/* * Copyright 2013 The Android Open Source Project * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of Google Inc. nor the names of its contributors may * be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY Google Inc. ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO * EVENT SHALL Google Inc. BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ // This is an implementation of the P256 elliptic curve group. It's written to // be portable 32-bit, although it's still constant-time. // // WARNING: Implementing these functions in a constant-time manner is far from // obvious. Be careful when touching this code. // // See http://www.imperialviolet.org/2010/12/04/ecc.html ([1]) for background. #include <assert.h> #include <stdint.h> #include <string.h> #include <stdio.h> #include "p256.h" const p256_int SECP256r1_n = // curve order {{0xfc632551, 0xf3b9cac2, 0xa7179e84, 0xbce6faad, -1, -1, 0, -1}}; const p256_int SECP256r1_p = // curve field size {{-1, -1, -1, 0, 0, 0, 1, -1 }}; const p256_int SECP256r1_b = // curve b {{0x27d2604b, 0x3bce3c3e, 0xcc53b0f6, 0x651d06b0, 0x769886bc, 0xb3ebbd55, 0xaa3a93e7, 0x5ac635d8}}; void p256_init(p256_int* a) { memset(a, 0, sizeof(*a)); } void p256_clear(p256_int* a) { p256_init(a); } int p256_get_bit(const p256_int* scalar, int bit) { return (P256_DIGIT(scalar, bit / P256_BITSPERDIGIT) >> (bit & (P256_BITSPERDIGIT - 1))) & 1; } int p256_is_zero(const p256_int* a) { int i, result = 0; for (i = 0; i < P256_NDIGITS; ++i) result |= P256_DIGIT(a, i); return !result; } // top, c[] += a[] * b // Returns new top static p256_digit mulAdd(const p256_int* a, p256_digit b, p256_digit top, p256_digit* c) { int i; p256_ddigit carry = 0; for (i = 0; i < P256_NDIGITS; ++i) { carry += *c; carry += (p256_ddigit)P256_DIGIT(a, i) * b; *c++ = (p256_digit)carry; carry >>= P256_BITSPERDIGIT; } return top + (p256_digit)carry; } // top, c[] -= top_a, a[] static p256_digit subTop(p256_digit top_a, const p256_digit* a, p256_digit top_c, p256_digit* c) { int i; p256_sddigit borrow = 0; for (i = 0; i < P256_NDIGITS; ++i) { borrow += *c; borrow -= *a++; *c++ = (p256_digit)borrow; borrow >>= P256_BITSPERDIGIT; } borrow += top_c; borrow -= top_a; top_c = (p256_digit)borrow; assert((borrow >> P256_BITSPERDIGIT) == 0); return top_c; } // top, c[] -= MOD[] & mask (0 or -1) // returns new top. static p256_digit subM(const p256_int* MOD, p256_digit top, p256_digit* c, p256_digit mask) { int i; p256_sddigit borrow = 0; for (i = 0; i < P256_NDIGITS; ++i) { borrow += *c; borrow -= P256_DIGIT(MOD, i) & mask; *c++ = (p256_digit)borrow; borrow >>= P256_BITSPERDIGIT; } return top + (p256_digit)borrow; } // top, c[] += MOD[] & mask (0 or -1) // returns new top. static p256_digit addM(const p256_int* MOD, p256_digit top, p256_digit* c, p256_digit mask) { int i; p256_ddigit carry = 0; for (i = 0; i < P256_NDIGITS; ++i) { carry += *c; carry += P256_DIGIT(MOD, i) & mask; *c++ = (p256_digit)carry; carry >>= P256_BITSPERDIGIT; } return top + (p256_digit)carry; } // c = a * b mod MOD. c can be a and/or b. void p256_modmul(const p256_int* MOD, const p256_int* a, const p256_digit top_b, const p256_int* b, p256_int* c) { p256_digit tmp[P256_NDIGITS * 2 + 1] = { 0 }; p256_digit top = 0; int i; // Multiply/add into tmp. for (i = 0; i < P256_NDIGITS; ++i) { if (i) tmp[i + P256_NDIGITS - 1] = top; top = mulAdd(a, P256_DIGIT(b, i), 0, tmp + i); } // Multiply/add top digit tmp[i + P256_NDIGITS - 1] = top; top = mulAdd(a, top_b, 0, tmp + i); // Reduce tmp, digit by digit. for (; i >= 0; --i) { p256_digit reducer[P256_NDIGITS] = { 0 }; p256_digit top_reducer; // top can be any value at this point. // Guestimate reducer as top * MOD, since msw of MOD is -1. top_reducer = mulAdd(MOD, top, 0, reducer); // Subtract reducer from top | tmp. top = subTop(top_reducer, reducer, top, tmp + i); // top is now either 0 or 1. Make it 0, fixed-timing. assert(top <= 1); top = subM(MOD, top, tmp + i, ~(top - 1)); assert(top == 0); // We have now reduced the top digit off tmp. Fetch new top digit. top = tmp[i + P256_NDIGITS - 1]; } // tmp might still be larger than MOD, yet same bit length. // Make sure it is less, fixed-timing. addM(MOD, 0, tmp, subM(MOD, 0, tmp, -1)); memcpy(c, tmp, P256_NBYTES); } int p256_is_odd(const p256_int* a) { return P256_DIGIT(a, 0) & 1; } int p256_is_even(const p256_int* a) { return !(P256_DIGIT(a, 0) & 1); } p256_digit p256_shl(const p256_int* a, int n, p256_int* b) { int i; p256_digit top = P256_DIGIT(a, P256_NDIGITS - 1); n %= P256_BITSPERDIGIT; for (i = P256_NDIGITS - 1; i > 0; --i) { p256_digit accu = (P256_DIGIT(a, i) << n); accu |= (P256_DIGIT(a, i - 1) >> (P256_BITSPERDIGIT - n)); P256_DIGIT(b, i) = accu; } P256_DIGIT(b, i) = (P256_DIGIT(a, i) << n); top = (p256_digit)((((p256_ddigit)top) << n) >> P256_BITSPERDIGIT); return top; } void p256_shr(const p256_int* a, int n, p256_int* b) { int i; n %= P256_BITSPERDIGIT; for (i = 0; i < P256_NDIGITS - 1; ++i) { p256_digit accu = (P256_DIGIT(a, i) >> n); accu |= (P256_DIGIT(a, i + 1) << (P256_BITSPERDIGIT - n)); P256_DIGIT(b, i) = accu; } P256_DIGIT(b, i) = (P256_DIGIT(a, i) >> n); } static void p256_shr1(const p256_int* a, int highbit, p256_int* b) { int i; for (i = 0; i < P256_NDIGITS - 1; ++i) { p256_digit accu = (P256_DIGIT(a, i) >> 1); accu |= (P256_DIGIT(a, i + 1) << (P256_BITSPERDIGIT - 1)); P256_DIGIT(b, i) = accu; } P256_DIGIT(b, i) = (P256_DIGIT(a, i) >> 1) | (highbit << (P256_BITSPERDIGIT - 1)); } // Return -1, 0, 1 for a < b, a == b or a > b respectively. int p256_cmp(const p256_int* a, const p256_int* b) { int i; p256_sddigit borrow = 0; p256_digit notzero = 0; for (i = 0; i < P256_NDIGITS; ++i) { borrow += (p256_sddigit)P256_DIGIT(a, i) - P256_DIGIT(b, i); // Track whether any result digit is ever not zero. // Relies on !!(non-zero) evaluating to 1, e.g., !!(-1) evaluating to 1. notzero |= !!((p256_digit)borrow); borrow >>= P256_BITSPERDIGIT; } return (int)borrow | notzero; } // c = a - b. Returns borrow: 0 or -1. int p256_sub(const p256_int* a, const p256_int* b, p256_int* c) { int i; p256_sddigit borrow = 0; for (i = 0; i < P256_NDIGITS; ++i) { borrow += (p256_sddigit)P256_DIGIT(a, i) - P256_DIGIT(b, i); if (c) P256_DIGIT(c, i) = (p256_digit)borrow; borrow >>= P256_BITSPERDIGIT; } return (int)borrow; } // c = a + b. Returns carry: 0 or 1. int p256_add(const p256_int* a, const p256_int* b, p256_int* c) { int i; p256_ddigit carry = 0; for (i = 0; i < P256_NDIGITS; ++i) { carry += (p256_ddigit)P256_DIGIT(a, i) + P256_DIGIT(b, i); if (c) P256_DIGIT(c, i) = (p256_digit)carry; carry >>= P256_BITSPERDIGIT; } return (int)carry; } // b = a + d. Returns carry, 0 or 1. int p256_add_d(const p256_int* a, p256_digit d, p256_int* b) { int i; p256_ddigit carry = d; for (i = 0; i < P256_NDIGITS; ++i) { carry += (p256_ddigit)P256_DIGIT(a, i); if (b) P256_DIGIT(b, i) = (p256_digit)carry; carry >>= P256_BITSPERDIGIT; } return (int)carry; } // b = 1/a mod MOD, binary euclid. void p256_modinv_vartime(const p256_int* MOD, const p256_int* a, p256_int* b) { p256_int R = P256_ZERO; p256_int S = P256_ONE; p256_int U = *MOD; p256_int V = *a; for (;;) { if (p256_is_even(&U)) { p256_shr1(&U, 0, &U); if (p256_is_even(&R)) { p256_shr1(&R, 0, &R); } else { // R = (R+MOD)/2 p256_shr1(&R, p256_add(&R, MOD, &R), &R); } } else if (p256_is_even(&V)) { p256_shr1(&V, 0, &V); if (p256_is_even(&S)) { p256_shr1(&S, 0, &S); } else { // S = (S+MOD)/2 p256_shr1(&S, p256_add(&S, MOD, &S) , &S); } } else { // U,V both odd. if (!p256_sub(&V, &U, NULL)) { p256_sub(&V, &U, &V); if (p256_sub(&S, &R, &S)) p256_add(&S, MOD, &S); if (p256_is_zero(&V)) break; // done. } else { p256_sub(&U, &V, &U); if (p256_sub(&R, &S, &R)) p256_add(&R, MOD, &R); } } } p256_mod(MOD, &R, b); } void p256_mod(const p256_int* MOD, const p256_int* in, p256_int* out) { if (out != in) *out = *in; addM(MOD, 0, P256_DIGITS(out), subM(MOD, 0, P256_DIGITS(out), -1)); } // Verify y^2 == x^3 - 3x + b mod p // and 0 < x < p and 0 < y < p int p256_is_valid_point(const p256_int* x, const p256_int* y) { p256_int y2, x3; if (p256_cmp(&SECP256r1_p, x) <= 0 || p256_cmp(&SECP256r1_p, y) <= 0 || p256_is_zero(x) || p256_is_zero(y)) return 0; p256_modmul(&SECP256r1_p, y, 0, y, &y2); // y^2 p256_modmul(&SECP256r1_p, x, 0, x, &x3); // x^2 p256_modmul(&SECP256r1_p, x, 0, &x3, &x3); // x^3 if (p256_sub(&x3, x, &x3)) p256_add(&x3, &SECP256r1_p, &x3); // x^3 - x if (p256_sub(&x3, x, &x3)) p256_add(&x3, &SECP256r1_p, &x3); // x^3 - 2x if (p256_sub(&x3, x, &x3)) p256_add(&x3, &SECP256r1_p, &x3); // x^3 - 3x if (p256_add(&x3, &SECP256r1_b, &x3)) // x^3 - 3x + b p256_sub(&x3, &SECP256r1_p, &x3); return p256_cmp(&y2, &x3) == 0; } void p256_from_bin(const uint8_t src[P256_NBYTES], p256_int* dst) { int i; const uint8_t* p = &src[0]; for (i = P256_NDIGITS - 1; i >= 0; --i) { P256_DIGIT(dst, i) = (p[0] << 24) | (p[1] << 16) | (p[2] << 8) | p[3]; p += 4; } }