val[0]; r[0] = (temp >> 1) & 0x1FFFFFFF; temp >>= 30; for (i = 1; i < 9; i++) { temp += r[i] + prime->val[i]; r[i - 1] += (temp & 1) << 29; r[i] = (temp >> 1) & 0x1FFFFFFF; temp >>= 30; } } else { for (i = 0; i < 8; i++) { r[i] = (r[i] >> 1) | ((r[i + 1] & 1) << 29); } r[8] = r[8] >> 1; } } for (j = 0; j < 9; j++) { x->val[j] = r[j]; } } } #endif void bn_normalize(bignum256 *a) { int i; uint32_t tmp = 0; for (i = 0; i < 9; i++) { tmp += a->val[i]; a->val[i] = tmp & 0x3FFFFFFF; tmp >>= 30; } } void bn_addmod(bignum256 *a, const bignum256 *b, const bignum256 *prime) { int i; for (i = 0; i < 9; i++) { a->val[i] += b->val[i]; } bn_normalize(a); bn_fast_mod(a, prime); bn_mod(a, prime); } void bn_addmodi(bignum256 *a, uint32_t b, const bignum256 *prime) { a->val[0] += b; bn_normalize(a); bn_fast_mod(a, prime); bn_mod(a, prime); } // res = a - b // b < 2*prime; result not normalized void bn_substract(const bignum256 *a, const bignum256 *b, bignum256 *res) { int i; uint32_t temp = 0; for (i = 0; i < 9; i++) { temp += a->val[i] + 2u * prime256k1.val[i] - b->val[i]; res->val[i] = temp & 0x3FFFFFFF; temp >>= 30; } } // res = a - b ; a > b void bn_substract_noprime(const bignum256 *a, const bignum256 *b, bignum256 *res) { int i; uint32_t tmp = 1; for (i = 0; i < 9; i++) { tmp += 0x3FFFFFFF + a->val[i] - b->val[i]; res->val[i] = tmp & 0x3FFFFFFF; tmp >>= 30; } } // a / 58 = a (+r) void bn_divmod58(bignum256 *a, uint32_t *r) { int i; uint32_t rem, tmp; rem = a->val[8] % 58; a->val[8] /= 58; for (i = 7; i >= 0; i--) { // 2^30 == 18512790*58 + 4 tmp = rem * 4 + a->val[i]; a->val[i] = rem * 18512790 + (tmp / 58); rem = tmp % 58; } *r = rem; } #if 0 void bn_print(const bignum256 *a) { printf("%04x", a->val[8] & 0x0000FFFF); printf("%08x", (a->val[7] << 2) | ((a->val[6] & 0x30000000) >> 28)); printf("%07x", a->val[6] & 0x0FFFFFFF); printf("%08x", (a->val[5] << 2) | ((a->val[4] & 0x30000000) >> 28)); printf("%07x", a->val[4] & 0x0FFFFFFF); printf("%08x", (a->val[3] << 2) | ((a->val[2] & 0x30000000) >> 28)); printf("%07x", a->val[2] & 0x0FFFFFFF); printf("%08x", (a->val[1] << 2) | ((a->val[0] & 0x30000000) >> 28)); printf("%07x", a->val[0] & 0x0FFFFFFF); } #endif